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ABSTRACT Reinforcement learning (RL), which is a class of machine learning, provides a framework
by which a system can learn from its previous interactions with its environment to efficiently select its
actions in the future. RL has been used in a number of application fields, including game playing, robotics
and control, networks, and telecommunications, for building autonomous systems that improve themselves
with experience. It is commonly accepted that RL is suitable for solving optimization problems related to
distributed systems in general and to routing in networks in particular. RL also has reasonable overhead—
in terms of control packets, memory and computation—compared to other optimization techniques used to
solve the same problems. Since the mid-1990s, over 60 protocols have been proposed, with major or minor
contributions in the field of optimal route selection to convey packets in different types of communication
networks under various user QoS requirements. This paper provides a comprehensive review of the literature
on the topic. The review is structured in a way that shows how network characteristics and requirements were
gradually considered over time. Classification criteria are proposed to present and qualitatively compare
existing RL-based routing protocols.

INDEX TERMS Reinforcement learning, communication networks, routing protocols, path optimization,
quality of service.

I. INTRODUCTION
Machine learning (ML) is a field of computer science and
statistics that encompasses a set of algorithms and methods
that learn from datasets and are capable of making predictions
or helping tomake them [1]–[3]. Nowadays,ML has a leading
role in computerized societies. It is very likely that almost all
future devices and machines will include ML-based compo-
nents to improve their operationmanagement and adapt them-
selves to their environment. ML is a powerful tool to address
complex problems.Widely used in image and speech recogni-
tion, robot guidance, autonomous car guidance, telecommu-
nication, and many other sectors, ML techniques proved their
efficiency. For tasks such as classification and optimization,
ML are known to (often) produce better results than human
beings.

ML techniques are categorized in four classes based on
how learning is carried out [1], [2]: supervised, unsuper-
vised, semi-supervised, and reinforcement. In supervised
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learning—called learning with teacher—input and output
variables are used to learn the mapping function from input
to output; the goal is to approximate the mapping function
in such a way that an output (also called label) can be
accurately predicted from its associated input. In unsuper-
vised learning—called learning without teacher—only input
is used; the goal is to model the structure or distribution (e.g.,
data clustering) in the data in order to learn specific char-
acteristics about data. Semi-supervised learning is similar to
supervised one, but not all observations have labels (outputs).
Finally, reinforcement learning is a technique inspired by
the behavioral psychology and it provides system modeling
based on agents interacting with their environment [4]. In the
sequel, the paper only focuses on reinforcement learning (RL)
application to routing in communication networks.

The complexity and the heterogeneity of modern net-
works, the end-users’ QoS and security requirements, the eco-
nomic aspects of telecommunication operators and service
providers, and the social internetworking have significantly
increased since the earlier communication networks. From
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wired and manually configured networks, we moved to very
dynamic and autonomic networks. The management of most
of current networks became beyond the manual administra-
tion and configuration. Consequently, ML techniques have
been applied to the networking field to address issues and
challenges, including traffic classification and prediction,
fault management, configuration management, congestion
control, QoS monitoring, energy optimization, and security
management [5]–[7]. The goals of ML applications to net-
works is to automatically learn the dynamics of networks,
in particular, new flow arrivals, congestion points, topology
changes, quality of links, and energy consumption to improve
the service quality offered to end-users, while optimizing
network resources and providers’ revenues.

This paper reviews literature regarding application of RL
to routing, which is a function of paramount importance in
networks. When the routing is of concern, RL-based learn-
ing is prevailing in literature compared to supervised and
unsupervised learning models, because of lack of datasets—
representative in routing field—required by supervised and
unsupervised learnings. Indeed, RL does not require avail-
ability of datasets collected throughmeasurement campaigns.

In networks, routing is the problem of selecting paths to
send packets from source(s) to destination(s), while meeting
QoS requirements, if any, and optimizing network resources.
The standard approach to routing is to consider the network as
a weighted graph and to find paths with minimum cost in the
graph and satisfying QoS requirements. The graph weights
include a variety of link metrics (or factors), such as latency,
reliability, stability, and energy. Whenever multiple metrics
are required, routing problem becomes NP-complete [8].
Many heuristics have been applied to provide sub-optimal
solutions. Literature on routing is plenteous and has consid-
ered different types of routing (hop-by-hop, source, unicast,
multicast, unicast, opportunistic, and QoS-aware routing)
applied to many network classes (wired, wireless, mobile,
ad hoc networks, etc.).

Routing has been investigated since the earlier networks.
One major concern in routing is the optimization of routes
while considering dynamic topology changes. Most present
networks are (very) dynamic in nature. For example, in vehic-
ular and ad hoc networks, nodes frequently move, which
results in topology changes. Likewise, energy consumption
in wireless sensor networks results in nodes ceasing activity
because of their battery expired. Traditional routing tech-
niques, which are based on huge assumptions regarding traf-
fic flows and network condition changes, are more and more
perceived as inefficient to suit complex and highly changing
conditions of mobile, wireless, and delay-tolerant networks.
Indeed, in the event the underlying assumptions are not satis-
fied online, network performance may strongly deviate from
those expected and (often) confirmed by simulation. RL is
an efficient alternative to address network conditions as they
appear in real world.

Applications of RL to solve routing problems started
in 1994 with the seminal work of Boyan and Littman [9].

Then, tens of works followed the original idea of using RL
to optimize routing, while gradually taking into account evo-
lution of communication networks and users’ requirements.
The first objective of this paper is to provide a comprehensive
presentation of the main characteristics of RL-based routing
protocols. The second objective is to provide classification
criteria to enable analysis and comparison of existing pro-
tocols and to help the design of new protocols for specific
contexts of use. Indeed, our classification enables to address
RL-based routing protocols from three complementary per-
spectives:
• Context of use: in which context the protocol may be
used, including targeted network class, type of routing,
selection of predefined routes or online discovery of
optimal routes, QoS metrics to consider in optimization
and in constraint satisfaction?

• Design characteristics: what are the main design charac-
teristics of each protocol compared to others, including
modeling of agent states, actions, action selection pro-
cedures, and reward function?

• Protocol performance: how significant is the overhead
(in memory size and control packet amount) of routing
protocols?

It should be noticed that all protocols presented in sequel
differ from each other in their design—particularly in agent
function design, including reward function—whereas, at first
glance, some routing protocols seem similar in their model-
ing.

As far as we know, only [10] and [11] provided sur-
veys regarding the early RL-based protocols—most surveyed
protocols are prior to 2011. Their surveys were limited in
terms of reviewed protocols (less than 20) and included very
few algorithms features. In [10], the distinctive feature of
surveyed protocols was the class of targeted networks. The
objective of [11] was the survey of a dozen of RL-based
algorithms and not the proposal of classification criteria.
Furthermore, the application of RL to the design of rout-
ing protocols has made a significant progress in the current
decade to address the characteristics of evolving networks,
which resulted in the emergence of huge innovative and orig-
inal RL-based routing protocols that have not been addressed
in existing surveys. The aim of this paper is to go beyond
those surveys and to provide the first comprehensive review
and classification criteria to address over sixty RL-based
protocols. Eighteen criteria are proposed to address different
points of view in RL-based routing design. The proposed
classification would serve as a framework to guide the selec-
tion of routing protocols, which fulfill given deployment
requirements, or to help proposing new protocols.

The remainder of the paper is structured as follows.
In section II, RL principles useful for modeling routing
protocols are presented. The objectives and the context
of use of existing RL-based routing protocols are sum-
marized in section III. Section IV outlines the building
blocks of RL-based protocols and the characteristics of
targeted networks. In section V, criteria are proposed to
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FIGURE 1. Reinforcement learning model.

classify protocols. Finally, some challenges are discussed in
section VI, which concludes the paper.

II. OVERVIEW OF REINFORCEMENT LEARNING
PRINCIPLES
The presentation below is limited to basic aspects of RL,
which are fundamental to the analysis and comparison of
building blocks of RL-based routing protocols. For more
details, readers should refer to [4] and [12].

A. RL MODELING: STATE, ACTION, REWARD
The learner, also called Agent, interacts with its environment
and selects its actions to be applied to environment according
to its current state and the reinforcement it collects from the
environment (Fig. 1). For example, a router interacts with its
neighboring nodes to make routing decisions. In such a case,
the agent is a router, the environment is router’s neighborhood
and actions are selections of next neighbor nodes to transmit
data packets.

RL algorithms are based on reward functions. The role of
the reward, which is returned by the environment to the agent,
is to provide feedback to the learning algorithm about the
effect of the recent taken action. Whereas a reward function
indicates what is good (or bad) in an immediate sense, a value
function indicates what is good (or bad) in the long-term.
Usually, an RL problem is modeled by a 4-tuple

(S,A,P,R), where S is the set of states, A the set of actions,
P the matrix of state transition probabilities, and R the
reward function. The environment model is described by P

and R. There two approaches to RL problems: model-based
and model-free approaches. In the first approach, the agent
learns the environment model and then improves its policy
to reach optimality. Learning the environment model results
in the computation of transition probability matrix. Those
approaches are known to learn much faster than model-free
approaches since they can reuse information stored in their
internal models. However, model-based approaches are less
popular because of their greater size storage cost and their
dependence on the accuracy of the initial environment model.
In model-free approaches, the agent improves its policy
without a priori knowledge of the environment model, i.e.
without requiring a transition probability matrix P.

A policy πt defines how the learning agent behaves at time
t . πt (a | s) denotes the probability that: at = a if st = s. at
and st denote the action and state at time t , respectively. The
probability to move, at time t , from state s to state s′ by taking
action a is:

P
(
s, a, s′

)
= Pr

(
s′ | s, a

)
= Pr

{
st+1 = s′ | st = s, at = a

}
|

∑
s′∈S

P
(
s′ | s, a

)
= 1 (1)

The reward received at time t is a real number denoted
by Rt . The reward of being in state, s and taking action a
also is denoted R(s, a). An agent selects an action at each
step (also called epoch or learning period) of its lifetime.
Consequently, time is discrete.

The objective of the agent is to take actions in order tomax-
imize the global discounted reward, denoted byGt , it receives
over the future. Thus, the agent must be able to learn which
of its actions are desirable based on the reward that can be
received far in the future. There are three basic models to
address optimality and to define Gt :
• Finite-horizonmodel in which the agent should optimize
the reward for the next h steps:

Gt =
h∑

k=1

Rt+k

Finite-horizon model is appropriate when the agent life-
time is known. For example, when routing problems are
of concern, an agent may be associated with each packet
and the number of states of agent is the number of hops to
packet destination. When a packet arrives at destination,
its agent is deleted. In such a case, agent’s lifetime is
known.

• Infinite-horizon model in which the agent should opti-
mize the reward for the long-term run:

Gt =
∑∞

k=0
γ k ∗ Rt+k+1

where γ (0 ≤ γ ≤ 1) is called discount rate. If γ = 0 the
agent is called ‘myopic’ and it is only concerned bymax-
imizing the immediate reward. As γ approaches 1, the
awareness to the future rewards is stronger. It is worth
noticing that the infinite-horizon model is prevailing in
literature regarding RL-based systems.

• Average-reward model in which the agent should take
actions that optimize the long-run average reward:

Gt = lim
h→∞

1
h

h∑
k=0

Rt+k+1

If the environment of the agent has the Markov property (i.e.,
the next state depends only on the present state and the action
to take), we have:

Pr
{
Rt+1 = r, st+1 = s′ | (s0, a0,R0), .., (st , at ,Rt )

}
= Pr

{
Rt+1 = r, st+1 = s′ | st , at

}
(2)
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Notice that it is usually assumed in the field of RL applica-
tions that the environment state has Markov property or has
an approximation of Markov state property. Under Markov
property, the expected value of the next reward is independent
of the past rewards.

RL algorithms involve two types of Q-value functions:
state-value function, which estimates how good it is for the
agent to be in a state and action-value function, which esti-
mates how good it is to perform a given action in a given
state. State-value of a state s under policy π , denoted Vπ (s),
is the expected return in s and it is defined as: Vπ (s) =
E [(Gt | st = s)]. Similarly, the action-value of taking action
a in state s under policy π , denotedQπ (s, a) , is the expected
return in starting from s and taking action a and it is defined
as: Qπ (s, a) = E [(Gt | st = s, at = a)].
Solving an RL problemmeans finding a policy to achieve a

maximum reward over the long term. A policy π is better than
a policy π ′ if its return is greater or equal to the one of π ′ for
all states, i.e. Vπ (s) ≥ Vπ ′ (s) ,∀s ∈ S. The optimal policy,
denoted π∗, has a state-value function V ∗(.) and action-value
function Q∗(.) defined as follows:

Vπ∗ (s) = V ∗ (s) = max
π

Vπ (s), ∀s ∈ S

Qπ∗ (s, a) = Q∗ (s, a) = max
π

Qπ (s, a), ∀s ∈ S

V ∗ (s) = max
a∈A

Q∗ (s, a), ∀s ∈ S (3)

The last equation is called self-consistency condition,
which simply means that the value of a state under an
optimal policy must equal the expected return for the best
action.

The optimal value function V ∗ (s) can be defined as the
solution to the following equation system:

V ∗ (s) = max
a∈A

(
R (s, a)+ γ

∑
s′∈S

(
P
(
s, a, s′

)
∗ V ∗

(
s′
)))

,

∀ s ∈ S (4)

Equation (4) can be solved mainly by using statistical
techniques and dynamic programming methods. However,
it should be noticed that the number of space solutions is at
most |A||S|, which makes many problem solving techniques
computationally intractable. |X | is cardinality of set X . Many
approaches have been proposed to learn an optimal policy
at reasonable cost depending on the assumptions regarding
the environment, i.e. depending on whether the learning is
model-free or model-based. In the field of routing in net-
works, most proposed solutions are model-free. In the sequel
(§II.B), our presentation is limited to the most used learning
technique, called Q-learning, to solving routing problems.

B. Q-LEARNING
In [13], Watkins proposed an approach to estimate action-
functionQ∗(.).Watkins’s action-function is calledQ-function
and the resulting learning technique is calledQ-learning. The

latter is a model-free learning technique. Watkins’s approxi-
mation of action function is independent of the policy fol-
lowed by the agent, which makes Q-learning applicable in
many situations and easy to implement. Thus, we have:

Qπ∗ (st , at) , Q∗ (st , at)

V ∗ (s) = max
a∈A
{Q (s, a)} (5)

In Q-learning, the agent learning consists in a sequence of
stages, called epochs (0, 1, . . . , n . . .). In epoch n, the agent
is in state sn, it performs action an, it receives a rewardRn, and
it moves to state sn+1. The action value is updated as follows:

Qn (sn, an) = (1− α) ∗ Qn−1 (sn, an)

+α ∗

[
Rn + γ ∗max

a∈A
{Qn−1 (sn+1, a)}

]
(6)

where α is called learning factor. The initial Q-values,
QO (s, a), for all states and actions are assumed given.
Q-function value updating also can be written in discrete

time t (st and at are the state and action at time t) as follows
to [4], which is often used in literature relating to Q-learning
applications:

Q (st , at) = (1− α) ∗ Q (st , at)

+α ∗

[
Rt+1 + γ ∗max

a∈A
{Q (st+1, a)}

]
(7)

Watkins showed that Q-learning converges to the opti-
mum action-values with probability 1 as long as all actions
are repeatedly sampled in all states [14]. For this reason,
Q-learning is the most popular and most effective learning
technique for learning from delayed reinforcement, i.e. learn-
ing based on reward that can be received far in the future.
However, the speed of convergence remains an open issue.

C. EXPLOITATION AND EXPLORATION
In machine learning, the learner tries to improve the current
solution while switching between exploration and exploita-
tion of the solution space. Exploitation consists in considering
a limited (but promising) region of the search space with the
hope of improving the solutions already found. Exploitation
is a local search, which has one major drawback; the search
may be blocked around a local optimum. Exploration, on the
other hand, consists in considering a much larger portion of
the search space with the hope of finding other promising
solutions that are yet to be refined. Exploration is related to
global search and ismore likely to lead to the global optimum.
There is a wide variety of solutions to the exploitation vs
exploration tradeoff problem. When RL is applied to large—
in terms of solution space—systems, heuristics are commonly
used, as they scale well at reasonable cost. Most known
heuristics include:

- Greedy strategies in which the action with the highest
Q-value is greedily selected. It should be noticed that
greedy strategy alone may never converge to global opti-
mum, because the action selection may never explore
some actions whose initial Q-values are low.
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- ε-greedy strategies(also called randomized strategies)
in which actions with the highest Q-value are selected
by default. However, with a probability ε, an action
is randomly selected from the actions eligible in the
current state whatever is its reward, in order to explore
alternative actions.

- Interval-based strategies in which statistics (including
number of trials and number of successes) for each
action are stored. Then, an action is selected depend-
ing on its confidence interval on the action success
probability.

- Probability distribution based strategies in which the
decision is based on a chosen probability distribution.
In routing protocols, Boltzmann probability distribu-
tion is sometimes used thanks to its effectiveness. It is
defined as follows:

P (at |st) =
eβ∗Q(st ,at )∑
a∈A eβ∗Q(st ,a)

(8)

It should be noticed that the choice of exploration and
exploitation techniques has a great impact on the speed of
convergence to optimality of the learning process.

III. APPLICATION OF RL TO ROUTING PROTOCOLS
A. MAIN ISSUES AND COMPONENTS IN RL-BASED
ROUTING DESIGN
In RL-based design, the following aspects are addressed:
i) identification of the most appropriate states and actions
of agent, ii) definition of the reward function depending on
metrics to optimize, and iii) identification of environment
model when available.

Given a target field of application, different design models
may be elaborated. Those models differ in how they address
each of the three previous aspects. It is the same, when routing
in networks is of concern.

Many RL-based routing protocols have been proposed in
last 25 years. Fig. 2 shows a high-level structure, which
highlights components involved in RL-based routing, not all
components are included in all existing routing protocols.

In basic reinforcement learning method, reward is received
from the environment after action selection. Reward is posi-
tive when selected action is ‘good’ regarding the environment
or negative when it is ‘bad’. Revenue (in dollar) is an eloquent
example of reward, as the agent may win or lose money.
In RL-based routing protocols, reward is addressed as a ‘cost’
to send packets. From a networking point of view, cost may
refer to delivery delay, loss rate, energy consumption, and so
on.

In literature, nodes are confused with agents and in almost
all protocols, the reward is calculated—at least partially—by
a node upon selecting an entire route to use for all packets to
transmit or just a next hop to transmit the current data packet.
Consequently, to fully comply with RL principles, a node
should be considered to consist of an agent and optional
components:

FIGURE 2. High-level structure of RL-based routing.

- Local rewardmodule, which calculates reward based on
local view; local reward reflects the cost of communica-
tion as seen by packet sender.

- Remote rewardmodule, which receives feedback sent by
the next hop or by the destination node. Whenever both
local and remote rewards are used in routing protocol,
they are combined to form the reward returned to agent.

- Link-state information maintenancemodule, which col-
lects useful link state information (such as the location
and the residual energy of neighboring nodes and the
quality of links) through periodic or on-demand Hello
beacon packets. By shortcut, the latter are commonly
called Hello packets. They are used for link state adver-
tising in networks and consequently provide a support
for collaboration of agents in RL-based routing algo-
rithms.

Thus, a part of the node hosting an agent and the neighboring
nodes form the environment of agent.

B. NETWORK CLASSES AND CHARACTERISTICS
ADDRESSED IN RL-BASED PROTOCOLS
Communication networks are commonly categorized into
different classes depending on their characteristics regarding
the type of medium (wired or wireless), energy constraints,
mobility, and so on. Network characteristics have a strong
impact on RL-based optimization of routes. In particular,
the design of the components shown in Fig. 2 is guided by
the characteristics of targeted network. Overall, distinctive
characteristics of networks that impact the protocol design in
general and the design of RL-based protocols in particular are
mainly: infrastructure-less or infrastructure-based networks,
centralized or distributed control, mobility of nodes, topol-
ogy changes, energy consumption and lifetime, capacity and
stability of links, duration of link disconnections, availability
of resources (wavelengths, channels, bandwidth), coopera-
tion between nodes (in load balancing, in relaying packets,
in data retrieval. . . ), and accuracy of link-state information
disseminated in network.

RL-based routing protocols have been extended and
improved gradually as networks evolved. Thus, existing
RL-based protocols addressed characteristics of almost all
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network categories. Below is a brief presentation of net-
works, which focuses on the main characteristics considered
to design RL-based routing.

1) WIRED NETWORKS (WiredN)
Theywere prevailing twenty years ago and are generally char-
acterized by static network topology and stable link capacities
compared to wireless networks.

2) WIRELESS NETWORKS (WNd)
WNs use the air as a medium for transmissions. They
include all categories of wireless networks presented
below.

3) WIRELESS MESH NETWORKS (WMNs)
In WMN, each mesh router is equipped with multiple radio
interfaces and a subset of nodes serves as a gateway to the
Internet [15]. Routing in WMN aims at establishing paths to
enable regular nodes (also called user nodes) to access the
Internet via gateways.

4) COOPERATIVE COMMUNICATION WIRELESS
NETWORKS (CCWNs)
In CCWN, users work cooperatively by relaying data packets
for each other, thusminimizing the antenna number to support
multi-hop communications [16]. The basic idea of CCWN
is that single-antenna mobiles in a multi-user scenario can
share their antennas in a manner that creates a virtual MIMO
system. Thus, each mobile user is assumed to transmit its data
and acts as a cooperative agent for another user.

5) OPTICAL NETWORKS (ONs)
In WDM (wavelength division multiplexing) ON, the band-
width is divided into many wavelength channels [17]. The
function of routing in WDM ON is to dynamically find a
path and to assignwavelengths to support traffic of requesting
sources. In contrast to electrical switches and routers, optical
switches do not have buffers to queue packets. Consequently,
one main performance issue in optical networks is the min-
imization of dropped packets. In order to avoid packet dis-
carding in case of contentions (i.e., when multiple packets
request the same path), one commonly used mechanism is
routing deflection, which consists in forwarding packets on
alternate paths. Since deflection disturbs nodes along selected
alternate paths (because those nodes have more traffic to
relay), deflection routing should minimize deflection actions
and select the best alternate paths, while minimizing packet
discarding.

6) AD HOC NETWORKS (MANETs AND WANETs)
They are composed of wireless nodes without central control;
they are characterized by frequent changes in topology and
link capacities. When node mobility is considered, ANETs
are categorized as MANETs (Mobile Ad hoc Networks) [18].
Mobility is an important issue when routing is of concern.

7) WIRELESS SENSOR NETWORKS (WSNs)
A WSN is composed of a set of nodes (sensors and sinks),
which are (often) densely deployed in an area to super-
vise a given phenomenon (e.g., a building, a farm, a fac-
tory. . . ). Nodes communicate wirelessly and (often) have
battery limitations and also computation and memory limita-
tions [19]. The main challenges, when routing is of concern,
is to consider energy consumption to optimize network
lifetime.

8) VEHICULAR NETWORKS (VANETs)
They are a category of MANETs where nodes are vehicles
moving in an urban area or on highways. In present and future
Intelligent Transportation Systems, moving vehicles need to
acquire real-time traffic and road information from sensors,
deployed along roads and forming aWSN. VANETs are used
as a technology to enhance safety on roads through exchanges
between vehicles to announce accidents, traffic congestion,
obstacles, road distortion, and freezes [20]. Delay constraints
associated with messages exchanged and dynamic changes
in topology of VANETs are the main issues to consider in
routing to on-time deliver a maximum of safety messages to
vehicles on zone.

9) DELAY TOLERANT NETWORKS (DTNs)
They are characterized by their lack of connectivity, resulting
in a lack of instantaneous paths to deliver packets at destina-
tion [21]. DTN routers follow a ‘‘store and forward’’ strategy,
i.e. routers keep packets until they discover new neighbors,
which are likely to deliver the packets. The main objective of
DTNs is to maximize the delivery ratio (i.e., maximize the
number of packets delivered to destination).

10) FLYING AD HOC NETWORKS (FANETs)
They are ad hoc wireless networks to support communication
between Unmanned Autonomous Vehicles (UAV), such as
drones and aircrafts. The high speed of UAVs and distances
between UAVs make the routing in FANET a challenging
issue [22].

11) SOCIAL DTNs (SDTNs)
They are a category of DTNs where nodes belong to people
moving, for example, in a campus, in a city or on a highway.
In SDTNs, the interest profiles of people and their social
interactions as well as their visited locations are explored to
route data packets.

12) COGNITIVE RADIO NETWORKS (CRNs)
They provide solutions to scarce spectrum resource prob-
lem [23]. They enable unlicensed users (also called secondary
users, SU) to seek opportunities for transmission by exploit-
ing the idle periods of licensed users. In CRN, each secondary
node is equipped with a cognitive radio transceiver. CR nodes
sense the spectrum to detect unused frequency bands and
then decide to exploit them. As the availability of channels
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depends on the licensed users in neighborhood, secondary
nodes have a dynamic view of the spectrum utilization, which
differ from node to node depending on their location. RL has
been used to collect accurate view of spectrum availability
at a reasonable cost and maximize spectrum availability to
secondary users and minimize interference between primary
and secondary users.

13) NAMED DATA NETWORKING (NDN)
NDN is one of the most attractive Information-Centric
networking architectures. NDN focuses on the content
itself—and not on node addresses—and follows the pub-
lisher/consumer model [24]. In NDN, some nodes store
contents and reply to interest requests issued by end-users.
When a node needs a content, it broadcasts an interest
request including the name of the content. Nodes receiving
an interest request may reply sending the content or for-
ward the request. In NDN architectures, interest packets do
not include data as in traditional networking, but an inter-
est in receiving a content specified through a data name.
In addition, nodes store content that is likely to be requested.
The main issue in NDN is to optimize content storage at
relaying nodes and data packet delivery delay, while taking
into account the spatial and temporal distributions of interest
requests.

14) PEER-TO-PEER NETWORKS (P2PNs)
P2P networking provides a wide range of Internet appli-
cations, such as content delivery, file sharing, and multi-
media streaming [25]. Since the nodes relaying the queries
do not have a complete knowledge of the network, query
load balancing between relaying nodes is one of the most
prevalent issues in P2P networks. Flooding-oriented (also
called blind) query forwarding protocols do not optimize
neither network resources nor content server resources.
Using—through reinforcement learning—history informa-
tion about relaying nodes results in a significant improvement
of resources utilization and satisfaction of users requesting
contents.

15) SOFTWARE DEFINED NETWORKING (SDN)
SDN has been recognized recently as a promising solution to
simplify the management of network resources [26]. SDN is
based on layered centralized architecture. In particular, SDN-
controllers determine the best routes and send routing tables
to switches, which follow the received tables to forward data
packets.

IV. OVERVIEW OF RL-BASED ROUTING PROTOCOLS
As far as we know, Boyan and Littman were the first to
propose a hop-by-hop routing algorithm based on Q-learning,
called Q-routing [9]. Many of existing RL-based routing pro-
tocols are extensions to Q-routing. In the sequel, Q-routing is
presented in detail and its principles will serve as a basis for
introducing other protocols.

Algorithm 1 Q-Routing
1: Qi (∗, ∗) is the Q-value matrix of node i.

/∗Qi matrix may be randomly initialized. ∗/
2: Loop
3: if (Packet to send is ready):
4: Select next hop j with the lowest Q-value
5: Send packet to node jj
6: Node i immediately gets back j’s an estimate for

the time remaining in the trip to destination d
denoted calculated by formula (9)

7: Node i updates its delivery delay estimate
using formula (10)

8: end if
8: Until Termination_condition /∗ which may be a
number of iterations, a time-out or something else ∗/

A. Q-ROUTING PROTOCOL
The name of the proposed algorithm comes from the notation
of Q-function used in Q-learning method (§II.B). The algo-
rithm may be summarized as follows:

Let ii denote the node holding a packet P to forward
and Qi (d, j) denote the end-to-end delay (or simply delivery
delay) that node ii estimates it takes, for node j, to deliver
packet Pi at destination d i. Node imaintains a table including
the transfer delay estimates, called Q-values; a Q-value is
associated with each neighbor of node i. When node i has
a packet to send, it selects a node j with the lowest Q-value.
Upon sending packet P to node j, node i immediately gets
back j’s an estimate for the time remaining in the trip to
destination d denoted by θj(d):

θj(d) = min
k∈Ng(j)

Qj (d, k) (9)

where Ng(j) denotes the set of j’s neighbors. Then node i
updates its delivery delay estimate associated with neighbor j
as follows:

Qi (d, j)

= (1− α) ∗ Qi (d, j)+ α ∗
(
qt i + TxT i,j + θj(d)

)
(10)

where α is a learning parameter, qt i is the time spent by
packet, P in i’s queue and TxT i,j is the transmission time
between nodes i and j. The pseudo code of Q-routing is the
following:

Q-routing complies with Q-learning as follows:

- In Q-routing, a state is a node and an action is ‘‘select
a neighbor to be the next forwarder to deliver packet to
destination’’.

- Regarding Q-learning Q-value updating rule (7),
immediate reward of Q-routing, Rt+1 is qt i +
TxT i,j(this reward represents the link cost) and
maxa∈A {Q (st+1, a)} is mink∈Ng(j)Qi(d, k)(‘min’ is
substituted to ‘max’, because delay is a decreasing
metric, i.e. the lower the delay is the better the path).
Discount factor γ is set to 1.
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To avoid frequent oscillations in Q-values (in case of sudden
variations of traffic in the network) and limit the overhead of
Q-routing protocol, [27] proposed an extension in which the
receiver does not send an immediate reward for each received
packet, but after receiving a certain number of packets (i.e.,
the receiver returns the average delay for a group of packets).
However, Q-routing still suffers from at least the following:

- Q-value freshness. The estimate of delay occurs upon
packet transmission on a route. When a route is not
selected during a long period of time, the agent has no
accurate estimate about the current condition of such a
route and its Q-value may become unreliable. When a
node resumes its transmission activity on a given route,
after a long idling period, its delay estimate values may
result in non-optimal selection of next hop.

- Slow convergence. Q-learning requires a number of
epochs (or tries) before being able to converge to the
optimal solution.

- Parameter setting sensitivity. Small adjustments in
learning parameter may result in serious fluctuation in
routing performance.

B. OBJECTIVES AND MAIN SPECIFICITIES OF RL-BASED
ROUTING PROTOCOLS
Literature of which we were aware regarding RL-based rout-
ing has been carefully addressed. Any paper, which provides
a contribution beyond the state-of-the-art to application of RL
to routing, is included in the presentation below. Before pro-
viding details about the design of each protocol in section VI,
the main objectives and specificities of existing RL-based
routing protocols are summarized. It should be noticed that
protocols are presented in their chronological order, because
many protocols are extensions or specialization of previ-
ously published ones. A few former routing protocols such
as [28]–[30] focused on statistical learning in routing and
will not be included in the sequel, as they do not follow RL
paradigm (including explicit description of Agents, Q-value
update rules, and reward).

In the sequel, protocols marked with ‘NATG’ are those
protocols without title or acronym given by their authors.
To provide a homogeneous presentation, we chose titles and
acronyms for a few protocols.
PQ-R (Predictive Q-routing) – It is an extension to the

original Q-Routing to consider Q-value freshness [31]. PQ-R
keeps the best Q-values and reuses them by predicting the
traffic trend. The idea of PQ-R is that when routes are con-
sidered congested, they should not be selected for packet
transfer for a period of time to enable them recover from
congestion. Those routes are called regulated routes. To check
regulated route conditions and refresh delay estimate values,
PQ-R probes them at a given frequency (i.e., regulated routes
are occasionally selected for packet transmission). Notice that
the probing frequency has an impact on the conditions of
congested routes and probing should not make them worse.
Compared to Q-Routing, PQ-R does not use a discount rate,

but two additional learning parameters β1 and β2 are intro-
duced to address the path delay variation.
ARL-R(NATG) (Ants and RL-based Routing) – It is a combi-

nation of RL and the ants optimization technique to address
routing in networks subject to frequent topology changes
due to link failures [32]. Unlike distance-vector algorithm,
ARL-R is probabilistic in nature. Ants algorithm is used
to explore the network. Each host (i.e., end device) s peri-
odically generates a packet (referred to as ant) to another
randomly chosen host d to collect path cost c from d to s.
When a response message ant(s, d, c) is sent backward to
host s, routers on path update their routing tables (i.e., their
Q-value tables).
CQ-R (Confidence-based Q-routing) – CQ-R is an exten-

sion to Q-Routing to address Q-value freshness [33].
In CQ-Routing, a confidence measure between 0 and 1, also
called C-value, is associated with each Q-value. A C-value
close to 1 means that the corresponding Q-value accurately
represents the current state of the route, while a C-value close
to 0 means that the corresponding Q-value is almost random.
When a node j j sends its best delay estimate θj(d) to node i, it
also sends its C-value Cj(d) associated with such a Q-value.
At each epoch, C-value associated with each neighbor is
either updated using the feedback from neighbor or decayed
with a constant factor λ ∈ [0, 1]. Setting of λ depends on how
many learning epochs may elapse without selecting a node
to consider that the Q-value associated with that node does
not provide any help to select the best next hop. The learning
should be high (i.e., the estimate of delay is more accurate in
the current epoch than in the previous one) if either (or both):
i) confidence in the old Q-value is low or ii) the confidence
in the new Q-value is high.
CACR-RL (Connection Admission Control and Routing

based on RL) – [34] proposed a solution to call admission
control and routing on a list of paths (with limited bandwidth)
fixed offline to optimize revenue. The network supports a set
of service classes characterized by their bandwidth demands.
A link can carry simultaneously any combination of calls,
as long as the sum of bandwidth allocated to calls does not
exceed the link capacity.When a new call arrives, the network
provider either accepts or rejects the call. When the call is
accepted, a predefined path, which canmeet call QoS require-
ments, is assigned to the call. Whenever a call is accepted,
network provider gets an immediate reward depending on the
call service class. RL is used to optimize the long-term rev-
enue of network operator, assuming that the average holding
time is known for each service class.
Q-MAP (Q-learning Multi-Agent multicast routing Proto-

col) – It is a multicast routing with resource reservation to
support flows with soft delay requirements in MANETs [35].
It is a mesh-based multicast scheme and it uses group for-
warding concept to maintain group membership depending
on the availability of resources on paths. When a node wants
to join a group, it sends a join request (including its ID
and a group ID) to find an optimal route. Whenever a node
receives a join request, which is a non-duplicated request,
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it generates a new join request (including its ID, the upstream
ID, and the cost link) and sends it. Whenever a node receives
a join response, it updates its routing table. Once multi-
cast paths are established and resources reserved, they are
periodically refreshed and used to send data packets. RL is
used in the join phase to select the next hop and build an
optimal path, which is part of the tree associated with the
group ID.
GAPS-R (Gradient Ascent Policy Search based Routing) –

It is an RL and gradient ascend based routing for wired net-
works [36]. Packets (without data and representing implicit
Route requests) are periodically introduced in the network
with uniformly nodes of origin and destination. Sending
a packet on a link has a cost. Once a packet reaches its
destination, it is dropped and an acknowledgement is sent
backward, which enables nodes on path to update their path
cost. Gradient ascent—relating to histories of interactions
with other nodes during an epoch—is used to calculate tran-
sition probabilities. The idea is to adjust parameters used
in transition probabilities in the direction of the empirically
estimated gradient of the aggregate reward.
Q-LMRWA (Q-Learning Multicast Routing and Wave-

length Assignment) – [37] proposed a multicast routing proto-
col for optical networks with blocked light-path optimization.
In WDM (Wavelength-Division Multiplexing) networks,
a light-path is composed of optical links. Connections
between sources and destinations use light paths allocated to
them to send their data packets. Whenever some connections
share the same optical link, they cannot simultaneously use
the same wavelength. Consequently, a connection is blocked
if there are no available wavelengths. One performance met-
ric of interest in WDM networks is ‘‘blocking probabil-
ity’’, which is defined as the number of blocked connections
divided by the total number of active connections. Whenever
a connection request is issued, RL is used to find a route
that optimizes the number of required wavelengths while
minimizing blocking probability.
RL-AODV(NATG) (RL-based AODV) – [38] proposed a

modification to AODV protocol [39] to make the next-hop
selection dependent on the experience gained through
reinforcement learning andmore aware of network dynamics.
Whenever a node receives a Route request, it selects the best
one among its neighbors according to local state represented
by Q-values. A special class of neural networks is used to
store Q-values with a constant memory size. From RL point
of view, RL-AODV is an adaptation of Q-learning.
MARL-R(NATG) (Mobility-Aware RL-based Routing) – In

Q-routing, network topology is assumed static. To address
changes in topology of MANETs due to node mobility, [40]
proposed MARL-R, a light adaptation to Q-routing, which
can be summarized as follows: when a node j j moves out of
range of node i, the latter sets the Q-value associated with j
to∞. Consequently, node j will be no more selected by node
i. When j is detected again in range of node i, j’s Q-value
is optimistically set to 0. This optimistic bias encourages
exploration allowing node i try to send packets via the new

discovered neighbor. After some tries, the estimated delay via
node j will reflect its real capacity in the network.
MQR (Modified Q-learning Routing) – [41] proposed

a modification to Q-routing to address routing in wired
networks. The specificity of MQR is that agents (nodes)
exchange their immediate rewards, which results in
multi-agent solution for global optimization. Q-values are
based only on link cost. In addition, MQR proposed to peri-
odically devaluate Q-values in order to enhance the solution
space exploration, i.e. to escape the local minima.
CRL-SAMPLE (Collaborative Reinforcement Learning

SAMPLE routing) – [42] proposed a routing protocol based
on a variation of RL to maximize delivery in MANETs,
while minimizing transmissions per packet from source to
destination. CRL-SAMPLE follows a model-based learning.
Using activity history (including number of successes and
failures of transmitted packets and number of unicast and
broadcast received packets) of wireless link, each node builds
a probability transition matrix, which reflects the probability
of progress to destination when each neighbor is selected as
next hop to forward the current packet. Then, the probability
transition matrix is used to select the next hop in the for-
warding process. Each node stores the last advertised link
costs received from its neighbors. Links that have not been
advertised for long time are devaluated, until eliminated from
the forwarder selection.
RLGAMAN (RL Genetic Algorithm based routing for

MANets)– [43] proposed a routing protocol for route dis-
covery in MANETs with enough resources to provide QoS
in terms of bandwidth and delivery delay. RLGANMAN
integrates two key parts RL andGA (genetic algorithm). RL is
used to find feasible QoS routes, based on local information.
To avoid all packets travel on the same routes (which results
in congestion) and to explore as much as possible the solution
space, GA approach is used. Through RL, many feasible QoS
routes are discovered by the source. GA population consists
of individuals, which represent routes between a source and
potential destinations. The fitness of a route is determined by
the QoS measurements returned by the ACK received upon
sending a data packet on that route. Crossover and mutation
operations are introduced in RLGAMAN to optimize routes.
The selection probability of a route to send a data packet is
based on the rank (i.e., fitness value) of the route. While,
in previous protocols, the data packets are sent on the best
route discovered by the learning algorithm, in RLGAMAN,
RL is used on a route-request-basis to discover routes and
Genetic algorithm is used on a per-data-packet-basis to select
route for data packet sending.
RLCF(NATG) (Reinforcement Learning based Constrained

Flooding) – [44] proposed an adaption of Q-routing to opti-
mize the number of packet transmissions to send a data
packet to a sink in WSN using flooding; thus it enables
energy saving. To reduce the cost of flooding, RLCF uses
the Q-learning technique to learn the cost of packet sending
(the cost is generically defined and may be adapted to con-
sider hop count, delivery delay, and so on). Each data packet
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includes a Q-value representing the estimated cost of the
sender. Instead of selecting the next neighbor with the lowest
cost as done in Q-routing, the receiver of a packet makes a
decision regarding the packet broadcasting based on three
mechanisms: constrained propagation (retransmit the packet
if the difference between sender and receiver costs is below
a threshold), differential delay (use the cost difference to
yield a waiting time before retransmitting), and probabilistic
retransmission (use a probability based on the number of
receptions of the same packet to decide whether to retransmit
or discard such a packet). Notice that no control packets are
used in RLCF.
AdaR (Adaptive Routing) – [45] proposed AdaR protocol

for routing in wireless sensor networks. As far as we know,
AdaR is the first to consider multiple metrics instead of
a single one (i.e., delay) as did the other protocols. More
precisely, four QoS metrics are considered in path selection:
number of hops, residual energy, link reliability, and number
of routes crossing in a node. When a packet is transmitted,
a QoS vector is appended to the packet. Whenever the packet
arrives at base station, one can trace the QoS information
along the whole routing path. AdaR uses LSPI (Least Squares
Policy Iteration), a variant of reinforcement learning [46],
which enables faster convergence to optimal solution without
suffering initial parameter setting.
RLGR (Reinforcement Learning based Geographic Rout-

ing) – [47] proposed a routing protocol for WSN in
which nodes relaying packets are equipped with Ultra-Wide
Band (UWB) transceivers and can obtain their location. Each
node knows its residual energy and those of its neighbors and
their location, through Hello packets. To select a forwarder,
each node uses residual energy and locations of its neighbors.
RLGR aims at maximizing network lifetime.
Q-PR (Q-Probabilistic Routing) – [48] proposed a

Q-learning based opportunistic routing protocol to broadcast
packets in WSN. Originality of Q-PR is that it combines RL
and Bayesian decision. In opportunistic routing, where each
node decides to forward or discard a packet with a probability,
a packet may never arrive at sink. Optimizing delivery ratio
is a concern in opportunistic routing design. In addition,
inWSN, optimizing energy is of paramount importance. InQ-
PR, each node is aware of its geographic position as well
as positions of its neighbors and the sink. Each node keeps
an estimate of the delivery probability, for each neighbor;
the estimate is defined only in function of distance between
nodes. In Q-PR, whenever a node ii receives a packet, such a
packet also is heard by its neighbors. If i’s neighbors with
higher delivery probability forward the packet, then node
i discards the packet. Otherwise, node i has to decide to
forward or to discard the packet. To do so, it proceeds as fol-
lows: firstly, among neighbor nodes closer than itself to sink,
it selects a neighbor that minimizes the ‘‘expected number of
retransmissions’’ divided by ‘‘how much distance to sink is
decreased when choosing such a neighbor’’. Then, iteratively
it selects the best nodes among remaining neighbors that
fulfill the constraint of being neighbors of the previously

selected candidates (i.e., all selected nodes at this stage can
communicate each with others and consequently, if one of
them forwards a packet, the others will be aware of it).
Secondly, Using the residual energy and locations of selected
candidates, Bayesian decision is applied to infer whether
node i should forward or discard the packet. It calculates
the probability to transmit the packet depending on residual
energy of selected candidates and the probability that all its
neighbors with higher delivery probability will not transmit.
In case node i confirms hypothesis that at least one of selected
candidates will (re)forward packet, it broadcasts the packet,
hoping that it will be (re)forwarded. In case node i confirms
the reverse hypothesis (i.e., no candidate will forward the
packet), it does not uselessly transmit to save energy. After
transmission, if any, node i listens to transmission in its neigh-
borhood. If no selected candidate (re)forwards the packet,
node i retries once again to transmit or to discard the packet.
SERLR(NATG) (Selfishness and Energy aware RL based

Routing) – [49] proposed a generic algorithm, which com-
bines RL, stochastic approximation, and function approxima-
tion to select the next hop for packet forwarding in MANETs.
It provides a generic framework to estimate energy consump-
tion and selfishness of nodes. Then, a forwarding probability
is dynamically associated with each neighbor node based on
its energy and selfishness estimates and on its ratio of packet
re-forwarding. The implementation of SERLR requires the
definition of energy and selfishness functions, which are not
addressed in the paper, because the proposed algorithm is
generic and may be specialized according to the targeted
routing protocol. Notice that SERLR is the only RL-based
routing algorithm that uses selfishness as a metric in next hop
selection.
FROMS (Feedback Routing for Optimizing Multiple

Sinks), E-FROMS, and CLIQUE – The first RL-based pro-
tocol for multicast routing in WSN was proposed in [50].
FROMS protocol aimed at establishing efficient paths to
enable a source sends its data to multiple mobile sinks, such
as vehicles. Selected paths form a tree, like a Steiner tree.
Routing to multiple destinations is defined as the minimum
cost path starting at the source and reaching all destinations
interested in the data from the source. The cost of a spanning
tree is defined as the number of one-hop broadcasts to reach
all sinks. Finding the minimum-cost tree is known to be
NP-hard. Therefore, RL is used to approximate the optimal
solution.

For estimating the initial Q-values, FROMS uses control
packets sent by sinks to announce their interest to receive data
collected by the source. Specifically, a sink announcement
packet records the number of hops from sink to source.
Since the announcement packets are sent independently by
sinks, they don’t provide the optimal spanning tree. Then,
the recorded hop counts are used to calculate the optimal
spanning tree from source to sinks. When a node i decides
to forward a packet to its selected neighbor j with mini-
mum Q-value, it includes in the packet routing information
(which neighbor is selected to reach which sinks). Since the
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wirelessly broadcasted packets are heart by all neighbors,
when a node i forwards a packet to node j all i’s neighbors
can update their link-state information useful to calculate
the reward. By repeating forwarding operations, accurate
information propagates from the sinks to the source. Sink
mobility also is addressed in FROMS. When a sink moves,
it may become unreachable through the previously computed
spanning tree. To consider such a problem, FROMS suggests
to use periodic sink announcement signaling to detect broken
links and learn news paths. In [51], the authors provided
intensive simulation of FROMS.

FROMS authors proposed two extensions to FROMS:
CLIQUE [52] to address dynamic clustering in WSN and
E-FROMS [53] to address energy consumption. In CLIQUE,
each node can decide on per-packet basis to act as a cluster
and send the packet in sink direction or just forward the packet
to one of its neighbors. RL is a powerful tool to avoid many
of the assumptions (e.g., cluster head directly communicates
with the sink, cluster heads are one-hop from each others,
cluster head has a very-long-term battery capacity, etc.) made
in traditional clustering approaches. In addition, CLIQUE
minimizes the clustering overhead, which suffers most of
proposed clustering approaches.
RL-QRP (RL-based QoS aware Routing Protocol) – [54]

proposed a routing protocol to deliver packets (which contain
patient body temperature, heart rate, and so on) to medical
center reliably and on-time. Sensor nodes are GPS-equipped
and exchange their local information through periodic Hello
packets. With location information, nodes compute available
paths according to QoS requirements of data packets and
the link quality of available paths and then forward data
packets. RL is used for QoS path computation and next hop
selection. Each data packet contains the QoS requirements of
transported data. Whenever a data packet arrives at a node,
which cannot meet packet QoS requirements, the packet is
discarded.
MRL-QRP (Multi-agent Reinforcement Learning based

QoS Routing Protocol) – It is a routing protocol with QoS
support in WSNs [55]. Local information is exchanged
between neighbors through Hello packets. The distinctive
characteristic of MRL-QRP is the collaboration between
agents. Instead of independent agents—as used in almost
all RL-based protocols—MRL-QRP relays on tight collab-
oration between agents when they compute their Q-values.
Specifically, whenever a node computes Q-value associated
with a neighbor node, it uses Q-values of all its neighbors
and assigns a weight to each one of them. This approach is
global optimization-based. However, assigning a weight to
each neighbor makes MRL-QRP difficult to use in practice.
RLDRS (RL-based Deflection Routing Scheme) – In optical

networks, switches are buffer-less, which results in packet
loss whenever contentions occur at switching nodes, because
multiple connections share the same wavelength on the same
fiber link. Reference [56] proposed RLDRS protocol to pro-
vide routing solution to deflection in optical networks, while
minimizing loss rate. RL is used to learn the best output

links and the available wavelengths and select them in case
of burst deflection. Link quality is measured in function of
dropped packets and successfully sent packets. High quality
link, which is selected in case of deflected, is the one with
less dropped packets.
RL-BER(NATG) (RL-based Balanced Energy Routing) –

RL-BER is a protocol aiming at balancing energy con-
sumption among nodes and maximizing network lifetime in
MANETs [57]. RL is used to estimate energy consumption
of paths. Path selection is based on energy consumption
associated with paths and on bottleneck link residual energy.
Consequently, nodes with low residual energy (i.e., bottle-
neck links) have less chance to be selected, which minimizes
their energy consumption.
SQ-R (Spectrum-aware Q-Routing) – It is an extension to

Q-routing to optimizing channel sharing between primary
users (PUs) and secondary users (SUs) in radio cognitive
networks [58]. RL is used to learn availability of chan-
nels (i.e., channels temporarily unused by PUs) and tem-
porarily allocate them to SUs, while minimizing interference
PU-SU. Interference occurs when a PU resumes activity
and its allocated channel is used by SUs. Q-values asso-
ciated with paths reflect the availability of channels along
paths. Packets incorporate Q-values (i.e., available channels),
which enable nodes be aware of channel availability in their
neighborhood.
QoS-RSCC (QoS support adaptive Relay Selection for

Cooperative Communications) – It is an extension to AODV
protocol to integrate cooperative communication (CC) in
WSN [59]. When a path is established, following AODV
principle (such a path is denoted AODV-path), a set a
relaying candidates is associated with each pair of routers
along AODV-path to support cooperative communication.
Then, data packets are sent along AODV-paths when QoS
requirements are satisfied along those paths. Whenever an
AODV-path cannot meet QoS requirements, CC relaying
nodes are invoked to cooperate and support data packets until
the AODV-path becomes again able to meet QoS require-
ments. QoS-RSCC follows a multi-agent paradigm (i.e.,
an agent uses Q-values of all its neighbors to update its local
information). Routers exchange ACK and NACK to provide
feedback about data packet transmission along the path. RL is
used to learn which CC relaying nodes are more likely to
forward data packets, while satisfying QoS requirements.
RL-CAC (RL-based Call Admission Control) – [60] pro-

vided a CAC and priority-based routing for per-class services
on a list of optical paths configured offline. RL-CAC objec-
tive is to reserve network resources to services with higher
priority in order to maximize the long-term revenue of net-
work operators. For each pair of source and destination nodes,
a set of alternative paths are built offline. Online, each node
collects information regarding availability of wavelengths in
neighborhood. Whenever a new call arrives, RL is used to
reject or accept the new call to maximize revenue. RL-CAC
learning addresses optimality from infinite horizon point of
view.
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RRD-R(NATG) (RL and Russian Doll based Routing) – [61]
proposed a Q-learning-based routing protocol for MANETs
for optimizing multiple (generic) QoS metrics. It differs from
other protocols in reward calculation and in action selec-
tion. While most of RL-based protocols calculate locally the
reward, in RRD-R, the reward is computed at destination and
sent backward to source, enabling nodes on path to update
their Q-value tables. As RRD-R may be applied to consider
multiple metrics, the reward is a vector. While almost all
protocols use additive or multiplication functions where each
metric has a weight assigned to it, RRD-R requires from the
user to divide the multidimensional space of QoSmetrics into
boxes, where the outer box contains all the space and the
inner one contains the best QoS for all metrics. QoS boxes
look like ‘‘Russian dolls’’. Then, action selection is based on
boxes depth, the inner the box, the better the QoS. It is worth
noticing that RRD-R is difficult to deploy, unless the user has
clear preferences among QoS metrics.
QDTR (Q-learning-based DTN Routing) – [62] proposed

QDTR, a Q-Learning based protocol for routing in Delay
Tolerant Networks (DTNs) in underwater context. QDTR
addresses delivery time delay and energy optimization in
DTNs. In addition, packet queues at each node are served
according to deadlines assigned to packets. Thus, urgent
packets are first served on the selected paths. When the
deadline of a packet is exceeded, the packet is removed
from the network. In an underwater environment, the network
topology is modeled as a 3D layered topology depending
on the covered water depth and volume. Only nodes in the
same layer (i.e., at the same depth and at some distance) can
communicate. The novelty of QDTR is in its reward function,
which combines energy, distance, density, and discovery of
mobile nodes.
ARBR (Adaptive Reinforcement Based Routing) – [63]

proposed the ARBR protocol, which enables routing in
DTNs. Nodes cooperate each with others to make forwarding
decisions based on contact time statistics, network conges-
tion, and node buffer occupancy sampled during previous
contacts between nodes. ARBR follows the Collaborative RL
paradigm, which means that the decisions are made based on
contact tables (which include all statistics as seen by individ-
ual nodes) exchanged between nodes. A node selects the next
forwarder based on its ability (learnt from previous contact
table exchanges) to provide progress to the destination of the
packet. A probability matrix of successful exchange between
nodes is updated whenever packets are forwarded and used to
select the next forwarder for the current packet. The storage
capacity, in terms of number of packets, of each node is
limited and any node should not be selected as forwarder
whenever its capacity limit is reached.
QELAR (Q-learning based Energy-efficient and Lifetime-

Aware Routing) – [64] proposed the QELAR protocol aiming
at finding routing paths in underwater DTNs. As for QDTR,
QELAR addresses delay and energy optimization. In addi-
tion, QELAR addresses the optimization of network lifetime.
Themain distinctive feature of QELAR is its reward function,

which is designed to enable the protocol to be energy-efficient
and lifetime-aware. As the calculation of the reward—and
consequently the Q-values—depends on the energy of each
node i and that of its successor and the average energy of
their respective groups, when node i forwards a packet to
its selected neighbor j, it includes in the packet its current
Q-value, its current residual energy, the current average resid-
ual energy of its group, and j as next forwarder. Node j
returns anAck once it receives the packet. Nonselected neigh-
bors drop the packet after checking the next forwarder field.
To refresh Q-values when no data packets are transmitted,
each node periodically broadcasts to its neighbors a Hello
packet including its link-state information. When a node
receives a packet (either a data packet or a Hello packet from
its neighborhood), it updates information (Q-value, residual
and group energy) associated with the sender. If the packet
forwarding attempt from node i to node j fails (i.e., if node i
does not receive an Ack from node j after a given number of
retransmissions), a failure reward is applied, because energy
has been consumed in (re)transmissions.
SNL-Q (Statistical Network Link based Q-learning rout-

ing) – It is an RL-based routing protocol for MANETs, which
uses link quality as the main metric for searching optimal
paths [65]. Link quality is calculated using statistics related
to communication events (i.e., numbers of attempted unicast,
successful unicast, received unicast, and received broadcast)
occurring in node neighborhood. Then, link quality is used in
Boltzmann probability distribution to explore solution space.
QLMAODV (Q-Learning Modified AODV) – It is an exten-

sion to AODV for routing in MANETs, which supports flows
with soft QoS requirements [66]. Mobility estimate, avail-
able link bandwidth, and transmission power are used as
metrics to update Q-values. Only the node, which directly
delivers the packet to destination, receives a non-null reward.
Local information is disseminated in neighborhood as in
AODV.
RL-RPC(NATG) (RL-based Routing and Power Control) –

[67] proposed an RL-based protocol for routing and power
control in multi-hop wireless networks, while providing soft
delay guarantees to delay-sensitive applications such as video
streams. RL is used to learn channel conditions and pack-
ets waiting in queues. At each node, RL-RPC selects the
best route and the best power to forward packets. When the
deadline included in the packet can no more be satisfied,
the packet is dropped. Optimizing the routes results in lower
delivery delays and controlling the transmission power results
in less interference between nodes and consequently in higher
throughput.
CQLAODV (Cognitive Q-Learning AODV) – [68] pro-

posed an RL-based routing protocol, which uses Bayesian
Network (BN) for weight tuning. Route discovery procedure
is the same as in AODV. CQLAODV requires each node to
maintain two tables: Q-value table and BN table. The latter
stores prior and conditional probabilities. When a node has a
packet to forward, it searches its Q-values and BN tables to
select the best forwarder.
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R-CRS(NATG) (RL-based Cooperative Relay Selection) – It
is an RL-based protocol to select relays in cooperative wire-
less networks [69]. As nodes (sources, relays, and base sta-
tion) interfere the ones with the others, the number of active
relays should be optimized. To achieve the best SER (Symbol
Error Rate), learning is based on reward, which is defined as
the improvement in SNR (Signal-to-Noise Ratio) when some
relays are selected. Periodically, relays are selected among the
set of relays in the network. At the end of each relay selection
period, RL is used to evaluate the current relay subset and
decide (or not) to change relays. Notice that there is a single
agent in the system, which optimizes the selection of relays.
FQLAODV (Fuzzy constraint Q-Learning AODV) – [70]

proposed a fuzzy and RL based routing protocol to consider
link and topology changes in VANETs. Nodes include a
localization module (e.g., GPS). Because of node mobil-
ity in VANETs, link quality fluctuates in time. By using
fuzzy logic, FQLAODV can handle imprecise and uncertain
link-state information of wireless links. Link-state informa-
tion (including available bandwidth and relative speed of
nodes) of nodes is periodically exchanged with neighbor-
hood through Hello packets. Nodes also infer link quality
from the strength of received signals. Offline, a fuzzy table
is defined according to three metrics: available bandwidth
(large, medium, small), mobility factor (slow, medium, fast),
and link quality (bad, acceptable, good, very good). Exam-
ple of entries in fuzzy table: ‘‘When Bandwidth is Large,
Mobility is Slow and Link quality is Medium THEN Rank
is Good’’. Online, whenever a neighbor j is selected by
node i for forwarding, node ii estimates the three metrics
(bandwidth, mobility factor, and link quality) associated with
neighbor j and fetches the fuzzy table, which provides the
rank associated with the 3-tuple and uses the returned rank to
update its Q-values table.
FQ-R (Fault-tolerant Q-Routing) – [71] proposed FQ-R,

a Q-routing extension, to consider node mobility inMANETs
under space free propagation model. The proposed protocol
is proactive and aims at anticipating link breaks due to the
mobility of nodes. Quality of a link between two nodes
depends on the distance between nodes, their velocity and
direction, and their respective neighborhood. The proposed
link availability metric aims at providing information on
how link quality evolves with node moves, which enables to
anticipate link breaks. Using link quality metric in reward
function is the main contribution of FQ-R. Control pack-
ets including link-state information of nodes (i.e., position,
velocity, direction) is periodically broadcast. In addition, any
neighbor, which receives a packet, is requested to send back
an ACK packet including its offered reward. Consequently,
neighboring nodes know the link quality perceived by the
packet sender.
d-AdaptOR (Adaptive Opportunistic Routing)– In [72],

an opportunistic routing protocol is proposed to route data
packets in ANETs using RL. d-AdoptOR can be specialized
to consider different forms of link costs and metrics to opti-
mize (e.g., hop count, delivery delay or energy). The basic

idea of d-AdoptOR is similar to the one of [64]: first, the
sender broadcasts its data packet, then the receiving neighbors
acknowledge with an ACK packet including the estimated
cost to deliver the packet at destination, and finally the sender
selects the neighbor with the lowest cost and designates it as
the next forwarder. The main contribution of [72] is the proof
of convergence to optimality of the algorithm.
LR-WIV(NATG) (RL-based Routing WSN Interacting with

moving Vehicles) – [73] proposed a RL-based protocol to
consider routing from sensor nodes to moving sinks, which
are vehicles. Vehicle groups on the roads are organized into
VANETs and the leading vehicle of each group can dissemi-
nate information received from sensor nodes to other vehicles
in its group. LR-WIV protocol aims at improving network
performance including network lifetime, energy, delivery rate
(i.e., reliability), and time delays. In LR-WIV protocol, when
a vehicle (i.e., mobile sink) enters in a zone monitored with
sensors, it announces itself with a control packet. The latter is
rebroadcasted once by all nodes in the relevant zone of WSN.
Each WSN node rebroadcasting a vehicle announcement
packet includes its link-state information (i.e., remaining hop
count to destination, residual energy, and perceived link qual-
ity) in the packet before broadcasting. Such a dissemina-
tion process of sink announcement enables all sensor nodes
in the zone of interest to collect information and estimate
the forwarding cost. In addition, whenever a sensor node
forwards a data packet to its successor on path, it adds to
packet its link-state information and the Q-value associated
with the selected successor. Management of sink mobility
is achieved through periodical sink announcements enabling
sensor nodes to refresh their Q-values, and consequently their
routing tables. RL modeling of LR-WIV protocol follows
Q-routing principle, with an exception regarding its reward
function and exchange of state information between nodes
(i.e., during sink announcement phase and sensed data for-
warding to sink as previously described).

PFQ-AODV (Portable Fuzzy constraint Q-learning
AODV) – [74] proposed an extension to FQLAODV [70],
which does not require GPS in VANETs. Both protocols have
the same Q-value updating rule, but differ in how mobility
and link quality are estimated. In FQ-AODV, link quality
is associated with the received signal strength and Mobility
factor is associated with the relative speed and distance
between nodes. In PFQ-AODV, link quality is associated with
the ratio of Hello packets received from each neighbor to the
total received Hello packets. Mobility metric is associated
with the change in node density in neighborhood at one and
two hops.
RLBDR (Reinforcement Learning-based Distributed Rout-

ing) – [75] proposed a routing protocol to enable host nodes
access the Internet through gateways in wireless mesh net-
work (WMN). A WMN is composed of host nodes (i.e.,
sources and destinations of data), mesh routers (providing
multi-hop forwarding to reach gateways), and gateways con-
nected to the Internet. Gateways periodically broadcast adver-
tisement messages including their estimated load enabling
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source nodes to select the most appropriate gateway. To min-
imize the delivery delay and the loss ratio, the objective of
RLBDR is to first select a gateway with low load. It should be
noticed that in WMN context, path from the selected gateway
to the final destination is not addressed as it depends on
routing in the Internet, only paths to exit the WMN matter.
Consequently, gateways are seen as destinations in RLBDR
and learning is applied to optimize paths from sources to
gateways. Reward function is designed to address link quality
(including interference between neighbors and congestion).
PQDR (Predictive Q-learning based Deflection Routing)

– [76] proposed an RL-based routing protocol, which is an
extension to Q-routing, to optimizing the selection of alter-
nate paths in case of contention at optical switches. It is sim-
ilar to RLDRS protocol. Both protocols differ in their reward
calculation and exchanges between a packet sender and the
next hop. In PQDR, the reward is defined as a function of the
number of remaining hops to destination as estimated by the
sender, the number of hops to destination as estimated by next
hop, and blocking probability of links. In each time window,
link probability blocking table is updated by counting the
number of successfully transmitted packets and the number
of discarded packets for each outgoing link.
R-EAR(NATG) (RL-based Energy-Aware Routing) – [77]

proposed another RL-based protocol routing to optimizing
network lifetime and delivery delay in MANETs. Only feed-
back (i.e., cost) between a packet sender and the next for-
warder is collected. Cost in selecting a next neighbor is
based on link delay and energy consumption. Although there
are only two metrics (i.e., link delay and energy consump-
tion), R-EAR cost function is based on five parameters (two
weights associated with metrics and three parameters asso-
ciated with a logistic function, which is applied to energy
consumption). Thus, R-EAR would not be easy to tune in
practice.
EQR-RL (Energy-aware Qos routing RL-based) – It is

a routing protocol for energy consumption optimization in
WSNs, while providing soft delivery delay guarantees [78].
Periodic Hello packets are broadcast and each data packet in
the network incorporate the delivery delay estimate and the
residual energy of the sender. This information enables the
sender neighbors to update their local information regarding
the sender. In addition, each data packet includes its delivery
delay requirements. Packets are discarded at any relaying
node when delivery delay constraint cannot be satisfied any-
more. Next hop selection is probability-based. Each neighbor
is associated with a dynamic selection probability, which is
calculated using three weighted metrics: link delay, ratio of
packets between packet sender and the selected forwarder,
and residual energy of selected forwarder.
QGrid (Q-learning-based Grid routing) – [79] proposed a

special RL-based routing protocol composed of two phases:
offline learning of Q-values and online use of the Q-value
table to forward packets in VANETs. Network deployment
region is divided into grids depending on the preferred granu-
larity of the user. QGrid performs macroscopic (i.e., selection

of grid) and microscopic (i.e., selection of vehicle in grid)
routing. Q-values are associated with movements between
neighboring grids, which reflect how vehicles enter and exit
grids. From the history of inter-grid movements, one can infer
optimal paths composed of grids to cross in order to reach
a destination located in a given grid. Each vehicle stores a
Q-values table calculated offline, but does not update the
table. Whenever a vehicle has a packet (whose destination is
not in the current grid) to forward, it uses the Q-values table
to infer the next grid to use. Then, it forwards the packet to
one neighbor, which belongs to the next grid; if no neighbor
is in the next grid, it selects a neighbor which is closer than it
to the destination and forwards the packet; if no neighbor is
found, the packet is kept until the next forwarding opportunity
(i.e., when new neighbors are discovered). QGrid protocol
assumes that the online vehicle movements are close to the
ones observed offline to build the Q-values table.
GR-PCCN(NATG) (Game theory and RL based Power Con-

trol in Cognitive Networks) – [80] proposed another pro-
tocol to optimizing transmission (TxT) power control in
cooperative wireless networks and consequently save energy
and reduce interferences between nodes. Periodically, after
receiving link-state information from neighboring nodes,
each node updates the probability of selection for each one of
its TxT power levels taking into account TxT power levels of
neighbors. GR-PCCN objective is that source nodes should
adjust their TxT power levels to receive a bandwidth close
to their minimum requirements, while relays should adjust
their TxT power levels to maximize the amount of relayed
traffic. First, game theory [81] is used to allocate transmission
powers to cooperating relays. Then, RL is used to enable
cooperating relays (agents) to converge to Nash equilibrium
points, which result in optimal power allocation.
SMART (SpectruM-Aware cluster-based RouTing) – It is

another routing protocol for cognitive radio networks. It is
a cluster-based protocol [82]. Initially, each SU (Secondary
User) scans available channels, while listing to other SUs,
which may invite it to join their clusters. After scanning
channel availability, SU decides either to join an existing
cluster or to act as cluster head and invite other nodes to join
its new cluster. Whenever a SU receives multiple invitations
to join clusters, it selects the cluster with the highest number
of available channels. Channel availability is the main metric
used in RL to select actions (Join an existing cluster or Create
a new cluster). Cluster maintenance is achieved through peri-
odic join messages (to include new members) and merging
clusters, which have a number of common channels satisfying
a fixed threshold. Probability of OFF-state of channels is
assumed known a priori.
QSGrd (Q-Smart Gradient based routing protocol) – [83]

proposed a hybrid protocol, which combines Q-learning and
transmission gradient, for optimizing energy consumption
in WSNs. The probability of transmission success depends
only on the distance between nodes and the maximum trans-
mission range. Associating transmission success probabilities
to neighbors yields in transmission gradient. Then, those
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probabilities are used to update Q-values, which results in an
RL-Gradient combination. RL is used to learn and select the
best paths based on residual energy of the next hop and the
average least number of transmissions to sink. Three types
of packets are used: data packets, ACK packets, and Status
packets. Status packet includes ENTxT (estimated number of
transmissions) to reach the sink from the sender. Whenever
a node receives a status packet, it updates its ENTxT value
using its old ENTxT value, the received ENTxT value, and its
highest probability of transmission success and broadcasts a
status packet including its updated ENTxT.
QAR (Q-learning Adaptive Routing) – [84] proposed a

Q-learning based protocol suitable for SDN architectures.
Addressed architectures consist of a hierarchy of four lev-
els: super controllers (at the top), domain controllers, slave
controllers, and switches (at the bottom and are in charge
of data forwarding). Each domain controller is in charge of
routing inside its domain. Whenever a data packet has to
travel through different domains, the super controller is in
charge of the routing between domains. Slave controllers
provide access to switches and receive port-status messages
from them; they also can provide some simple control func-
tions, such as traffic admission control, flow or congestion
control, to share control workloads with domain controllers.
To address QoS provisioning, QAR proposed a reward func-
tion based on multiple QoS metrics such as delay, loss rate,
and available bandwidth. QAR protocol determines the path
inside each domain for the respective domain controller and
the global forwarding direction among domains for the super
controller. Indeed, whenever a new flow arrives to a switch,
the latter forwards the first packet of the flow to its domain
controller and requests a forwarding path. Depending on the
destination of the new flow, two cases are to be considered:
i) source and destination nodes are in the same domain: the
domain controller updates the current network state using
state information from the salve controllers; it selects the best
path using reinforcement learning to meet QoS requirements
of the new flow, and requires modification of forwarding
tables of switches along the selected path. ii) source and
destination nodes are in different domains: the source domain
controller sends the first packet to the super controller. The
latter finds, using reinforcement learning, the forwarding
direction among domains and sends the corresponding noti-
fications to the domain controllers of involved domains. The
same learning model is used by the super controller and the
domain controllers. It is worth noticing that QAR provides a
path on which all the packets of a flow will travel; i.e. there is
no packet-per-packet forwarding decisions. Recall that in an
SDN context, not all relaying nodes take forwarding decision,
rather forwarding decisions are made only be controllers.
RLOR (RL Opportunistic Routing) – [85] proposed RLOR,

which is a routing protocol for routing video streaming flows
in wireless networks. To take into account the main require-
ment of video streaming, which is the delivery delay, RLOR
proposed a rewarding function based on the delivery delay
estimate. In RLOR protocol, a node, which has a data packet

to forward, selects a subset of its neighbors and then broad-
casts a packet including the data and a ranked list of selected
neighbors; the list is ranked on the estimated delivery delay
associated with each neighbor. Neighbors, which receive the
packet, send an ACK to confirm their acceptation to forward.
After receiving ACKs, the node holding the data packet
selects one neighbor among responding nodes to forward the
packet.
QGeo (Q-learning-based Geographic routing) – [86] pro-

posed QGeo, which is an extension to Q-routing, to take
into account mobility of unmanned robots. Hello packets are
periodically broadcast to enable each node to refresh the GPS
locations of other nodes. Then, nodes select next hop based
on the geographic distance to destination. Consequently, dis-
tance metric is the main factor to guide routing.
QGR (Gain Q-learning based Routing) – In nowadays

social networks and device-to-device communications, peo-
ple may exchange commercial contents, such as coupons
relating to products or services. A device may be inter-
ested in forwarding commercial content packets to receive
some profit. Reference [87] proposed an approach to develop
coupon dissemination mechanisms—through delay tolerant
networks—that can maximize a coupon’s economic gain in
the presence of costs/rebates for Device-to-Device forward-
ing incentives. In particular, a gain metric is proposed to
design RL-based routing protocol useful in commercial con-
tent distribution. In QGR protocol, the next hop to forward
a commercial content (CC) packet is driven by the expected
gain, which depends on the interest of the next hop in for-
warding CC packet. Q-value in QGR refers to the global
gain of a node and the reward refers to immediate gain.
The selection of the next hop for forwarding depends on the
interest of forwarders and their social interactions and on the
packet content to advertise and its deadline.
IQ-L (Interest Q-Learning) protocol) – [88] proposed a

Q-learning based protocol to forward ‘interest’ packets in
named data networks, while overcoming the deficiency of
interest packet flooding strategies in use. In IQ-L forwarding,
Q-value refers to how delay-efficient is the selection of a node
to forward an interest packet. Q-value design relays on the
duration between the time a node sends an interest packet
to one of its neighbors and the time its receives feedback
from the selected neighbor. In addition, each node collects
the results (success or failure in forwarding a packet interest)
for each neighbor. Whenever requested data is sent by the
node storing the content to the requesting user, a success
ACK packet is forwarded upstream to inform the nodes which
relayed the interest packet. In addition, each relaying node
sets a timer (with a value equals to the interest expiry time),
which enables to detect failures in delivering the content
to requesting user. Maintained success and failure counts
enable the nodes to derive the appropriateness probability in
selecting neighbors to fetch a specific content.
AQFE (Adaptive Q-routing Full Echo) – [89] proposed an

extension to Q-routing to improve exploration according to
traffic load. Two learning parameters are used in AQFE: the
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basic learning parameter α and an additional learning param-
eter, called α2, which depends on average and maximum
delivery delay. Each node i, which is ready to make a for-
warding decision, updates the Q-value of selected neighbor
j using the basic learning parameter α and the Q-values of
the other neighboring nodes using the additional parameter
α2. Notice that Q-values are updated even though nodes are
not selected; the objective is to adjust a balance between
exploration and exploitation. The modified Q-value update
rule provides faster reaction to changes in Q-value tables
of neighbors; consequently, nodes are forced to select other
possible paths especially when the average delivery delay
increases.
DLTPC (Distributed Learning-Theoretic Power Control) –

In [90], DLTPC RL-based algorithm is proposed for power
control in energy harvesting (EH) networks. DLTPC consid-
ers two-hop networks where the sources broadcast their data
to relays, which transmit them to a base station. EH relays
(such as solar powered relays) power themselves from energy
sources that are present in their environment. They accumu-
late the harvested energy for subsequent usage to transmit
packets. DLTPC provides a RL and game theory based solu-
tion to decide when and how (i.e., adjust the transmission
power) to use harvested power by relays in order to opti-
mizing delivery delay. The challenge addressed by DLTPC is
the game theory-based collaboration between relays in such
a way that they collectively optimize transfer delays, while
efficiently using the energy they accumulate. Notice that the
objective of DLTPC is similar to the one of GR-PCCN [80],
but DLTPC is more complex, because it considers energy
harvesting, which is dynamic and random in nature.
RL-budget – In clustered networks, cluster heads close to

the sinkmay require a higher energy consumption than cluster
heads on the border. To balance energy consumption between
cluster heads, [91] proposed a protocol to adjust the size (in
number of members) of clusters in radio cognitive networks.
Periodically, a cluster head broadcasts a message including
the available channels (representing the budget) to invite
nodes to join its cluster. Using RL, the cluster head adjusts
its cluster size depending on the available radio channels and
the energy consumption due to packet reception from cluster
members and relaying to other cluster heads or to the sink.
GFRLR(NATG) (Game theory and Fuzzy logic based RL

Routing) – [92] proposed an efficient algorithm mixing game
theory, fuzzy logic, and reinforcement learning to optimize
MAC collisions in VANETs when traffic information are
exchanged between vehicles and RSU (roadside units). Hello
packets broadcast by nodes include Q-values and mobility
information (location, speed and direction). First, fuzzy logic
is used to select cluster heads (CL) taking into account
the relative mobility and movement patterns associated with
vehicles. To reduce the number of sender nodes, and con-
sequently reduce the collisions, when traffic information is
disseminated to vehicles on road, nodes closer to RSUs are
given preference to act as CLs. Second, game theory is
used to stimulate cooperation of sender nodes to use the

CLs for packet forwarding. Third, reinforcement leaning is
used to evaluate multi-hop routes. Q-values are updated upon
reception of Hello packets, which helps nodes to select the
appropriate routes. Q-value update rule is based on signal
quality factor (to give preference to nodes with better signal
conditions), collision probability, and distance to RSUs.
RLSRP (RL based Self-Routing Protocol) – [93] pro-

posed RLSRP to address rapid topology changes in FANETs
composed of flying nodes, such as drones. Flying nodes
exchange, periodically or on-demand, their link-state infor-
mation including GPS position, speed, and direction. Then,
RL is used to estimate future positions of flying nodes and to
select forwarders to relay packets accordingly.
CCLBR (Congestion Control-based Load Balanced Rout-

ing) – [94] proposed a routing protocol to efficiently forward
query packets in peer-to-peer networks. CCLBR objective is
load balancing between peers under dynamic loads. In order
to avoid sending queries to congested peers, RL is used to
monitor the state—which includes the processing the capac-
ity, number of queries being processed, and the number of
monitored resources—of each peer and to decide which peers
are most appropriate to relay queries.
Q2-R (Qos-aware Q-Routing)– [95] proposed an adapta-

tion to Q-routing to optimize the overhead and the quality
of discovered paths, while providing soft QoS in WANETs.
Q2-R follows three steps: Bootstrapping, Learning, and Data
routing. In Bootstrapping step, a reactive protocol, such as
AODV, is used for path discovery. In Learning step, a second
packet stream, called ‘‘Q-Info’’ packets, is used to optimize
previously discovered paths through RL, as in Q-routing.
Consequently, in Q2-R, learning does not start with random
paths (as in Q-routing), but with paths providing connectivity
with the destinations and then improves them. Paths are opti-
mized regarding required QoS constraints such as delivery
delay, jitter, and loss rate. Paths, which do not fulfill QoS
constraints are penalized when their Q-values are updated.
Unlike all the other QoS-aware protocols, Q2-R does not use
any weights associated with QoS metrics. Finally, in data
routing step, the learning traffic rate is reduced or increased
depending on the observed variations in Q-values.
SRR (Smart Robust Routing)– [96] proposed an RL-based

algorithm for routing in tactical networks (i.e., military bat-
tlefield networks) where applications require deterministic
guarantees on network performance to meet mission require-
ments. Through RL, nodes learn stable paths and use them
to forward unicast packets. When the topology of the net-
work becomes unstable, packets are duplicated and broad-
cast to reliably reach the destination through multiple paths.
Q-learning technique is used to learn the number of hops
to reach the destination and a metric, called C-factor, rep-
resenting the likelihood to reach the destination, is used to
determine when packet duplication is required. The C-factor,
which represents path information freshness, is close to 0
when the path is very likely to be broken and close to 1 when
it is very likely to be stable. C-Factor is updated using ACKs
and it is used to compute the learning rate α. C-Factor was
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also used in CQ-R [33] and called C-value. SRR and CQ-R
differ in how C-Factor is updated. In SRR, C-Factor is used
both for adjusting the learning rate and measuring the loss
rate. When a node has a packet to forward, it determines
the next neighbor with the lowest (because shortest path is
needed) product, which combines the Q-value and C-factor.
Then, it decides, with a probability based on C-factor of the
selected neighbor, to either forward to the selected neighbor
or to broadcast.
SDCoR (Software Defined Cognitive Routing) – [97] pro-

posed a solution to integrate SDN (software defined net-
working) approach and RL to improve routing in Internet of
vehicles. In the proposed protocol, called SDCoR, an SDN-
controller collects information about slave nodes (vehicles)
and performs management tasks. In particular, an SDN-
controller adapts routing to the conditions of the network
(i.e., mobility and traffic demand). Instead of learning optimal
routes through RL as the other RL-based routing protocols,
SDCoR protocol suggested another approach, which is the
selection of a routing protocol among a list of candidate and
then calculates the routing tables depending of the selected
routing protocol and send them to SDN-switches, which have
to follow received forwarding tables until SDN-controller
updates them. Using RL, SDN controller collects informa-
tion from switches and selects the most appropriate routing
protocol.

V. CLASSIFICATION OF RL-BASED ROUTING PROTOCOLS
To our knowledge, this paper is the first to propose classifica-
tion criteria to help understanding and comparing the whole
RL-based routing protocols. Proposed criteria are categorized
into three groups (Fig. 3):
• Context of use related criteria, which describe the tar-
geted applications and their characteristics and require-
ments;

• Design characteristics related criteria, which highlight
how authors designed their protocols to make them effi-
cient and different from other protocols;

• Performance related criteria, which provide a quali-
tative evaluation of the overhead of protocols and the
metrics analyzed by authors through simulations.

A. CONTEXT OF USE
The proposed routing protocols aimed at providing efficient
solutions to deploy in specific contexts, which may be char-
acterized by five aspects.

1) ADDRESSED NETWORK CLASSES
As previously mentioned in subsection III.2, RL-based rout-
ing protocols have been extended and improved gradually
as networks evolved, spanning wired, wireless mesh, wire-
less cooperative communication, optical, mobile ad hoc,
wireless sensor, vehicular, delay tolerant, flying ad hoc,
social, cognitive radio, software defined, named data Net-
working, and peer-to-peer networks. In addition to network
class, some protocols made strong assumptions about traffic

(e.g., distribution function of traffic is known a priori) or
about the network (e.g., localization service is available to
nodes or transmission errors may occur).

2) ROUTING OPTIMIZATION CONTEXT
From users’ perspective, routing protocols should select the
best (optimal) paths to convey data from sources to destina-
tions. There are different ways to reach, partially or totally,
such a goal depending on roles assigned to data sources and
to relaying nodes and on the initial assumptions about rout-
ing. RL-based contributions to routing addressed six routing
optimization contexts:
Data-packet driven optimization. Sources transmit their

data packets and each node on path to destination, which
receives a data packet, selects the best next forwarder depend-
ing on its local view and then sends backward a feedback.
After a given amount of forwarded data packets, the routing
process converges to the selection of (sub)optimal paths. This
framework is prevailing due to its full distribution of roles and
flexibility. However, its efficiency (speed of convergence to
stable optimal paths) and overhead depend on traffic gener-
ated by sources.
Route request driven optimization. A node, which has data

to send or which requests data from sources, sends a Route
Request (RR). Then the RR is disseminated in the network.
Each node receiving an RR decides to participate (or not) and
selects the next node to continue the process of route request
forwarding until the final destination is reached. Once a path
is found, all packets from source to destination are routed
on this path. Then, when data packets are transmitted, final
destinations (and maybe intermediate nodes) send feedback
regarding the performance of current routes. Then, routes are
optimized until their optimum is reached or approximated.
It is worth noticing that most RL-based routing protocols
proposed in this category ([32], [35], [36]–[38], [43], [59],
[66], [68], [70], [74]) are extensions to the well-known
AODV protocol [39].
Content request driven optimization. In peer-to-peer sys-

tems and named data networks, nodes interested in a content
send their requests to receive data packets from the nodes
possessing the requested content. Nodes on path forward (or
not) the requests to locate the requested content. Then, when
data packet containing the requested content are forwarded,
relaying nodes receive feedback and adapt their paths to keep
only paths that enable to return the maximum content at a
minimum cost [87], [88], [94].
Predefined routes driven optimization.Offline, each source

builds a list of paths to reach the targeted destinations. Online
(i.e., during data packet transmission), when a source has
packets, it selects a path among predefined ones and sends its
data packets; all relaying nodes must use the selected route.
In the event a source detects a link break on the selected
path, it switches to another predefined path. Periodically
or on-demand, a feedback is sent backward to the source,
which will adapt (i.e., optimize) its path selection among
the predefined path list. Notice that in such a framework,
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FIGURE 3. Classification criteria.

the cost optimization role is assigned to source nodes. Con-
sequently, the efficiency of learning depends on the quality
of predefined path lists (i.e., number of hops, path and link
redundancy. . . ) [34], [57], [60].
Cluster driven optimization. Clustering is defined as the

process of partitioning the set of nodes into groups, with one
cluster head per group. Clusters heads also may be divided
into groups of cluster heads with one cluster head represent-
ing the group. Data packets are transmitted from sources to
destination following a clustered hierarchy of the network
(i.e., nodes, which are members of a cluster, send their data
packets to their cluster head, which in turn sends the packets
to a higher level cluster head or to destination). Depending on
its available resources, a cluster head determines the number
of members that can join the cluster. Then, following the
transmission of data packets from members, cluster heads
receive feedback and adjusts (i.e., optimizes) their cluster size
accordingly [82], [91].
Routing protocol driven optimization. It is a very recent

application of RL to improve routing performance. In this
framework, a central node (an SDN-controller), has a set
of routing protocols candidates (e.g., AODV, DSDV, DSR,
OLSR, GPSR. . . ) that can be used for forwarding packets
by slave nodes (i.e., SDN-switches). In each time interval,
the central node selects a routing protocol and calculates the
routing tables and sends them to slave nodes to configure their
forwarding tables. Then, a feedback is collected by the central
node regarding the performance of computed routing tables
followed by the slave nodes. The central nodemay change the

current routing protocol for the next time interval depending
on the observed performance. After some time intervals, the
system converges to the most adequate routing protocol [97].

3) UNICAST OR MULTICAST
RL has been applied to select and optimize either Unicast or
Multicast paths. It is worth noticing that optimization of mul-
ticast trees requires much more time and communications to
reach optimal trees than for unicast paths. In addition, in case
some links on paths are not sufficiently stable (because of
congestions or wireless link instability, for example), the con-
vergence to optimal trees would never happen. RL should
be applied for multicasting when links are sufficiently stable
and/or when partial delivery is allowed (i.e., when only a
fraction of potential destinations may receive the broadcast
packets).

4) QOS METRICS FOR OPTIMIZATION
Broadly speaking, routing problems in networks are typically
multicriteria decision making (MCDM) problems. The well-
known difficulty of MCDM problem solving comes from
the heterogeneity natures of metrics. To search routing solu-
tions, the user must decide—depending on the specificities
of his/her application—to assign an importance level to each
metric. Consequently, the MCDM solving approaches are
based on parameters (or weights) to express the relative
importance of metrics. Manifold QoS metrics have been
addressed as objectives for optimization in RL-based routing
protocols, including:
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• Delivery delay. It also is called Delivery time or End-
to-end delivery delay and represents the average time to
deliver a packet at destination.

• Delivery ratio. It also is called Delivery rate and it
is the proportion of packets successfully delivered at
destination.

• Hop count. It is the average number of hops from source
to destination. Protocols proposed in [50], [53], [56] use
‘hop’ as unit for Delivery delay instead of time unit
(in sec).

• Loss ratio. It also is called (Packet) Loss rate and it is
the proportion of packets not delivered at destination.

• Symbol error rate. It is similar to bit error rate. It con-
siders transmission symbols instead of bits.

• Light-Path Blocking probability. It is the percentage of
the blocked light-paths of all requests in optical network.
When a light-path is blocked, arriving transmission
requests are rejected. Light-path blocking probability
metric is similar to Loss ratio.

• Bandwidth. It is the average bandwidth (in bits/sec)
provided to sources.

• Throughput. It is the average amount of bytes (or pack-
ets) delivered in the entire network per time unit.

• Path stability. It indicates how a path between source and
destination changes over time. Reference [71] selects
links such that paths remain stable as long as possible,
because discovering new paths takes time and results in
packet loss while new paths are being searched.

• Energy consumption. It is the average energy con-
sumption due to transmissions, receptions, and process-
ing. Energy consumption may be related to a packet,
to a node, to a group of nodes or to a network as a
whole.

• Network lifetime. This metric is of paramount impor-
tance in wireless sensor networks. It indicates the aver-
age time over which the network is alive, with multiple
meanings: all the nodes are alive, a certain ratio of nodes
are alive, at least one node is alive, all node batteries
are above a given threshold. . . [45], [47], [48] [57], [64],
[73], [77].

• Transmission power. In this case, optimization of
transmission means selecting the lowest power for
transmission while providing acceptable performance
regarding other metrics (e.g., bandwidth or delivery
delay). It results in energy saving and interference
reduction [80].

• Load balancing. It is used mainly in peer-to-peer net-
works and mesh networks to balance the load between
nodes relaying traffic [75], 94].

• PU-SU interference (ratio). It is a metric used in cog-
nitive radio networks and it indicates how Primary
users (PU) are prevented from transmitting by secondary
users (SU) [75], [82], [91].

• Interest Satisfaction delay. It also is calledHit delay and
it is the average delay to return requested data in peer-
to-peer and named data networks [88].

• Interest Satisfaction ratio. It also is called Hit rate and
it is the proportion of satisfied requests in peer-to-peer
and named data networks [87].

• Gain or Revenue. It is the average revenue (in $, . . . )
received by the agent when routing is seen from a
business point of view and routing should result in a
profit [34], [60].

• Overhead. It represents the average cost (in terms of con-
trol packets, retransmissions. . . ) to deliver data packets
at destination.

• Generic metrics. Some protocols ([35], [41], [55], [61],
[78], [80], [84], [85], [95]) do not address specific
metrics.

5) QOS GUARANTEEING
Few routing protocols aimed at providing QoS guarantees,
mainly regarding delivery delay to meet the requirements
of delay-sensitive applications, such as multimedia applica-
tions, [54], [62], [67], [78], [84], [85], [95].

It is worth noticing that only soft QoS guarantees may be
provided, because:
• In the beginning of learning, any path (i.e., random path)
may be selected to send data packets and consequently
it is unlikely to provide the required QoS levels. Many
data transfers are required before acceptable QoS level
is reached through learning. In QoS-constraint-aware
RL-based protocols, when the required level of QoS is
not met, packets are dropped at any forwarding node,
which detects QoS violation.

• Even when learning has reached stable paths, some
packets may be dropped, unless a mechanism of perma-
nent resource reservation is deployed.

Table 1 categorizes RL-based protocols from context of use
perspective.

B. DESIGN CHARACTERISTICS
1) LEARNING MODEL
In reinforcement learning, two classes of learning may be
used, model-based and model-free. In model-based learning,
the agent has a model of the environment, which guides state
transitions. In the field of routing, a few algorithms aremodel-
based [32], [36], [42], [48], [62], [63], [64], [80], [82], [87],
[88]. Some of them use offline-collected information regard-
ing environment model, while others calculate and improve
the environment model online. For example, QGR and IQ-L
protocols [87], [88] use the nodes’ level of interest collected
offline to select paths. SMART [82] uses the probability of
channel availability to select paths. Model-based learning is
more efficient, in term of convergence to optimal solution,
than model-free learning. However, the required knowledge
about the environment is hard (or intractable) to collect in
many categories of networks and applications.

2) AGENT STATES AND ACTIONS SPACES
Applying RL to any optimization problem requires the
definition of states and actions spaces. Both features are
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TABLE 1. Context of use.
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TABLE 1. (Continued.) Context of use.
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fundamental to specify the role(s) and dynamic behavior of
learning agents. In the reviewed RL-based routing protocols,
multiple forms have been proposed for modeling agent’s
states and actions. More specifically, state space may be:
• Set of nodes (i.e., the current state of agent is the index
of node holding the packet); notice that this form of
state modeling is the most popular in RL-based routing
protocols.

• Set of grids (i.e., the current state of agent is the num-
ber of grid holding the packet) in grid-organized net-
works [79].

• Set of couples relating to the dynamics of nodes, for
example, in VANETs, a couple is a vehicle speed class
and context of move (urban, highway. . . ), [49], [97].

• Set of paths and their characteristics (queue length,
average delay, average delivery ratio, average energy
consumption. . . ) [34], [50], [53], [57], [67], [90].

• Set of QoS levels required by flows [59].
• Set of transmission power levels [80].
• Set of available channels at cluster head [91].
• Set of available wavelengths in optical networks [60].
• Set of packet states (i.e., Packet in buffer, Packet deliv-
ered, Packet broadcast. . . ) [63], [65].

Action space is a set of single-type actions or a set of
actions of different types. Cardinality of action space is the
same as the one of entities associated with actions, e.g.,
when actions are associated with node selection, action space
cardinality equals the number of nodes. Single-type actions
take one of the following forms:
• ‘‘Select node j as next hop and forward packet’’, which is
the most popular form of action. In this case, the action
space is the set of node Ids.

• ‘‘Select a subset of neighbors sn and broadcast
packet’’ [69], [85]. In this case, the action space is the
set of partitions of Node Id set.

• ‘‘Select output link l and transmit packet’’ [86]. In this
case, the action space is the set of links.

• ‘‘Select grid g and send packet to one of nodes in g’’ [79].
In this case, the action space is the set of grids.

• ‘‘Select predefined path pth and send packet along
pth’’ [57], [60]. In this case, the action space is the set of
predefined paths.

• ‘‘Allocate m free channels’’ [91]. In this case, the action
space is the set of channels.

• ‘‘Select a transmission power Pw’’ [80]. In this case,
the action space is the set of transmission power levels.

• ‘‘Select a protocol Prt among a list of (standard) routing
protocols and configure the network with Prt’’, which
is an action form used in SDN networks. In this case,
the action space is the set of standard protocols.

Multiple-type action sets take one of the following forms:
• ‘‘Select node j as next hop and forward packet’’, ‘‘Broad-
cast packet’’, ‘‘Deliver packet’’ or ‘‘Keep packet’’. Keep
packet is used only in DTNs [42]. In this case, the action
space is the set of node Ids plus three special actions.

• ‘‘Accept call on predefined path pth’’ or ‘‘Reject
call’’ [34]. In this case, the action space is the set of node
Ids plus three special actions.

3) SOLUTION SPACE EXPLORATION
In machine learning, the learner tries to improve the current
solution while switching between exploration and exploita-
tion of the solution space. Consequently, the speed of con-
vergence to optimal solution is directly dependent on how
the exploitation and exploration are designed. In RL-based
routing algorithms, six selection forms are used to handle the
solution space:

- Greedy selection. Only the highest Q-value is used for
selection; it is the simplest method to implement. Unfor-
tunately, it is known that greedy selection alonemay take
a long time before convergence or never converge.

- ε-greedy selection. In addition to greedy selection,
the learner uses a small amount of randomness (with ε
probability) to explore new solutions. ε-greedy selection
is the most used form of selection in the reviewed pro-
tocols.

- Probability based selection. A probability calculated
from the history of learning is used to guide selec-
tion [32], [50], 53], [64], [78], [80], [82], [83], [88].
Some RL-based routing protocols use Boltzmann prob-
ability distribution [38], [42], [65], [67], [68], [77].

- Bayesian network decision selection. Action selection
uses a powerful approach, which is Bayesian nets, to bet-
ter explore the solution space 70].

- Devaluation of solutions based selection. Q-values are
either periodically decayed or a confidence level (which
decreases in time) is associated with Q-values in order
to enforce exploration [41].

- New neighbors first selection.New discovered nodes are
favored in next hop selection. Such a selection approach
is particularly useful in mobile networks where mobility
results in break of old paths, which have high Q-values,
and new neighbors may quickly provide more efficient
paths [40].

4) AGENTS COLLABORATION
In basic RL, each agent is independent and interacts with
its environment. Using its link-state information, the agent
applies an action to the environment, it receives a reward,
and then it changes its state. In applications of RL to routing,
almost all proposed protocols are based on collaborating
agents, which involves not only reward but also exchanges
of link-state information without actions undertaken from
RL point of view. Indeed, in addition to reward, agents
exchange link-state information (such as estimated end-to-
end delay, node location, link quality, and residual energy)
with their neighbors to select actions. From an RL point of
view, selecting a next hop is an RL action, while receiving
periodic Hello packets is not. Agent collaboration is useful
to categorize routing protocols. More specifically, reviewed
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RL-based routing protocols may be categorized into three
classes:

- No collaboration. Either there is a single agent (for
example located on an SDN controller) or there are
multiple agents, which make decisions only based on
their local view. No collaborative agent model has been
used mainly in the earlier protocols such as [34], [57]
and in centralized algorithms [69], [84], [91], [97].

- Reactive collaboration. When the selected neighbor
receives a data packet, either it directly returns its feed-
back (i.e., its Q-value or reward, depending on protocols)
in the ACK packet or it includes its link-state infor-
mation in each data packet when it forwards it, thus
providing feedback to previous sender. As shown on
Table 2, the half of reviewed protocols are reactive.

- Proactive collaboration. In addition to sending (directly
or indirectly) their feedback upon reception of a packet,
nodes periodically (or on demand) broadcast their
link-state information in Hello packets (which may
include Q-values, distances, locations, residual energy
and so on, depending on considered protocols) to their
neighbors. Link-state information broadcasting enables
agents to update their information used in metrics cal-
culation and/or update their routing tables (i.e., their
Q-value table) without taking RL actions. As shown on
Table 2, the third of reviewed protocols are proactive.

5) HYBRIDATION WITH OTHER OPTIMIZATION TECHNIQUES
Most of RL-based routing algorithms are pure reinforce-
ment learning. Some algorithms combine RL and other opti-
mization techniques to speed up convergence. In particular,
Gradient method [83], Game theory [80], [90], [92], Fuzzy
logic [70], [74], [92], Bayesian networks [48], [68], Least
square policy iteration [45], Neural networks [38], Genetic
algorithms [43], and Ants optimization [32] have been used
to improve exploration, thus providing powerful RL-based
routing algorithms.

6) NUMBER OF PARAMETERS TO TUNE
Broadly speaking, users prefer tools (including optimization
tools), which are easy to tune, while providing high perfor-
mance. When RL is used, the values of two parameters—
learning factor and discount rate—are frequently provided
to the learning system. In addition, when QoS metrics and
network-related metrics (such as distance between nodes, fre-
quency of node moves, and network density) are of concern,
weights are associated with each metric or with each group
of metrics. Thus, most RL-based routing protocols require
setting of multiple parameters and weights.

From the user perspective, tuning the weights used in
reward functions may be (very) difficult. Without a clear
understanding of the proposed reward function, the setting
of learning algorithms to converge quickly to optimal would
be impossible. In addition, the user should fix a trade-off
between the variety of metrics to consider and the quality

(in terms of optimality) of solutions (i.e., paths to route
packets). Examples of protocols requiring much setting effort
include [55], [59], [68], [77], [80], [84].

Table 2 categorizes RL-based routing protocol and high-
light their design characteristics. The notation ‘‘n1|n2|n3’’ is
used as follows: n1 = 1 means only RL learning factor (i.e.,
α) is used, n1 = 2means both RL learning factor and discount
rate (i.e., γ ) parameters are used; n2 denotes the number of
additional parameters relating to the weights of (QoS)metrics
used in RL model, and n3 denotes the number of parameters
used in space exploration.

7) REWARD FUNCTIONS
It is worth noticing that, as conclusion from our review,
the most distinctive feature of existing RL-based routing
protocols is their reward function. Arguments of reward func-
tions are metrics, which mainly include hop count, distance,
mobility factor, residual energy of node, average energy of
neighborhood, number of available channels, available link
bandwidth, link delay, path delay, congestion level, signal
strength, density of neighborhood, and transmission success
rate.Metrics values are often estimated. SomeRL-based rout-
ing algorithms only include generic reward functions with
generic arguments [35], [36], [61], [93]. To be used in real
context, such algorithms must be specialized depending on
metrics of interest. Reward functions may be categorized into
three classes: Test-based, linear and nonlinear functions.
Test-based reward functions– They are the simplest form

of reward. Reward value takes a constant value depending
on test [37], [45], [66], [70], [71], [72], [74], [79]. The most
common test is ‘‘is the packet delivered to destination?’’.
For example, reward equals 1 when a packet is delivered to
destination and 0 otherwise.
Linear reward functions– They have the following form:

R = fc()+
H∑
k=1

ωk ∗Mk

where HH denotes the number of metrics;Mk and ωk denote
the k th metric value and weight, respectively. Some reward
functions include a function fc returning a constant (for
example fc() = 1, if Ack received, fc() = 0, if nei-
ther Ack nor NAck received, and fc() = −1, if NAck
received). There are more linear reward-function based
protocols than nonlinear reward-function based protocols
(see Table 3).
Nonlinear reward functions – They are designed with

different forms of combinations of metrics. The following
reward functions are representative examples of the state-of-
the-art:

- Reward function used in E-FROMS [53], which is an
energy-aware multicast routing protocol, is:
Rwd = HC(s′) ∗ E(s′). s′ represents the next for-
warder node.HC(s′) denotes the sum of hop counts from
node s′ to destinations reachable through node s′ and
E(s′) denotes the minimum battery cost for routes cross-
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TABLE 2. Solution design characteristics - Model, States, Actions, Collaboration, and Parameters.
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TABLE 2. (Continued.) Solution design characteristics - Model, States, Actions, Collaboration, and Parameters.

55940 VOLUME 7, 2019



Z. Mammeri: RL-Based Routing in Networks: Review and Classification of Approaches

TABLE 2. (Continued.) Solution design characteristics - Model, States, Actions, Collaboration, and Parameters.
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TABLE 3. Solution design characteristics - Reward and Q-value updating functions.
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TABLE 3. (Continued.) Solution design characteristics - Reward and Q-value updating functions.
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ing node s′ and finishing at destinations reachable via
node s′.

- Reward function used in R-CRS [69], which minimizes
the number of active relays, is: Rwd = SNRs′−SNRs

|NRs′−NRs|
SNRx

and NRx denote Signal-to-Noise Ratio and number of
active relays when relay x is activated, respectively.

- Reward function used in RL-BER [57], which is an
energy-aware protocol, is:

Rwd =
(
Emin(s′)

)ω1
∗
(
BC(s′)

)−ω2
∗ (Binit)ω3 .

In RL-BER, a state is a path. Emin(s′),C(s′), and Binit are
the minimum battery level and the energy consumption
on path s′, and is the initial battery level, which is
identical for all nodes, respectively. ω1, ω2, and ω3 are
weights.

- Reward function used in RL-QRP [54], which provide
soft end-to-end delay guarantees, is:

Rwd =
(
Dists′,d − Dists,d

Dists,d

)/(
Ts,s′

DelReq

)
.

s, s′, and ds denote the node holding packet, the next
forwarder, the final destination, respectively.Distx,y and
Tx,y denote distance and transfer delay between nodes
x and y, respectively. DelReq denotes end-to-end delay
requirement.

8) Q-VALUE UPDATING RULE FORMS
Recall that learning consists in updating Q-values associated
with couples of < state, action > until optimal Q-value is
reached. When routing is of concern, optimal solution means
optimal path regarding metrics of interest. Over half of pro-
posed RL-based routing algorithms are direct applications of
Q-learning (QL) proposed by Watkins [13] to learn optimal
solution. In some QL-compliant routing algorithms, discount
factor is set to 0, which results in myopic learning, or set to 1,
which results in full-future-aware learning. Often, when rout-
ing is of concern, nodes represent states and actions are next
forwarder selections. Consequently, the original QL Q-value
updating rule (7) is rewritten in routing-related literature as
follows:

Qi (d, j) = (1− α) ∗ Qi (d, j)

+α ∗ [Rwd + γ ∗ max
k∈Ng(j)

Qj (d, k)] (11)

In (11), i, j, and Rwd represent st , st+1, and Rt+1 in (7),
respectively. Action at is ‘‘select node j to be next forwarder
to destination d’’, which is simply written ‘‘d, j’’. Ng(j)
denotes the neighbor set of node j.
Whenever actions are not node selections (e.g., selection

of a transmission range or a cluster size), rule (7) remains
unchanged. The second half of proposed RL-based rout-
ing algorithms either use a modified QL Q-value updat-
ing rule or do not rely on Q-learning but on the general
paradigm of RL [4], [12]. Whenever QL Q-value updating
rule is modified, often a variable factor based on metrics
of interest or on specific probabilities—which are denoted

f(arguments) in Table 3—are added to QL Q-value updating
rule [32], [42], [56], [66], [70], [74], [94]. The objective is to
make the learning more sensitive to the added factor.

Table 3 categorizes RL-based routing protocols from
reward function and Q-value updating rule perspectives.

C. PERFORMANCE ASPECTS
Performance includes protocol overhead and provided QoS.
In networks, two overhead factors are generally addressed as
they have effects on scalability of protocols: space overhead
and communication overhead (i.e., control packet overhead).

1) COMMUNICATION OVERHEAD
From a qualitative point of view, communication overhead is
categorized as:

- Null, when no exchange is required between agents as
in [34], [57], [69], [79].

- Low, when the selected next hop returns a feedback
(whichmay include some of its link-state information) in
an explicit ACK packet or it includes its feedback when,
in turn, it (re)forwards the packet. The half of reviewed
protocols have a low or medium communication over-
head (see Table 4).

- Medium, when the feedback from the destination is
propagated to all hops through an explicit ACK packet.

- High, when nodes periodically exchange link-state
information (such as Q-values, energy consumption,
locations, so on). The amount of control packet needed
depends on the period of Hello packets as in [32], [35],
[42], [47], [53], [54], [55], [63], [64], [65], [66], [72],
[91], [93], [96].

Notice that routing protocols with high communication over-
head may be inefficient under some network conditions.
For example, high frequency of Hello packets may result in
interferences and collisions, which deteriorates network per-
formance, and consequently the QoS provided by RL-based
routing protocols.

2) STATE SPACE OVERHEAD
RL-based algorithms require memory to store the states of
agents. In some RL-based applications, the number of states
may be very high (or even infinite), thus jeopardizing the
use of RL. Fortunately, space overhead has not been seen
as a barrier to apply reinforcement learning in routing field.
From a qualitative point of view, the state space overhead is
categorized as:

- Very low, when state space is states of a packet as
in [42], [44], [65].

- Low (or medium), when state space is node IDs. Most
of reviewed protocols have a low or medium space
overhead (see Table 4).

- Limited, when the state space depends on factor such
that number of transmission power levels, maximum
number of available channels, number of grids, number
of available wavelengths, etc. as in [79], [80], [91].
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- High (or very high), when state space is a list of paths
with their current characteristics (energy, distance. . . ) as
in 34], [49], [50], [53], [57], [67], [69], [77], [90].

3) ACTION SPACE OVERHEAD
In addition to the space required to store states, RL-based
algorithms require memory to store actions that can be
selected by agents. From a qualitative point of view, action
space overhead is categorized as:

- Low, when action space depends on factor such as
number of available channels, number of transmission
power levels. or number of protocols to deploy by SDN-
controller. Most of reviewed protocols have a low to
medium action space overhead (see Table 4).

- Medium, when action space depends on number of nodes
in neighborhood.

- High, when action space depends on number of dynamic
or predefined paths or on number of grids in net-
work [34], [57], [60], [67], [69], [79].

- Very high, when state space depends on combinations of
channel subsets or paths [50], [53], [59], [85], [91].

4) PROOF OF CONVERGENCE
In optimization field, the convergence to optimal solutions
is one of the expected properties. Many existing techniques
to solve multicriteria optimization problems are known to be
sub-optimal. RL-based solutions would be widely deployed
if their convergence to optimal could be (formally) demon-
strated. The proof of convergence of RL-based routing pro-
tocols, which are direct applications of Q-learning, can be
derived from the proof provided by Watkins and Dayan [14]
as long as some assumptions are satisfied. Regarding proto-
cols, which are not Q-learning compliant, convergence proof
is an issue. Authors of this category of protocols did not
formally consider (with the exception of [80] and [32]) the
convergence of their algorithms. Rather, they addressed con-
vergence from simulation point of view or just stating that
convergence may be reached.

5) PROROCOL PERFORMANCE (SIMULATION)
RL-based routing algorithms are expected to provide optimal
paths (i.e., paths with low delivery delay and delivery ratio,
low energy consumption, high network lifetime. . . ). Given
the number of protocols and the variety in reward function
design and inmetric weights, even for the same network class,
we cannot provide qualitative evaluation of existing protocols
or compare their performance. Thus, we only include the
metrics evaluated by authors through simulation.

Table 4 highlights performance aspects of RL-based rout-
ing protocols.

VI. CONCLUSIONS AND CHALLENGES
For a quarter century, Reinforcement learning is applied
to routing in different classes of networks ranging from
wired and static networks to very dynamic wireless and ad

hoc networks. Tens of RL-based protocols have been pro-
posed. This paper aims at providing a comprehensive review
of literature on the field of research. A classification approach
is proposed to highlight how RL-based routing protocols
are designed, which would help adapting them to specific
environments or improving them. RL is an efficient alter-
native to enforce online-awareness of routing protocols to
their environment changes, so they can provide good lev-
els of QoS, while optimizing resource utilization. However,
some challenges still remain and should be investigated to
provide evidence on applicability of RL-based protocols at
large scale; they include the following:
Proof of optimality – Almost all reviewed papers did not

convincingly address proof of convergence. However, it is
obvious that RL would be definitely adopted in next gener-
ation networks when proof of convergence question has been
answered. Q-learning author, Watkins, proved convergence
under specific assumptions. It is not clear how the latter apply
to routing. In addition, when Reward functions are based on
multiple metrics, the proof of optimality becomes a harder
problem.
Speed of convergence – Huge authors proposed heuristics

to explore space of solutions (i.e., actions to select in states).
Whenever large networks are considered, space exploration
may take a (very) long time before optimal paths would be
discovered, resulting in poor end-to-end performance of the
network. Speed of convergence should be investigated further
to provide bounds of delay regarding transient regime of
routing optimization process and let users know when the
network is ready to provide acceptable QoS levels.
Link-state information dissemination – In most of proto-

cols, link-state information is used to calculate metrics, which
are parameters of reward functions. Consequently, quality of
routes aswell as convergence of routing algorithms depend on
freshness of disseminated link-state information. Frequency
of Hello packets should be addressed in such a way to find
compromise between protocol overhead and values of reward,
which result in faster convergence. Relationships between
both aspects should be investigated through analytical mod-
els, thus avoiding users to randomly set the period for Hello
packets.
Weights associated with metrics and learning parameters

– Whenever a metric is used in a reward function, a weight
is associated with it. Also, Q-value update is based on two
parameters – learning factor and discount rate. Authors of
routing protocols addressed weights and learning parameters
only from simulation point of view. However, learning param-
eters and weights have a significant impact on the quality
of paths and on the speed of convergence. Development
of a methodology to address the learning parameter setting
and the weight assignment would make the deployment of
RL-based routing protocols easier and more efficient.
Hybridization – A few routing protocols have sufficiently

addressed the reduction of search space to make more effi-
cient optimal-path search. RL should be used jointly with
other techniques including classification, Bayesian networks,
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Neural networks, Genetic algorithms, Ant colony, Swarm
optimization, andGame theory to providemore (soft) guaran-
tees on how solution space is wholly and quickly tested [98].
Recently, deep reinforcement learning has been proposed to
enable RL to scale to complex problems [99], [100]. Deep
RL would help designing efficient routing algorithms [101],
[102], [103].
Predicting traffic demands – Learning in previously pre-

sented RL-based protocols is mainly based on network-
oriented metrics (i.e., delays, loss rate, transmission success,
mobility of nodes, etc.). Predicting traffic from sources to
destinations would result in more efficient selection of for-
warders and less congestion of nodes. Indeed, traffic predic-
tion, through supervised learning, enables agents to avoid
selection of some routes, if their selection would lead to
performance degradation in the future.
Collaboration (cooperative learning) – Almost all pro-

posed protocols are independent-agent-based. To face com-
plexity of future networks (including heterogeneity of user
traffics and QoS requirements as well as intelligence in net-
works), collaboration would help to design more robust and
efficient learning to solve routing problems.
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