
Received March 29, 2019, accepted April 16, 2019, date of publication April 29, 2019, date of current version May 9, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2913743

Truncated SIMD Multiplier Architecture for
Approximate Computing in Low-Power
Programmable Processors
ROBERTO R. OSORIO AND GABRIEL RODRÍGUEZ
Department of Computer Engineering, CITIC, Universidade da Coruña, 15071 A Coruña, Spain

Corresponding author: Roberto R. Osorio (roberto.osorio@udc.es)

This work was supported in part by the Ministry of Economy and Competitiveness of Spain under Project TIN2016-75845-P
(AEI/FEDER, UE), in part by the Xunta de Galicia and FEDER Funds of the EU under the Consolidation Program of Competitive
Reference Groups under Grant ED431C 2017/04, and in part by the Centro Singular de Investigación de Galicia Accreditation
2016–2019 under Grant ED431G/01.

ABSTRACT Approximate computing has been exploited for many years in application-specific architec-
tures. Recently, it has also been proposed for low-power programmable processors. However, this poses
some challenges as, in a microprocessor, the energy consumed by fetching and decoding an instruction
may be significantly higher than that of the execution itself. Therefore, approximate computing would be
advisable only for those instructions, in which the execution stage is significantly expensive in terms of
energy consumption. In this paper, we present new architectures for truncated SIMD multipliers able to
calculate signed and unsigned products from 8 × 8 to 64 × 64 bits. Next, we analyze the precision loss
incurred by truncation for all product sizes. We implement accurate and truncated architectures for both
scalar and SIMD products and find that truncation allows area savings of up to 27%. The proposed design
is experimentally evaluated in different scenarios, showing potential energy savings ranging from 29% to
42%. Finally, this paper analyzes the overall convenience of introducing truncated SIMD architectures with
respect to accurate SIMD and scalar architectures.

INDEX TERMS Digital arithmetic, fixed-point arithmetic, approximate computing, approximate multiplier,
low power.

I. INTRODUCTION
Approximate computing is a well-studied field of research
that pursues to trade off computation accuracy in exchange
for energy, time, and/or area savings. Some ideas for
achieving these goals are using reduced precision in float-
ing point arithmetic; reducing the accuracy of quotients,
square roots, and scientific functions; or truncating sums
and products. Traditionally, these ideas have been applied in
application-specific architectures only. More recently, a num-
ber of papers have proposed to extend this reach, applying
approximate computing to general purpose, low power, pro-
grammable processors [9], [12], [23]. Software and hardware
techniques proposed in the past have to be repurposed for this
more general application. This paper focuses on improving
the precision and efficiency of approximate multiplications.

The associate editor coordinating the review of this manuscript and
approving it for publication was Vyasa Sai.

Approximate computing should not be applied to any
arbitrary instruction in a program. As an example, opera-
tions affecting control flow, such as computation of loop
indices, must be executed accurately to avoid semantic errors.
A possible solution to this problem is to implement hybrid
units, in which truncated arithmetic is implemented using
power gating [2]. In this way, the same circuit may imple-
ment accurate or approximate operations by switching power
supply at the gate level, and rerouting signals appropriately
through multiplexers. However, this presents disadvantages.
First, if left connected to other signals, power gated sections
increase circuit capacitance, affecting propagation delays.
Second, switching between the approximate and precise oper-
ation modes takes time, causing delays in the execution of
sections of code involving mixed arithmetic, and potentially
canceling any power savings. These problems may be solved
in the future by micro-electro-mechanical relays [10]. The
inclusion of separate precise and approximate functional

VOLUME 7, 2019
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

56353

https://orcid.org/0000-0001-8768-2240


R. R. Osorio, G. Rodríguez: Truncated SIMD Multiplier Architecture for Approximate Computing

units in microprocessors has been proposed to avoid the
disadvantages of power gated designs [9]. The inclusion of
different specialized arithmetic units is one possible approach
to taking advantage of the extra transistors in the dark silicon
era [8], [22]. However, having both units enabled at the same
time implies a static power overhead which potentially can-
cels energy savings.

From a global perspective, the main limitation to exploit
approximate computing on programmable processors comes
from the fact that instruction fetch and control stages of the
pipeline have been shown to consume more than 90% of the
energy in simple arithmetic instructions such as addition and
small products [13]. Provided that non-execution stages can-
not be approximated, research should be focused on instruc-
tions that carry out heavy computations in the execution
stage. In order to increase the share of energy dissipated in
the execution stages compared to the control stages, this paper
targets SIMD operations. The focus is put on multiplication
as it is both a frequently used (as opposed to other more com-
plex ones, such as division), and a relatively complex opera-
tion, offering opportunities for significant power savings (as
opposed to simpler ones, such as addition). A scalar 32-bit
multiplication consumes only 4.4% of the total instruction
energy, which includes instruction cache and register access,
as well as control [13]. We expect this share to increase to
7.8%, 12.7%, 18.5%, and 24.0% for 64-, 128-, 256-, and
512-bit vectors, respectively, assuming that the control and
instruction cache energies remain constant, while register
access and multiplication energies scale linearly with word
size. This work focuses exclusively on integer multiplication.
For floating point other solutions already exist. To reduce the
energy overhead incurred by dual functional units, as well as
to avoid the switching delay between precise and approximate
modes in gated architectures, the proposed SIMD design
can be used to implement accurate products of small word
lengths, as described in Section IV. This work makes the
following contributions:
• We analyze the error introduced by different-sized trun-
cated multipliers, highlighting the effect of overflow in
unsigned multipliers, and proposing a worst-case-based
approach to evaluation in large multiplication sizes.

• An approach to the computation of correction factors
(α and λ) of 32- and 64-bit truncated multipliers is
proposed.

• A novel SIMD architecture for truncated approximate
multipliers is presented. To the best of our knowledge,
no other works have tackled this topic before. SIMD is
crucial in our strategy to obtain energy savings when
implementing approximate computing in programmable
processors.

• A thorough experimental evaluation of the proposed
architecture, including an estimation of: area savings;
energy consumption in the multiplier unit itself and
in the full datapath; and estimated energy savings
for a real multimedia application, JPEG encoding and
decoding.

This work is structured as follows. Section II introduces
Booth multipliers, together with the basics of SIMD multi-
plication. In Section II-B a review of approximate multipliers
is presented, with a focus on applying correction factors after
truncation. Section III studies the error introduced by trun-
catedmultipliers. In Section IV, our architecture for truncated
SIMD multiplication is explained in detail, which is then
analyzed in Section V in terms of area and energy savings.
Finally, Section VI concludes the paper.

II. MULTIPLICATION REVIEW
The Booth multiplication algorithm [3] is the most widely
used in hardware implementations, as it can be used with
both signed and unsigned numbers. The multiplicand is kept
unchanged, while the multiplier is recoded into a signed digit
format. The most common implementation is the radix-4
modified Booth algorithm, in which signed digits can take
values within the set {-2, -1, 0, 1, 2}. The practical realization
is quite simple and the number of partial products (PPs) is
typically bn/2c for an m × n product. Figure 1(a) shows the
basic implementation of a signed 8 × 8 multiplier, where
PPs are labeled a to d . Each PP is sign extended, as it may
be either positive or negative. Not taking into account sign
extension, PPs are (n+1) bits long as they may be multiplied
by 2 or −2. Multiplying by −1 or −2 requires negating the
multiplicand, which is accomplished by complementing its
value and adding one unit. Those units are typically called
hot ones, and they are labeled as xh−o in the figure.

Sign extension can be avoided with some improvements in
the algorithm [11], as shown in Figure 1(b). The prefix bits xcs
take either the value of the sign, or its complement depending
on the PPs and their position. A simple rule allows to cal-
culate the exact value for each bit. Implementing unsigned
products is also possible by adding another PP, labeled e
in Figure 1(c). The PPs and the hot ones are reduced by a
redundant carry-save adder (CSA) using either aWallace [24]
or a Dadda [6] tree. Finally, a non-redundant adder produces
the final result.

A. INTEGER SIMD MULTIPLIERS
Single-Instruction Multiple-Data instructions are supported
inmostmodern processors targetingmultimedia applications.
Among SIMD instructions, integer multiplication is both
power-hungry and extensively used. As such, we consider it
a natural choice to test our approach.

The SIMD multiplier proposed by [7] is taken as a ref-
erence. It describes an architecture that computes full pre-
cision 8 × 8, 16 × 16, 32 × 32 and 64 × 64 signed and
unsigned integer products. In all cases, 64-bit operands pro-
duce a 128-bit result. Pipelining is not considered, as the
number of stages would depend on the characteristics of the
targeted microprocessor. Although the area cost and energy
consumption of pipeline registers cannot be ignored, it is
reasonable to consider that the number of flip-flops is pro-
portional to the number of logic gates for a given number of
pipeline stages. As such, the energy and area characteristics

56354 VOLUME 7, 2019



R. R. Osorio, G. Rodríguez: Truncated SIMD Multiplier Architecture for Approximate Computing

FIGURE 1. Different addition matrices for an 8× 8 multiplier for signed
and unsigned inputs: (a) original modified Booth with sign-extended
partial products; (b) improved algorithm to avoid full sign extension; and
(c) addition of a new PP to support unsigned multiplications.

for the non-pipelined design should therefore translate to the
pipelined one without significant changes.

An efficient implementation aims at reusing as many com-
ponents as possible for all the word lengths. Reference [7]
propose two possible architectures. The one called shared
segmentation is more convenient, as it is easier to support the
different word lengths in the CSA tree. We now summarize
that architecture in order to support the explanations of the
truncated SIMD architecture presented in Section IV.

The architecture by [7] is depicted in Figure 2. The PPs are
arranged in 32 staggered rows, plus an extra row that holds
the hot ones and enables unsigned multiplication. On top
of this basic structure, other operands could be added to
implement fused multiply-add instructions, or dot product.
Data is distributed in such a way that each of the first 32 rows
contains exactly one PP, independently of the word length.
Also, each bit in the multiplicand is always allocated to the
same position in each row, and all the bits in a given row
are multiplied by the same Booth signed digit. Note that,
depending on the word length, some of the bits in each row
will be masked out.

As shown in Figure 1(b), PPs have also a small prefix
which replaces full sign extension. As those prefix bits are
located at different places depending on the word length,
multiplexers are needed to select between prefix, or regular
PP bits. In Figure 2, individual bits are represented by hollow
dots. The solid ones are those that require a multiplexer,

as theymay be either regular, prefix, or hot one bits depending
on the selected word length. As can be seen, multiplexed bits
account for less than 20% of the total.

The last row consists of the hot one bits plus the PPs that
enable unsigned multiplication. The Booth signed digit for
this last row is 1 when the multiplication is unsigned, and the
most significant bit of the second operand is 1. In all other
cases the PP section of the row will consist of 0s. Note that
this last row is the only one that may contain data from more
than one subword.

The figure highlights the bits involved in computing 8× 8,
16 × 16, and 32 × 32 products. The 33 rows must be added
together using a CSA reduction tree plus a non-redundant
adder. In a 64× 64 multiplication all the bits in the figure are
enabled. For a 32× 32 product, almost one half are disabled.
This proportion increases to almost seven out of eight for 8×8
operations. The reduction tree considers all the bits, but some
of the full- and half-adders in it are capable of killing carry
propagation. A selection signal is generated depending on the
position of the adder in the tree and the selected word length.
The final non-redundant addermust also implement carry-kill
at selected places.

B. APPROXIMATE MULTIPLIERS
A large number of works have studied the design of approx-
imate multipliers, covering different strategies with differing
degrees of accuracy and energy efficiency. The most common
approach to approximate multipliers is truncation, which
consists in removing selected elements from the dot matrix.
Some approaches further introduce a small number of correc-
tion terms, which seek to reduce the total error introduced by
truncation. In this section we carry out a brief review of the
related literature, highlighting the most promising strategies
for the design of approximate SIMD multipliers.

Petra et al. [18] designed an unsigned multiplier with a
signed extension. It is not based on the modified Booth
algorithm, producing a large number of PPs, making this
implementation less attractive than others. Reference [19]
propose a modular approach for addition and multiplication.
Large multipliers are built by combining smaller blocks,
and truncation is implemented by removing some blocks.
The proposed configurations, however, provide small power
savings.

Albicocco et al. [2] leverage sleep transistor insertion to
select between accurate and approximate modes by using
power gating. The error introduced by truncation is not com-
pensated in any way, producing an average error larger than
other works. The same authors propose, in a different work,
the use of sloppy operands [1]. The multiplier is recoded
using the modified Booth algorithm, but recoding is approxi-
mate for the less significant columns. The introduced error is
larger than that of a truncated multiplier.

Zervakis et al. [27] introduce partial product perforation,
eliminating selected PPs and achieving shallower adder trees.
The approach is interesting, but difficult to extend to SIMD
multipliers, as the number of perforated PPs depends on the

VOLUME 7, 2019 56355



R. R. Osorio, G. Rodríguez: Truncated SIMD Multiplier Architecture for Approximate Computing

FIGURE 2. Dot matrix of the partial products for the SIMD multiplier architecture proposed by [7]. Each of the first 32 rows contains a different PP
multiplied by the appropriate Booth signed digit. Different word lengths are enabled by masking out certain bits. E.g., the multiplier can be configured to
compute eight 8× 8, four 16× 16, or two 32× 32 multiplications by enabling only the highlighted sections of the dot matrix. Hollow dots represent data
bits. Solid dots need to be multiplexed, as they contain data, sign extension prefixes, or hot ones, depending on the word length.

selected word length. Therefore, levels that could be perfo-
rated for 64× 64 products, may be necessary for 8× 8 ones.
Swartzlander [21] proposes a variable correction factor to

reduce the error introduced by truncation. This idea is devel-
oped in a number of papers that represent the state of the
art in the field. The PPs are divided into 2 parts: major and
minor [5]. The bits in the minor part are not included in the
reduction of the partial products, but some of them may be
used to calculate a correction factor that is added to the major
part.

Jiang et al. [17] perform a review over a large number
of designs. The work by the same authors in [16] presents
a more focused and meaningful review of a smaller set of
multiplier designs. We highlight here three of them. In [15],
a combination of truncation and approximate accumulation
of the PPs is proposed. Reference [4] present a method to
compute the correction factor for a given number of truncated
bits. Reference [25] truncate products to (n/2 + 1) bits, and
introduce an algorithm to compute a correction factor up
to 16 × 16 products. We simulated these approaches and
found the latter to produce the lowest average error. For
this reason, the design by Wang et al. is used as the basis
of our SIMD approximate multiplier. The truncation and
correction approach employed is further described in the next
paragraphs. Interestingly, this work was discarded in the final
evaluation by [17], for unclear reasons.

An n × n multiplier can be truncated to the (n + 1) most
significant bits incurring a maximum error of ±28 and ±217

units for 8 × 8 and 16 × 16 products, respectively [25].
In the design by Wang et al., the error is kept low by adding
2 correction factors, λ and α, starting at position (n−1). This
approach is detailed in Figure 3. The value of λ is obtained
by using a simple logical function that involves the value of
one of the Booth signed digits, a0, and bn−1, where a and b
are the multiplicand and the multiplier, respectively. For more
specific details, we refer the reader to the original paper [25].
The value of α is obtained as:

α = b(m− 1)/2c (1)

where m is the number of non-zero Booth signed digits for
a particular product. Reference [25] propose to use a sorting

FIGURE 3. Truncated multipliers proposed by [25]: (a) generic version;
and (b) 8× 8 version. Grayed out bits are truncated (removed from the
computation). λ and α are correction factors introduced to reduce the
error incurred.

network to compute m. This is more efficient than adding up
the number of non-zero Booth digits. Figure 4 gives more
details about the usage of sorting networks for the calcula-
tion of α. As can be seen in the figure, the complexity of
the network to compute α increases rapidly with the word
length, so that applying this scheme to 32 × 32 or 64 × 64
operations would be infeasible. For this reason, a different
approach to computing α for largemultiplications is proposed
in Section III-B.

III. CHALLENGES OF SIMD TRUNCATION
Applying truncation to SIMD multipliers creates new chal-
lenges that need to be addressed to produce a viable design.
In this section we deal with two sources of error which will
require specific support in our architecture: the potentially
large overflow in unsigned multiplications, and the computa-
tion of α for large multipliers without resorting to large sort-
ing or addition networks. Then, we accurately characterize

56356 VOLUME 7, 2019



R. R. Osorio, G. Rodríguez: Truncated SIMD Multiplier Architecture for Approximate Computing

FIGURE 4. Schematics of the sorting networks proposed by [25] to
calculate α. Subfigure (a) uses a full network (10 gates) to compute α for
the 8× 8 product. The value of α is, at most, 1 when the number of
non-zero Booth digits is 3 or 4, or 0 in any other case. E.g., 0110 is sorted
as 0011; and 1101 as 0111. The only interesting bit then becomes
ρj+2 = α. Subfigure (b) shows a partial sorting network (7 gates) to
compute α. Subfigure (c) exemplifies the use of a partial sorting network
(35 gates) to compute α1α0 in the 16× 16 multiplier. In this case,
the maximum value of α is 3, and is obtained when there are 7 or
8 non-zero Booth digits.

truncation errors for small multipliers and propose a simula-
tion strategy for extending these results for larger units.

A. OVERFLOW IN UNSIGNED MULTIPLICATIONS
Errors in truncated multipliers may switch the sign of the
result. This happens when a positive operand, whose value is
close to zero, is multiplied by a negative Booth digit. In this
situation, the most significant bits in the resulting PP will be
ones. In the accurate implementation, this is not a problem,
as the hot one bits will switch them to zero. However, hot
ones are truncated in the approximate design, and so spurious
ones will remain. When dealing with signed products, this
particular overflow is not catastrophic, as it only happens with
values close to zero. Thus, the distance between the accurate
and the obtained result is small.

A serious problem arises in the same situation with
unsigned multiplications, as the inaccurate result represents a
large unsigned number, instead of a small negative one. To the
best of our knowledge, this issue has not been addressed
in any related work. We propose the following approach:
for each Booth digit, a number of the most significant bits
of the multiplicand are checked. If those bits are zero, that
Booth digit is turned to zero. The number of bits to check
depends on the index of the Booth digit. As can be seen
in Figure 3(b), each truncated PP makes use of a number of
bits of the multiplicand. As such, we modulate the value of
each of the Booth digits by inspecting only the bits in the
multiplicand that can be affected by that digit. As an example,
the least significant Booth digit will be forced to zero if the
most significant bit of the multiplicand is also zero; and the

next digit will be forced to zero if the three MSBs are zero.
The implementation of this correction will be explained in
more detail in Section IV and Figure 9.

Whereas a more complex analysis of the values of both
operands may narrow the number of troublesome cases,
checking the value of the multiplicand provides the sim-
plest solution. In Figure 5, a small example computing the
8-bit product 01h × 2Ah is shown. The multiplier value
2Ah is Booth-encoded as 01112. In Figure 5(a), the accurate
operation is shown, using 5 PPs with 2 hot ones each. In
Figure 5(b), the 5 partial products are truncated so that the
seven LSBs are discarded. The values of α and λ are 1 and 0,
respectively, and λ’s value is 1, marked in bold. The result is
FF80h instead of the expected 002Ah. In the case of a signed
product, the differencewould be small (42d vs−128d). In the
unsigned case, however, the difference is unacceptably large
(42d vs 65 408d). In Figure 5(c), our proposed correction is
applied. It sets all Booth digits to zero. The new result is close
to the accurate one for both signed and unsigned products.

FIGURE 5. Example of overflow in unsigned products. By truncating the
partial products, small negative values appear as large positive ones.
Hence, the resulting error in (b) is too large. By correcting Booth’s digits,
the resulting error is within the limits (c).

B. COMPUTING α

As explained in Section II-B, a new scheme is needed to
compute the correction factor α for large multipliers. In our
planned SIMD implementation, we need to obtain either eight
α8 (1 bit each), four α16 (2 bits each), two α32 (3 bits each),
or one α64 (4 bits). Note that each α is given by Equation 1,
which is nonlinear. As such, a value of α16, should not be
obtained by adding two α8, as the maximum error would be
increased by 33%. For this reason, we choose to compute α16
in a precise way. Instead of using partial sorting networks as
seen in Figures 4(b) and 4(c), we choose instead to use full
sorting networks for α8, as shown in Figure 4(a), and provide
their outputs as inputs to a specially designed boolean net-
work which takes as input two ordered sequences and outputs
α16. This strategy is less expensive than the one proposed

VOLUME 7, 2019 56357



R. R. Osorio, G. Rodríguez: Truncated SIMD Multiplier Architecture for Approximate Computing

FIGURE 6. Circuit for computing the α values. At the top level there are eight sorting networks of four elements each to compute the
α8 values (Figure 4(a)). The α16 values are obtained by using specially designed boolean networks which take the α8 values as input. The
α32 values are approximated by adding together α16 values, and α64 is approximated by adding together the α32 values. Note that, for
n× n multiplications, only the αn values are necessary.

by [25]. Computing α32, and α64 precisely would be slow
and expensive. We propose to approximate α32 by the sum of
two α16, and α64 as the sum of two α32. The maximum error
is 14% and 20% respectively, which is acceptable compared
to the maximum errors for these multipliers, as will be shown
in Section III-C. The resulting circuits are shown in Figure 6.

C. SIMULATION
Several metrics have been proposed in the literature in
order to evaluate the error introduced by approximation.
Reference [17] use themaximum and average absolute errors.
In the same paper, using the percentage of non-accurate
products is also proposed. We found this latter metric of little
interest, as error rates are always close to 100%. As such,
we focus on the former ones.

Evaluating the error for 8 × 8 and 16 × 16 truncated
multipliers only requires minutes of CPU time. We have
extensively checked all the combinations for those cases,
including signed and unsigned products. However, it is
not possible to exhaustively check the 264 combinations
for a 32 × 32 multiplier, or the 2128 combinations for a
64× 64 one.

In order to overcome this challenge we first focused on
the 32 × 32 multiplier. We initially tried several thousands
of millions of random operands, but the maximum error was
significantly lower than expected. Next, we selected random
values for one of the operands, and tried all the values for
the second one. As the maximum error was still low, we ana-
lyzed the worst cases in 8× 8 and 16× 16 multipliers, trying
to extract a pattern for the problematic inputs. We discov-
ered that the worst cases are those in which the five least
significant bits of the multiplicand are zero in the 8× 8 case,
and when the 10 LSBs are zero for 16 × 16 multiplications.
As such, we focused on simulating operations with multipli-
cands having 15 or more of their LSBs equal to zero. The
obtained maximum errors were in line with our estimations.
Next, we took the values of the multiplier that produced the
larger errors in the 8 × 8 and 16 × 16 cases and used them
with all possible combinations of the multiplicand.

TABLE 1. Error characterization of truncated multipliers. Values have
been divided by 2n for normalization purposes.

Table 1 shows the maximum and average error values
obtained by applying the techniques presented in this section.
Values are normalized by dividing by 2n, which allows amore
intuitive assessment of the error, considering that in some
fields, such as multimedia, the result of n × n products are
often right-shifted by n bits. After shifting, the maximum
error for 8×8 and 16×16 products are, respectively, 1 and 2
units. However, the average error is significantly lower. The
results obtained for 8×8 and 16×16 products conform with
those reported by [25]. For the 32×32 and 64×64 operations
the error seems to grow at a slightly larger rate. However,
it must be taken into account that these figures were obtained
not by exhaustive simulation, as in the smaller word lengths,
but by testing suspected worst cases. Note that, although
the normalized error basically doubles with the size of the
multiplier, it becomes less significant, as the maximum size
of the result grows at an even larger pace.

IV. ARCHITECTURE OF THE TRUNCATED
SIMD MULTIPLIER
The proposed architecture is a combination of truncated mul-
tipliers of four different sizes. Truncation is implemented by
removing bits in the PPs which are not used in any product
configuration, as shown in Figure 7. In total, 24% less bits
are featured in the CSA network. Additionally, bits which are
unused for a given word length n are permanently set to zero
during n × n operations, so that they do not draw current,
dissipating static power only. For example, when operating
the multiplier in 8×8 mode, 82% of the bits are fixed to zero.
Area savings in the multiplier design are due to truncation.

56358 VOLUME 7, 2019



R. R. Osorio, G. Rodríguez: Truncated SIMD Multiplier Architecture for Approximate Computing

FIGURE 7. Dot matrix of the partial products for the truncated SIMD architecture. The floorplan is similar to that in Figure 2, but some bits have
been truncated, and only bits 7 to 127 are computed. Correction bits are calculated as detailed in Section II-B and III-B, and added at the bottom PP
(λ bits are depicted as diamonds, and α bits as squares). Hot ones are truncated.

Energy savings are larger than area savings, as the former are
due to a combination of truncation and bit selection. These
numbers include the α and λ correction factors, which are
shown at the bottom of Figure 7 as shaded dots. The 33rd PP is
required to implement unsigned multiplication but, contrarily
to accurate SIMD multipliers [7], does not include hot one
bits, which are truncated as well.

Note that the left half of Figure 7 can be easily adapted to
perform one accurate 32 × 32 product, two 16 × 16, or four
8 × 8 ones. The added cost would be reduced to extend a
small number of multiplexers. Having an easily reconfig-
urable accurate/approximate unit allows to efficiently execute
full sections of code, including approximate data computation
and precise indexing without incurring unit duplication nor
expensive switching delays.

Starting from the right to the left, Figure 7 details the
footprints of 8×8, 16×16, 32×32, and 64×64 multipliers,
highlighted in the same way as in Figure 2. As will be shown
in Section V-A, area savings are significant, but smaller than
in fixed-width multipliers. This is evidently a result of sup-
porting 64 × 64 multiplication, as almost half of the bits in
the circuit are not used by any other word length. As such,
we considered to forgo support for 64× 64 products in order
to reduce area. In that case, the footprint will consist of two
copies of the right half of the figure. Section V includes an
evaluation of the area and energy savings provided by such an
architecture, which turn out to be only slightly larger than the
full 64-bit SIMD unit to which the remainder of this section
is devoted.

Multiplying X × Y starts by obtaining the Booth digits bi
to compute each partial product PPi = X × bi. Each Booth
digit is encoded using 3 bits (neg, two and one), as shown
in Figure 8. Note how supporting different word lengths in
a SIMD multiplier requires to insert a ‘‘virtual’’ zero bit
between sub-word boundaries. As such, multiplexers are used
for selecting the appropriate value when computing bk such
that k is a multiple of 4.
In order to reduce the error in unsigned multiplica-

tions, Booth digits are subject to the correction detailed in
Section III-A. Detecting which digits should be set to zero

FIGURE 8. Effect of sub-word boundaries in the calculation of Booth
digits. The bits of the i th digit, bi , are obtained from the multiplier bits
(y2i+1y2i y2i−1), or from (y2i+1y2i 0) if bit 2i is the start of a new word for
the selected word length. E.g., b4 is computed from the values of (y9y8y7)
if the word length is greater than 8 bits, and (y9y80) otherwise; b8 is
computed from (y17y16y15) if the word length is greater than 16 bits,
or from (y17y160) otherwise.

requires a tree of OR gates that must consider sub-word
boundaries for all the word lengths. Figure 9 details the
correction circuit. However, the correspondence between the
control bits and Booth digits depends on the word length.
Therefore, the control bits are sorted in 4 different ways,
and the multiplexer at the bottom of Figure 9 selects the
32 bits that will enable or disable the 32 Booth digits. Overall,
this circuit takes significant area, as it will be analyzed in
Section V, and it possibly introduces considerable delay.

After calculating the corrected Booth digits, partial prod-
ucts are computed by multiplying the sub-words in the multi-
plicand X by the corresponding bi. However, as explained in
Section II, each PP has a prefix that substitutes for sign exten-
sion. This aspect is common to both accurate and truncated
architectures. Each prefix consists of 2, 3, or 4 bits, depending
on the index of the PP. The prefix bits are computed using
one Booth digit plus the most significant bit (MSB) and the
sign of the corresponding sub-word, as detailed in Figure 10.
Note that the prefix bits are computed in the same way as
in a precise multiplier, as they are intended only to avoid
full sign extension. However, the roles each bit plays in this
computation change depending on the selected word length.
Figure 11 details how to select the MSB for each PP.

When constructing the partial products in the SIMDmulti-
plier each bit may be either a prefix bit, a normal product bit,
or a masked out zero. Figure 12 shows the way in which the jth

VOLUME 7, 2019 56359



R. R. Osorio, G. Rodríguez: Truncated SIMD Multiplier Architecture for Approximate Computing

FIGURE 9. Correction of Booth digits for truncated unsigned multiplication. At the top of the figure, 63 bits of the multiplicand enter the circuit, which are
used to compute 32 control bits, (c0 to c31). Those are basically computed as a chain of OR gates, with two modifications. First, the delay is reduced by
OR-ing the most significant bits using a tree structure. Second, at the sub-word boundaries, multiplexers (actually implemented as AND gates) select
whether the values for upper bits must propagate or not.

FIGURE 10. Prefix calculation for each partial product. The first PP of
each product has the following 4 bit prefix: {prefix2i , prefix1i , prefix1i ,
prefix0i }; the last PP uses: {prefix2i ,prefix0i }; and the ones in between
use: {1,prefix2i ,prefix0i }.

FIGURE 11. Selection of the MSB and sign bits for each PP. The
multiplexers select different bits depending on the word length. E.g.,
in 64× 64 mode, bit x63 is the MSB for all PPs; in 32× 32, x63 and x31 are
selected from each of the two sub-words. Sign bits are obtained from the
MSB by masking them to zero if the product is unsigned.

bit of the ith partial product (PPi,j) is computed. First, it may
be multiplied by two by selecting xj or xj−1 using twoi. Next,
the selected bit will be complemented if bi is negative. Then,
some bits at the PPs are prefix bits for a given word length,
and regular bits for the other ones. This is implemented at the
bottom multiplexer in the figure. Only some bits (solid dots
in Figure 7) require that last multiplexer. Most of them are
visible in the left side of the figure. Finally, the resulting bit
will be set to zero under two circumstances: either because its
Booth digit is zero, or because it is masked out for the current
word length.

Depending on the word length, the values of α and λ are
computed in different ways, and they are located at different
positions in the bottommost PP. However, they never overlap,
that is, no bit of αi is located in the same position of a bit of

FIGURE 12. Value selection for each partial product bit. Depending on its
position in the dot matrix, it might be a data bit (multiplied by the
appropriate Booth digit) or a prefix bit. Besides, it might be enabled or
disabled depending on the selected word length.

αj as long as i 6= j. The same happens with λ. As such, those
values are always computed in the same way, and they are
enabled or disabled, depending on the current word length,
through an AND gate. This can be seen at the bottom of
Figure 7, where α and λ bits are represented using square and
diamond shapes, respectively. Parameter λ plus 1 is expressed
as λλ̄, which explains why each occurrence is 2-bit wide. For
8×8 and 16×16 products, α is 1- and 2-bit wide, respectively.
For the other modes, α is computed by adding one or more
2-bit numbers.

Finally, all the bits in the PPs are reduced to two terms by
means of a tree of carry-save adders. In this implementation,
3:2 compressors are used, organized as a Dadda tree [6].
Using 4:2, or even larger, compressors could provide some
area and energy savings. However, the 3:2 option was chosen
for two reasons: 1) adhering to the original Dadda’s algorithm
was preferred; and 2) the best implementations of 4:2 and
larger compressors make use of transmission gates, that are
not standard logic components. Note that the impact of this
choice is minimal, since the same type of compressor will be
used in accurate and truncated architectures during the exper-
imental evaluation, providing a fair comparison. In Figure 13,
the implementation of the rightmost 8 × 8 and 16 × 16
truncated products (bits 7 to 31) is shown.

V. ARCHITECTURE EVALUATION
In this section, truncated architectures are evaluated against
their accurate counterparts in terms of area (Section V-A)

56360 VOLUME 7, 2019



R. R. Osorio, G. Rodríguez: Truncated SIMD Multiplier Architecture for Approximate Computing

FIGURE 13. Dadda’s adder tree for the right-most 8× 8 and 16× 16
truncated products. In this limited example, operand bits are reduced by
five levels of adders. The operands of full and half adders are enclosed by
rectangles, and the sum and carry bits produced by the same adder are
shown connected by a line. Two 8× 8 products are computed using
columns 7 to 15 and 23 to 31. One 16× 16 product is implemented using
columns 15 to 31. Column 31 could be used as part of a 32× 32 product,
but it is not fully depicted due to its size. Different sub-word lengths are
supported by setting some incoming bits to zero, as already explained.
Additionally, carry propagation between sub-words must be prevented.
Hence, shaded rectangles represent adders that implement conditional
carry−kill at the boundary of the 8× 8 product. This means that, whereas
they always produce sum bits, the carry bit can be forced to zero.

and energy consumption (Section V-B). All word lengths,
plus SIMD, are explored for signed and signed/unsigned
modes. The signed/unsigned architectures include a mode
selection input bit that specifies whether the operands must
be considered as signed or unsigned numbers. Furthermore,
32-bit-only versions of the SIMD architectures, as discussed
in Section IV, have been simulated, and the results presented
for analysis. The energy cost of multiplication instructions is
analyzed in Section V-C. In order to estimate energy savings
in a real application, Section V-D analyzes the potential

savings for JPEG compression. Finally, Section V-E dis-
cusses the results in depth.

A. AREA COST
Area has been estimated using two different metrics. First,
it has been assessed in terms of the number of adders in the
Dadda tree. Table 2 shows the results for multipliers able
to implement both signed and unsigned products. Table 3
shows similar results for multipliers supporting signed mul-
tiplication only. While admittedly the CSA tree represents
only part of the total area, some interesting conclusions can
be derived from these results. As can be seen in both tables,
the benefits of truncation increase with word length. SIMD
architectures, however, must implement all word lengths, and
therefore the achieved area reduction is comparable to that
of the smaller word length supported, 8 × 8. Furthermore,
supporting unsigned products has a significant cost, as an
additional PP must be added. The difference is more pro-
nounced in small multiplications, but extends also to the
SIMD architecture. Table 4 shows the increase in the number
of adders when unsigned products are supported, which is
higher in truncated multipliers.

TABLE 2. Number of half adders (HAs) and full adders (FA) in the Dadda
reduction tree for different words lengths of signed/unsigned multipliers.
The area cost of implementing half adders (HA), full adders (FA), and
carry-kill FAs is different. As such, the total number of adders is
normalized to the total necessary area in terms of FAs in the Total
column. The number of carry-kill FAs is always small (below 30 for
64× 64 units) and omitted. The rightmost column shows area savings in
terms of the total number of adders.

TABLE 3. Number of adders in the Dadda tree of exclusively signed
multipliers. The columns share the same meaning as those in Table 2.

TABLE 4. Adders overhead for supporting unsigned multiplications.

VOLUME 7, 2019 56361



R. R. Osorio, G. Rodríguez: Truncated SIMD Multiplier Architecture for Approximate Computing

The second area metric we present is the number of transis-
tors. All the analyzed architectures have been implemented
using Verilog and synthesized using Yosys Open Synthesys
Suite [26]. Whereas commercial synthesis tools are more
effective when optimizing a given implementation, Yosys
provides a clean output in terms of basic logic gates that can
be easily analyzed. The estimated transistor count for each
architecture is presented in Tables 5, 6, and 7.

TABLE 5. Transistor count for signed and unsigned multipliers.

TABLE 6. Transistor count for exclusively signed multipliers.

TABLE 7. Transistor overhead for supporting unsigned
multiplications (%).

Comparing the area results obtained with both metrics,
we see that they are consistent, except for small multipliers.
In those cases, the transistor count reduction is slightly larger
than the one observed for adders, as the CSA tree represents
a smaller proportion of the total in smaller circuits. More
importantly, it becomes clear that, for 8×8 and 16×16 mul-
tipliers, supporting both signed and unsigned multiplications
implies a large area overhead.

Area savings for truncated SIMD architectures are signif-
icant, but modest compared to fixed-width multipliers. The
reason for this becomes obvious by observing Figures 2 and 7,
as the number of bits to calculate and sum up is only slightly
lower than those in accurate architectures. Even if only some
of those bits are used at any given moment, the reduction
tree has to be designed to support all the word lengths. The
convenience of dropping 64 × 64 support must be carefully
considered if larger area savings are required. Eventually,
truncation must be evaluated based on energy consumption.
As mentioned in Section IV, energy savings are expected to
be larger than area savings, as they will be able to leverage

TABLE 8. Energy savings for truncated fixed-width multipliers (%).

masked out bits, which must be present for the computation
of large word lengths, but may be disabled for smaller ones.

B. ENERGY DISSIPATED BY THE MULTIPLIERS
All the architectures have been simulated using large sets
of random data in order to evaluate energy consumption.
In total, 160 000 bytes are used for each operation mode. The
switching of every gate when changing circuit inputs on the
Verilog output provided by Yosis was evaluated. We mea-
sured both the total number of switches and those which
draw current from source. The results were weighted by the
fan-out of each gate. The figures presented in this section
represent savings in dynamic energy dissipation with respect
to accurate architectures, as absolute power figures cannot be
obtained with our methodology.

Due to the different capabilities of each type of multiplier,
different experiments have been carried out. As a prelimi-
nar step, two types of simulations were performed for each
word length using (exclusively) signed fixed-width multipli-
ers. The first simulation performed N consecutive products.
The second intercalated the product of 0×0 in between every
valid product, resulting in 150% more switches. The purpose
of this latter simulation is to check that the accurate and
truncated architectures do not behave differently depending
on how many bits change from one set of operands to the
next one. The difference was found to be under 3%, and
therefore we can confirm that performing just the first kind
of simulation is sufficient.

1) FIXED WIDTH MULTIPLIERS: SIGNED VS UNSIGNED
We performed three sets of experiments: i) products with
exclusively signedmultipliers; ii) products in unsignedmode;
and iii) alternating signed and unsigned products. The differ-
ence when alternating modes is negligible (less than 1%), and
therefore only the average is displayed in Table 8.

2) SIMD MULTIPLIERS
For the SIMD architectures, signed products were tried first.
The data set was processed first in 8 × 8 mode, followed
by the other modes and, eventually, the simulation was
repeated alternating word lengths. The results are shown
in Tables 9 and 10 for the signed architecture plus the
signed/unsigned one working in each of those modes.

In all cases, with two exceptions, the truncated architecture
outperforms the accurate one with savings ranging from 33 to
57%. However, it is interesting to notice that the 64-bit archi-
tecture that supports unsigned multiplication experiences a
dramatic energy savings drop when word lengths are alter-
nated. A thorough study on the nets that switch values more

56362 VOLUME 7, 2019



R. R. Osorio, G. Rodríguez: Truncated SIMD Multiplier Architecture for Approximate Computing

FIGURE 14. Energy dissipation including instruction processing for four word lengths and equivalent workloads. Bars represent the total energy
dissipation of the accurate architectures, and are normalized to the dissipation of eight 8× 8 multipliers. Actual values are overlaid on each bar. Lines
represent the total savings in the instruction pipeline by using the proposed 64× 64 truncated SIMD architecture. Note that the left axis is truncated to
0.9 to increase the readability of the results.

TABLE 9. Energy savings for 64-bit SIMD (%).

TABLE 10. Energy savings for 32-bit SIMD (%).

TABLE 11. Energy savings for mixed signed/unsigned modes in SIMD
architectures (%).

often reveals that the circuit which performs Booth digits
correction in Figure 9 is responsible for this behavior. A large
number of nets change values in response to changes in the
word length, and the effect is more noticeable in the 64-bit
architecture. New simulations were conducted switching the
word length every two, four, and eight operations, showing
that energy savings improve rapidly. The results for alternat-
ing every four operations are shown between parentheses.

The signed/unsigned SIMD architectures were simulated
switching between signed and unsigned modes after every
operation. The results are shown in Table 11 and, by com-
paring them with the ones in Tables 9 and 10, it can be seen
that switching mode has little impact.

Finally, we computed the power/delay characteristics of
the truncated SIMD architectures as compared to the precise
ones. The results are presented in Table 12. An average
improvement of over 50% is observed. The improvement in
delay characteristics could be leveraged to reduce the supply
voltage of the truncated multipliers, improving energy sav-
ings quadratically.

TABLE 12. Improvement in the power-delay product of the truncated
SIMD architectures with respect to the precise ones (%).

C. ENERGY DISSIPATED BY MULTIPLICATION
INSTRUCTIONS
The former analysis allowed us to study a variety of config-
urations and cases. However, it does not include the cost of
fetching and decoding the instructions. Based on the energy
breakdown provided by [13], an approximate estimation has
been performed. Figure 14 shows the estimated energy dis-
sipation for each architecture and word length in both exclu-
sively signed and signed/unsigned versions. The twin 32-bit
SIMD architecture consists of two 32-bit circuits executing
the same instruction on different data, which is equivalent to
a 64-bit SIMD circuit without support for 64 × 64 products.
The data set is the same used in the previous experiments.
All the architectures carry out the same workload for each
word length. Plotting absolute values is not possible due to
the large difference between scalar and SIMD architectures.
For this reason, information is represented in two ways:
• The bars represent the energy dissipated just by the
accurate exclusively signed architectures. It can be seen
that the SIMD architectures consume less energy than
the fixed-width ones. The difference is more noticeable
for 8 × 8 products and null for 64 × 64 ones. The
explanation is that the samework is performed executing
a single SIMD instruction in 16-bit mode than executing
four 16× 16 individual instructions.

• The lines represent the relative difference with respect
to the accurate signed architecture. Figure 14 shows that
the advantage of using truncated multipliers increases
with word length.

Whereas savings between 2% and 8% may appear small,
they are quite significant, as they are relative to the total cost

VOLUME 7, 2019 56363



R. R. Osorio, G. Rodríguez: Truncated SIMD Multiplier Architecture for Approximate Computing

FIGURE 15. Energy dissipation in JPEG: (a) quantization, (b) forward DCT, and (c) inverse DCT. Energy dissipation figures indicate the number of gate
switches that draw power from the source times the fan-out of each gate.

of fetching, decoding and executing the instructions. Two
conclusions may be drawn from the plots:
• Implementing exclusively signed products provides sig-
nificant savings, as detailed in Section V-B. However,
the plots in Figure 14 reveal that the difference is greatly
reduced when the total cost of the instruction is consid-
ered. As such, supporting also unsigned products adds
an extra cost of 1% total energy, at most.

• The difference between using a full 64-bit SIMD archi-
tecture vs two 32-bit ones is also very small in most
cases. Thus, supporting 64 × 64 products may not be
as expensive as expected.

D. CASE STUDY: ENERGY DISSIPATION WITH JPEG
In this section, we will focus on the specific case of encoding
and decoding JPEG images using the implementation by
the [14]. At the encoder, two functions make extensive use
of multiplication: quantization and DCT. We did not consider
color conversion, as truncation errors introduce significant
degradation in quality and, moreover, conversion is usually
implemented using table look-up. At the decoder, only the
inverse DCT is considered, as inverse quantization works
mainly on byte-sized data, and therefore using accurate 8×8
products is more convenient. Other tasks in JPEG encod-
ing/decoding are significantly less demanding of computa-
tional resources.

All the multiplications are performed as 16 × 16 signed
products. Figure 15 shows an estimation of energy consump-
tion due to multiplications in the three aforementioned func-
tions for all the architectures. Data was obtained processing
the 6 Mpixel image hdr.ppm from the Image Compression
Benchmark [20] for three levels of quality (25, 50 and 75).
Processing the other images in the repository produces com-
parable results. Figure 15(a) shows that energy consump-
tion is significantly lower for SIMD multipliers than for
scalar ones. Also, truncated multipliers clearly outperform
their accurate counterparts. The results in Figure 15(b) are
independent of the level of quality, as forward DCT always
works on the original pixels of the image. Again, truncation
allows up to 25% savings, and SIMD architectures beat the
scalar ones. Figure 15(c) shows the large influence of quality
settings. This is due to the fact that, at the decoder, whole
arrays of data may skip inverse DCT if their content is zero

FIGURE 16. PSNR vs bit-rate for hdr.ppm. Quality settings range from
25 to 90. Three series of data are depicted using different 16× 16
multipliers: the original accurate one, the truncated one from this work,
and the ABM2-R15 from [15].

(which often happens for low quality levels). The results are,
in any case, consistent with the previous ones.

Overall, these results are coherent with those in
Figure 14(b), but show that truncated multipliers perform
better on a real application such as JPEG compression that
on synthetic data. The twin 32-bit SIMD is, on average, 15%
more efficient than the full 64-bit SIMD.

Lossy image compression can be evaluated through two
metrics: image quality and file size. The balance between
both metrics can be analyzed using a PSNR vs bit-rate
plot (Peak Signal-to-Noise Ratio, in dB vs bits per pixel),
as in Figure 16. The results for three different 16× 16 signed
multipliers are shown in the figure: the original accurate
one; our truncated multiplier taken from [25]; and the best
implementation from [15], called ABM2-R15. The latter one
implements radix-8 Booth’s algorithm with approximated
±3 partial products and truncated final addition.
In Figure 16(a), the results are shown for the encoder.

Approximate multipliers have been used for computing DCT
and quantization, producing a perceptible degradation only at
high quality levels (above 0.5 bps). In Figure 16(b), the results
for the decoder are shown. In this case, the image has been
compressed using the accurate multiplier, and then decoded
using different multipliers.

56364 VOLUME 7, 2019



R. R. Osorio, G. Rodríguez: Truncated SIMD Multiplier Architecture for Approximate Computing

Both approximate multipliers offer results close to the
accurate case. At the encoder, ABM2 performs slightly better
than ours, in line with the results presented in [15]. At the
decoder, our work introduces less degradation, but the dif-
ferences with the accurate multiplier are minimal. This is
specially important because images are usually encoded just
once, but decoded many times. In this sense, obtaining good
results at the decoder is more significant than at the encoder.
By analyzing Figure 16(a) it is noticed that, for a desired
PSNR, more data are produced when using approximate mul-
tipliers. Alternatively, lower PSNR is achieved for a target
file size. As it is expected that storing and/or transmitting
those extra bits increases energy consumption, it is not clear
whether approximate multipliers produce net energy savings
for all the range of application of JPEG encoding. Decoding,
however, looks more promising. For the sake of complete-
ness, we have also tried encoding with a straightforward trun-
cated multiplier without any kind of correction. We observed
a significant quality degradation, equivalent to a 12% bit-rate
increase, which clearly justifies using an advanced truncation
algorithm.

Finally, we have studied the total energy savings attained
by the proposed approximate units for the full JPEG encoder.
The share of integer multiplications which can be performed
in an approximate way, i.e., those performed during quan-
tization and DCT, is 99.9%, and so the savings observed
in Figure 15 translate directly to the execution stage. The
total energy saved depends on how instruction energy is
distributed across the pipeline stages in each particular archi-
tecture, depending on the complexity of the control stages of
the pipeline, issue width, and degree of speculation. These
results suggest that approximate units are more appropriate
for specific-purpose architectures, were no complex instruc-
tion scheduling takes place. Furthermore, we observe that
integer multiplication instructions represent approximately
5% of the total instructions executed by the compressor. The
proposed SIMD truncated multipliers are a first step into the
design of approximate SIMD units. A wider range of units
will be necessary in order to leverage the full potential of
SIMD approximate units.

E. ANALYSIS
A number of conclusions can be drawn from the results
presented in this section:
• Truncated architectures provide significant area and
energy savings in all the tested configurations and
scenarios.

• SIMD architectures dissipate less energy than fixed-
width ones for the same amount of work, except for
64× 64 products, in which they are equivalent.

• According to Table 7, the overhead due to supporting
unsigned multiplications is large for small multipliers.
This overhead may affect static power dissipation. How-
ever, the difference is diluted for large or SIMDmultipli-
ers. As such, it is not clear that a low power architecture
should renounce to support both operation modes.

• Savings in area and dynamic energy dissipation are
dissimilar in small multipliers, but they are correlated
in large and SIMD multipliers. This is particularly
true when the multipliers support unsigned operations.
In light of this, achieving area reductions in small trun-
cated multipliers may not imply comparable energy sav-
ings in all applications.

• There are differences between the energy dissipation
calculated using random data in Figure 14(b), and those
obtained in a real application as in Figure 15. This is
due to the fact that, in real multimedia applications, data
items processed in sequence have many bits in common,
mainly themost significant ones. Hence, not only energy
savings may vary for different applications, but also
the behavior of a given architecture with respect to the
others.

• Without disregarding the previous conclusion, Figure 15
shows that using a twin 32-bit SIMD unit instead of
its 64-bit counterpart may provide up to 20% energy
savings. Considering that 64-bit multiplications are rel-
atively uncommon, removing support for those opera-
tions should be considered.

VI. CONCLUDING REMARKS
A number of architectures have been implemented and ana-
lyzed for both accurate and truncated multiplication. The
problem of implementing unsigned truncated multiplications
using Booth’s algorithm has been addressed and solved. The
error introduced by truncation has been characterized for
all product sizes, proposing a methodology for those cases
in which full simulation is not tractable. A truncated 64-bit
SIMD architecture has been proposed, from which a twin
32-bit one was derived. Additionally, themost significant half
of the truncated architecture has the capability of computing
accurate products. Area savings have been assessed for all
fixed-width and SIMD architectures, showing the benefits of
truncation. Afterwards, the reduction in energy consumption
has been analyzed, first considering only the multiplier, and
then adding the cost of fetching and decoding the instructions.
Moreover, the case of image encoding and decoding using
the standard JPEG has been studied. As we have not found
other SIMD approximate multipliers in the literature, some
comparisons have been drawn with other scalar approximate
multipliers, showing similar levels of accuracy for JPEG
encoding and decoding. Overall, the results show that SIMD
architectures provide significant savings in energy dissipa-
tion, that supporting both signed and unsigned products has
little impact, and that supporting 64× 64 products has a sig-
nificant impact on energy consumption that could be avoided
by resorting to a twin 32-bit SIMD architecture.

REFERENCES
[1] P. Albicocco, G. C. Cardarilli, A. Nannarelli, M. Petricca, and M. Re,

‘‘Imprecise arithmetic for low power image processing,’’ in Proc. 46th
Asilomar Conf. Signals, Syst. Comput. (ASILOMAR), Pacific Grove, CA,
USA, Nov. 2012, pp. 983–987.

VOLUME 7, 2019 56365



R. R. Osorio, G. Rodríguez: Truncated SIMD Multiplier Architecture for Approximate Computing

[2] P. Albicocco, G. C. Cardarilli, A. Nannarelli, M. Petricca, and M. Re,
‘‘Truncatedmultipliers through power-gating for degrading precision arith-
metic,’’ in Proc. Asilomar Conf. Signals, Syst. Comput., Pacific Grove, CA,
USA, Nov. 2013, pp. 2172–2176.

[3] A. D. Booth, ‘‘A signed binary multiplication technique,’’ Quart. J. Mech.
Appl. Math., vol. 4, no. 2, pp. 236–240, Jan. 1951.

[4] Y.-H. Chen and T.-Y. Chang, ‘‘A high-accuracy adaptive conditional-
probability estimator for fixed-width Booth multipliers,’’ IEEE Trans.
Circuits Syst. I, Reg. Papers, vol. 59, no. 3, pp. 594–603, Mar. 2012.

[5] K.-J. Cho, K.-C. Lee, J.-G. Chung, and K. K. Parhi, ‘‘Design of low-
error fixed-width modified Booth multiplier,’’ IEEE Trans. Very Large
ScaleIEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 12, no. 5,
pp. 522–531, May 2004.

[6] L. Dadda, ‘‘Some schemes for parallel multipliers,’’ Alta Frequenza,
vol. 34, pp. 349–356, Jan. 1965.

[7] A. Danysh and D. Tan, ‘‘Architecture and implementation of a vec-
tor/SIMDmultiply-accumulate unit,’’ IEEE Trans. Comput., vol. 54, no. 3,
pp. 284–293, Mar. 2005.

[8] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger,
‘‘Dark silicon and the end of multicore scaling,’’ in Proc. 38th Annu.
Int. Symp. Comput. Archit. (ISCA), San Jose, CA, USA, Jun. 2011,
pp. 365–376.

[9] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, ‘‘Architecture
support for disciplined approximate programming,’’ in Proc. 17th Int.
Conf. Architectural Support Program. Lang. Operating Syst., London,
U.K., Mar. 2012, pp. 301–312.

[10] H. Fariborzi et al., ‘‘Analysis and demonstration of MEM-relay power
gating,’’ in Proc. IEEE Custom Integr. Circuits Conf., San Jose, CA, USA,
Sep. 2010, pp. 1–4.

[11] M. J. Flynn and S. F. Oberman, Advanced Computer Arithmetic Design.
Hoboken, NJ, USA: Wiley, 2001.

[12] J. Han and M. Orshansky, ‘‘Approximate computing: An emerging
paradigm for energy-efficient design,’’ in Proc. 18th IEEE Eur. Test
Symp. (ETS), Avignon, France, May 2013, pp. 1–6.

[13] M. Horowitz, ‘‘Computing’s energy problem (and what we can do about
it),’’ in ISSCC Dig. Tech. Papers, San Francisco, CA, USA, Feb. 2014,
pp. 10–14.

[14] Independent JPEG Group,Release 9.C. Accessed: Apr. 2019. [Online].
Available: http://www.ijg.org

[15] H. Jiang, J. Han, F. Qiao, and F. Lombardi, ‘‘Approximate radix-8 Booth
multipliers for low-power and high-performance operation,’’ IEEE Trans.
Comput., vol. 65, no. 8, pp. 2638–2644, Aug. 2016.

[16] H. Jiang, C. Liu, N. Maheshwari, F. Lombardi, and J. Han, ‘‘A com-
parative evaluation of approximate multipliers,’’ in Proc. IEEE/ACM Int.
Symp. Nanosc. Architectures (NANOARCH), Beijing, China, Jul. 2016,
pp. 191–196.

[17] H. Jiang, C. Liu, L. Liu, F. Lombardi, and J. Han, ‘‘A review, classification,
and comparative evaluation of approximate arithmetic circuits,’’ ACM J.
Emerg. Technol. Comput. Syst., vol. 13, no. 4, Aug. 2017, Art. no. 60.

[18] N. Petra, D. De Caro, V. Garofalo, E. Napoli, and A. G. M. Strollo,
‘‘Truncated binarymultipliers with variable correction andminimummean
square error,’’ IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 6,
pp. 1312–1325, Jun. 2010.

[19] S. Rehman, W. El-Harouni, M. Shafique, A. Kumar, J. Henkel, and
J. Henkel, ‘‘Architectural-space exploration of approximate multipliers,’’
in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), Austin,
TX, USA, Nov. 2016, pp. 1–8.

[20] Image Compression Benchmark. Accessed Apr. 2019. [Online]. Available:
http://imagecompression.info/test_images

[21] E. E. Swartzlander, ‘‘Truncated multiplication with approximate round-
ing,’’ in Proc. 33rd Asilomar Conf. Signals, Syst., Comput., Pacific Grove,
CA, USA, Oct. 1999, pp. 1480–1483.

[22] M. B. Taylor, ‘‘Is dark silicon useful? Harnessing the four horsemen of the
coming dark silicon apocalypse,’’ in Proc. DAC Design Automat. Conf.,
San Francisco, CA, USA, Jun. 2012, pp. 1131–1136.

[23] S. Venkataramani, S. T. Chakradhar, K. Roy, and A. Raghunathan,
‘‘Approximate computing and the quest for computing efficiency,’’ inProc.
52nd ACM/EDAC/IEEEDesign Automat. Conf. (DAC), San Francisco, CA,
USA, Jun. 2015, pp. 1–6.

[24] C. S. Wallace, ‘‘A suggestion for a fast multiplier,’’ IEEE Trans. Electron.
Comput., vol. EC-13, no. 1, pp. 14–17, Feb. 1964.

[25] J.-P. Wang, S.-R. Kuang, and S.-C. Liang, ‘‘High-accuracy fixed-width
modified boothmultipliers for lossy applications,’’ IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 19, no. 1, pp. 52–60, Jan. 2011.

[26] C. Wolf. Yosys Open Synthesis Suite. Accessed: Apr. 2019. [Online].
Available: http://www.clifford.at/yosys/

[27] G. Zervakis, K. Tsoumanis, S. Xydis, D. Soudris, and K. Pekmestzi,
‘‘Design-efficient approximatemultiplication circuits through partial prod-
uct perforation,’’ IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 24,
no. 10, pp. 3105–3117, Oct. 2016.

ROBERTO R. OSORIO received the Ph.D. degree
in physics from the University of Santiago de
Compostela, Spain, in 1999. In 2000, he joined
IMEC v.z.w., where he contributed to MPEG-21.
Since 2003, he was a Researcher with the Ramón
y Cajal Program and an Associate Professor,
since 2008. In 2010, he joined the Univer-
sity of A Coruña. His main research interests
include the areas of application specific circuits,
and image and video coding. His homepage
is http://gac.udc.es/~roberto.

GABRIEL RODRÍGUEZ is currently an Asso-
ciate Professor of computer engineering with
the Universidade da Coruña, where he is
also a member of the Computer Architec-
ture Group. His main research interests include
the field of optimizing compilers, architec-
tural support for high-performance computing,
and power-aware computing. His homepage is
http://gac.udc.es/~gabriel.

56366 VOLUME 7, 2019


	INTRODUCTION
	MULTIPLICATION REVIEW
	INTEGER SIMD MULTIPLIERS
	APPROXIMATE MULTIPLIERS

	CHALLENGES OF SIMD TRUNCATION
	OVERFLOW IN UNSIGNED MULTIPLICATIONS
	COMPUTING 
	SIMULATION

	ARCHITECTURE OF THE TRUNCATED SIMD MULTIPLIER
	ARCHITECTURE EVALUATION
	AREA COST
	ENERGY DISSIPATED BY THE MULTIPLIERS
	FIXED WIDTH MULTIPLIERS: SIGNED VS UNSIGNED
	SIMD MULTIPLIERS

	ENERGY DISSIPATED BY MULTIPLICATION INSTRUCTIONS
	CASE STUDY: ENERGY DISSIPATION WITH JPEG
	ANALYSIS

	CONCLUDING REMARKS
	REFERENCES
	Biographies
	ROBERTO R. OSORIO
	GABRIEL RODRÍGUEZ


