
Received March 9, 2019, accepted April 10, 2019, date of publication April 29, 2019, date of current version May 16, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2913043

Evolutionary Perspective of Structural
Clones in Software
JAWERIA KANWAL 1, ONAIZA MAQBOOL1, HAMID ABDUL BASIT2,
AND MUDDASSAR AZAM SINDHU 1
1Computer Science Department, Quaid-i-Azam University, Islamabad 45320, Pakistan
2Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan

Corresponding author: Jaweria Kanwal (kjaweria09@yahoo.com)

This work was supported in part by the Higher Education Commission (HEC), Pakistan, and in part by IGNITE under Grant SRG-257.

ABSTRACT Cloning in software represents similar program structures having its own benefits and
drawbacks. Proper clone analysis is required to exploit the benefits of clones. A study of software clone
evolution serves the purpose of understanding the maintenance implications of clones, which leads to their
appropriate management. Structural clones (recurring patterns of simple clones) represent design level
similarities in software. Evolutionary characteristics of clones can assess the relevance of those clones for
software developers and maintainers. Although the evolution of simple clones has been thoroughly studied
by researchers, the evolution of structural clones is still to be explored. In this paper, we study the evolution
of structural clones by performing a longitudinal study on multiple versions of five Java systems. To perform
a systematic study of the structural clone evolution, we define structural clones and their evolution patterns in
a formal notation. Our results show that structural clones are more likely to change inconsistently, however,
less frequently than simple clones, whereas the lifetime of the structural clones is similar to that of the
simple clones. Evolutionary characteristics of structural clones suggest that they require more attention in
their management. Analysis of structural clone evolution reveals similar reasons for changes, and similar
trends in evolution patterns, for all subject systems. These trends reveal evolutionary characteristics of
structural clones that can help in devising appropriate strategies for managing them, hence devising better
clone management systems.

INDEX TERMS Clone evolution, software clones, structural clones, software engineering, software
evolution, software design.

I. INTRODUCTION
Copying an existing code fragment and reusing it in another
part of software is a common practice in software devel-
opment and generally known as code cloning. There are
many reasons of cloning. They may be intentional, e.g., reuse
of tested code, or unintentional, e.g., implementation of
similar features during development [1]. Previous research
shows that code clones commonly exist in almost all kind
of software systems as similar solutions are repeatedly
used to solve similar problems. Certain programming styles
e.g. architecture-centric and pattern-driven development also
support similar program solutions to maintain the same stan-
dard. Empirical studies show that generally software contains
9%-17% of clones [1] and in some specific types of software

The associate editor coordinating the review of this manuscript and
approving it for publication was Francisco J. Garcia-Penalvo.

systems e.g. java buffer library, clones cover around 50% of
the system code [2]. Different empirical studies to analyze
code clones show that code clones may be both useful and
harmful for software maintenance [3]. There are some advan-
tages of using code clones during development. Cloning of
existing code provides reuse benefit i.e. it saves time and
effort for devising new solutions for similar problems [4].
Moreover for implementation of similar features, use of
cloning approach facilitates in independent evolution of the
code. However, sometimes clones cause additional mainte-
nance effort by introducing inconsistent change in similar
code fragments [5].

Regardless of their benefits and drawbacks, understanding
software cloning is very important for better clone manage-
ment. A developer should understand cloning so that the
change impact of clones for a particular maintenance task
can be evaluated. For effective clone management, different

58720
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0003-4473-5909
https://orcid.org/0000-0002-3411-9224

J. Kanwal et al.: Evolutionary Perspective of Structural Clones in Software

aspects of clones need to be addressed which include detec-
tion of clones at different granularity levels, understanding
clones from a historical perspective. A deeper understand-
ing of how clones are handled during the evolution of a
software system is helpful in managing clones properly as
it suggests the appropriate time and methods to deal with
clones [6]. There is a need to devise methods and tools so
that positive effects of cloning can be exploited and risks can
be minimized [7]. For these reasons, in recent years, clone
detection and analysis has received considerable attention
from the software engineering research community [1].

There are two broad categories of software clones, simple
clones and structural clones. Simple code clones are tex-
tually or syntactically similar code fragments in software
programs [1]. Existing tools for clone detection typically
report a large number of code clones. It becomes difficult
for a developer to understand the cloning in a system at a
higher level, thus structural clones are introduced. Structural
clones are recurring patterns of simple clones in software [8].
They represent program similarity at the code level as well
as at the design level. The bigger picture of similarity rep-
resented by structural clones leads to design similarity such
as domain specific design solutions of a system [9], [10].
Structural clones in software may represent that software
systems contain design level similarities [11]. Some software
systems such as Java Buffer library’s code contain at least
68% clones in cloned classes or class methods which is the
result of design similarities. Kapser and Godfrey [3] list sev-
eral patterns of cloning that are used in real software systems
and argue that clones can be a reasonable design decision.

Identification of clones that might be interesting for devel-
opers during software maintenance is an important research
topic in clone research. Empirical studies on clone evo-
lution has shown that history of clones helps in identify-
ing and filtering interesting clones regarding maintenance
of software [12], [13]. It also helps in categorizing clones
according to their evolutionary behavior and provides useful
information of different aspects of clones [14]. For example,
change frequency of clones is a metric that helps in identify-
ing interestingness of clones i.e. the clones that are changing
frequently but still remain in the system for long time may
be more interesting for maintainer than those that disappear
earlier. This information is helpful for the developer during
software maintenance, as a developer may handle frequently
changed clones differently than other clones in the system for
a particular maintenance task. These studies help in devising
tools for clonemanagement. In the literature, there are various
tools such as CReN [15] and CSeR [16], that support devel-
opers in simple clone management [17], [18].

Although there have been studies for simple clones, but
so far there is no available work on studying the evolution
of structural clones. Evolutionary characteristics of structural
clones will help in determining the relevance of structural
clones for software maintenance. A deeper understanding
of how structural clones change during a software’s life-
time will help in determining what kinds of modification

and refactoring support are required for managing structural
clones effectively. Study of structural clone evolution leads
to devising better clone management systems. In our pre-
vious research we performed an initial study on structural
clone evolution [19]. In this paper, we enhance our study by
defining terminology related to structural clones and struc-
tural clone evolution formally so that evolution of structural
clones can be analyzed more effectively. Further we present
our approach in detail, conduct experiments on five subject
systems and provide detailed discussion of the results. Our
major contributions in this paper are as follows:

1) We present a formal definition of structural clones.
As there is no standard definition of structural clones and
researchers have described them informally in different per-
spectives, there is need to define them formally so that the
framework for studying their evolution can be established.

2) We define clone evolution patterns for structural clones.
Clone evolution patterns exist for simple clones, however for
structural clones they need to be redefined as structural clones
represent recurring patterns of simple clones and logical rela-
tions among them.

3) We present a detailed study of structural clone evo-
lution by considering multiple versions of five well-known
subject systems. We study the evolution of structural clones
by answering the following research questions:
RQ1:What are the characteristics of structural clones com-

pared to simple clones in terms of clone lifetime?
RQ2: How consistently and frequently structural clones

change than simple clones?
RQ3: How structural clone classes change between the

versions in evolving software?
RQ4: How evolution of structural clones differs from the

evolution of simple clones?
Rest of this paper is organized as follows. Section 2 dis-

cusses literature survey on clone evolution and struc-
tural clones. Section 3 presents formal definitions related
to software clones. Section 4 describes clone evolu-
tion patterns formally. Section 5 presents our proposed
approach. Section 6 reports the results of clone evolution
and analyzes them in detail. Section 7 presents maintenance
implications of structural clone evolution and finally section 8
concludes the results.

II. LITERATURE SURVEY
There are a number of good literature surveys on software
clones. Roy et al. presented the first state of the art survey
on clone management [1]. Koschke [20] presented a brief
discussion and open questions on different aspects of clone
research including clone detection, evolution and cause-effect
of clones. A systematic review on clone evolution is also
presented in [21] which discusses various studies performed
to understand clone evolution. In the following we discuss
literature on structural clones and work that is particularly
important in the areas of clone evolution and most closely
related to our study.

VOLUME 7, 2019 58721

J. Kanwal et al.: Evolutionary Perspective of Structural Clones in Software

Empirical studies on code clone evolution show that
evolutionary aspects of clones such as clone life, consis-
tent/inconsistent change and frequency of change cannot be
revealed through analysis of single version [22], [23]. Evo-
lution of simple code clones has been studied by different
researchers. One of the earliest studies on code clones evolu-
tion in a systematic way is done by Kim et al. [12]. They per-
formed a longitudinal study on the evolution of code clones
and defined a formal model for studying clone evolution.
Changes in clone groups are studied through clone genealo-
gies that represent the changes (or evolution patterns) in
clone groups in various versions of software system. Analysis
of clone genealogies showed that many clones disappeared
within few check ins which reveals that aggressive refactoring
of clones is not appropriate for all kinds of clones. Only
36%-38% of clone genealogies are changed consistently and
remain in the system for a long time. These kind of clones
cannot be generally refactored through popular refactoring
methods. They concluded that all clones are not refactorable
and hence remain in the system till the last release of the
software.

Aversano et al. [14] studied clone evolution at clone
instance (code fragment) level. They analyzed changes in
clones through CVS transactions and analyzed the clones that
evolve inconsistently in more detail at different granularity
levels such as block, method and class levels. Concept of late
propagation was defined for the first time which is considered
an interesting pattern in clone evolution research. This pattern
described that some clones change consistently but not in the
same revision i.e. some of the clone instances of a clone group
change in earlier revisions while others change in later revi-
sions. They showed that as a result of late propagation, some
clone groups disappeared in a revision and then reappeared
after few revisions. Analysis of clone genealogies revealed
that there were two main reasons of this pattern. Some clone
instances were removed in a version by unintentional refac-
toring of clones and then in next versions it was realized that
cloning was unavoidable. The other reason was inconsistent
change where developers change some instances and leave
others unchanged.

Evolution of different types of clones such as Type 1,
Type 2 and Type 3 clones has also been studied. These studies
showed that different types of clones exhibit different evolu-
tion characteristics. Bazrafshan [13] studied the evolution of
different types of code clones. They called the Type 1 clones
as identical clones and Type2 and Type3 clones as near-
miss clones. A comparison was performed between the two
categories of clones and it was observed which clone type
was more long-lived, change-prone and had an impact on
clone ratio. Life time analysis of different types of clones
showed that near-miss clones were generally more long-lived
than identical clones. It was also observed that near-miss
clones are changed more frequently and more inconsistently
than identical clones. Analysis of clone type interchangeabil-
ity showed that there were some identical clones that were
converted into near-miss clones during system evolution in

majority of the studied systems. ArgoUML was the only
system where some near-miss clones were converted into
identical clones.

In [22], evolution of Type 3 clones is studied to understand
the evolutionary characteristics of Type 3 clones as compared
to other clone types. Study showed that there is no significant
difference among life time of the three clone types. Evolu-
tion study of clone types revealed that different clone types
are interchangeable i.e. in some cases, Type 3 clones were
converted into Type 1 and Type 2 clones during evolution and
vice versa. Type 3 clones are less stable because they changed
more frequently and more inconsistently than Type 1 and
Type 2 clones during system evolution.

Mondal et al. [24] studied the impact of different evolu-
tion patterns for Type 3 clones. Bug proneness of inconsis-
tent changes specially in late propagation of changes was
observed. Results show that only 10% late propagations intro-
duce bugs in the system.

In a recent study [25], evolution of clones is studied at
the level of micro clones. Micro clones are the code clones
that are smaller in size than the regular clones detected by
conventional clone detection tools. Size of regular clones is
usually considered more than 5 lines. In the area of clone
research, small sized clones are not considered as interesting
for maintainers, especially for refactoring. Evolution study
of micro clones reveals that micro clones are consistently
updated by maintainers during evolution, which shows that
detection andmanagement of micro clones can help in system
maintenance. Analysis shows that 23% changes in micro
clones are consistent changes and 80% of the total con-
sistent updates of the system occur in micro clones which
is significantly higher than regular clones which is only
16%. Proportion of consistent modifications were higher than
percentage of consistent additions or deletions of code in
the studied systems. Micro clones that consist of one or
two lines are changed more consistently than larger micro
clones.

Zhang et al. [26] proposed an approach to predict the need
for making consistent change in clones within a clone group
at the time when changes have been made to one of its clones.
The experimental results showed that the prediction models
have reasonable rate: they have good precision and recall
rates for two large piece of repositories, and reasonable pre-
cision and recall rates for the smallest repository. In addition,
all three sets of attributes have strong impact on recall rates
of the prediction models.

Measuring the stability of code clones is also very impor-
tant in software evolution. There are different studies on how
changes in code clones impact the code stability of software.
Mondal et al. [23] proposed a new method for measuring the
stability of code. A new metric called “change dispersion” is
defined to observe the code stability. This metric measures
the number of entities that are impacted by a change. Results
show that the more the number of entities are impacted by
a change, the more maintenance effort is spent on that code.
Thus more the code is unstable.

58722 VOLUME 7, 2019

J. Kanwal et al.: Evolutionary Perspective of Structural Clones in Software

In [27] Mondal et al. compared the stability of cloned
and non-cloned parts in a software. They used eight code
stability metrics and seven different methodologies in a com-
mon framework to analyze the code stability in a software.
Experiments were performed on 12 subject systems from
three programming languages. Change impact was observed
at method level granularity. Results show that cloned code
is more change-prone than non-cloned code in the studied
software systems. Experiments are performed on different
types of clones and it is observed that Type1 and Type3 clones
are more unstable than Type2 clones. Results of almost all
the stability metrics have shown that cloned code is more
unstable than non-cloned code i.e. changes in cloned code are
more dispersed than non-cloned code. Analysis of software
with different programming languages showed that Java and
C language systems are more unstable than C# in terms of
clone stability.

Clones have also been analyzed for program comprehen-
sion. Elevating the level of cloning to higher granularity
levels facilitates in software understanding, maintenance and
evolution [8]. In the following, we will discuss a few studies
on higher level clones.

In [28], authors extracted similar business and program-
ming rules in the software and named them logical clones.
These logical clones contain simple clones and functional
clusters (consisting of methods), files, data objects as entities
and logical relations such as method calls, inheritance as rela-
tions among entities. A functional cluster contains methods
with similar functionality. Logical relations between software
entities e.g. methods, files, are extracted and models of soft-
ware are built based on these relationships. They showed that
logical clones are beneficial for understanding similarity of
business rules in software.

Syntactical pattern clones [29] represent the clones that
share similar syntactic context e.g. Inheritance. These are the
grouping of simple code clones that are also similar in some
kind of syntactic relation. For example, in a Java system two
clone classes belong to a group of Java classes that are sibling
of each other (extended from same class) or implementing
same interface. Identification of syntactic similarities helps
the maintainer to manage clones according to their syntactic
context.

Basit and Jarzabek [8] observed that recurring patterns
of simple code clones present higher-level similarities in
software. These higher-level similarities are called structural
clones by them. Structural clones show a broader picture
of code similarities than simple clones alone. A technique
is proposed using Association Rule Mining to find these
similarity patterns in software. The technique is implemented
in a tool called CloneMiner to find structural clones auto-
matically. Structural clones at level of files and methods are
found in different software systems and analyzed. Analy-
sis of different systems revealed that structural clones rep-
resent some software design concepts. Analysis of Java
Buffer Library showed that the identified structural clones
represent design concepts that can be automated through

FIGURE 1. An example of simple code clones.

automatic code generation techniques such as use of XVCL
technique.

In [9], analysis of structural clones showed that they indi-
cated application domain concepts or system specific design.
The formation of structural clones allows to view cloning at
higher granularity level which helps in understanding clones
for further maintenance tasks. A detailed analysis of distribu-
tion of simple clones and different types of structural clones
is performed to measure how frequent are structural clones
in various software systems and how these clones help in
understanding software design and clone management [11].
Experiments were performed on eleven software systems and
results showed that more than 50% of simple clones are
present in structural clones. Analysis of the structural clones
revealed that structural clones help in understanding software
clones which leads to their management. So far, there has
been no study on structural clones evolution.

III. TOWARDS A FORMAL DEFINITION OF SOFTWARE
CLONES
Software clones can be categorized into two broad categories
according to their level of granularity, Simple code clones and
structural clones. In this section, we provide formal definition
of both categories.

A. SIMPLE CODE CLONES
A set of code fragments that are similar according to some
similarity criteria are called clones of each other. A code
fragment cf is a 4-tuple 〈S,L,M ,F〉 consisting of a chunk
of source code starting at line S with the following L lines of
code in a methodM which is declared in file F [30].

1) CLONE PAIR
Two code fragments cf1∧cf2 are called clones of each other if
they are similar according to some similarity criteria. AClone
pair (CP) can be defined as CP = {cf1, cf2} such that
sim(cf1, cf2) > k where k is a similarity threshold which
represents similarity of code fragments. The similarity func-
tion sim(cf1, cf2) can measure textual, semantic or syntactic
similarity [31] depending upon the clone detection technique
used by the clone detection tools.

2) CLONE CLASS
Contains set of code fragments cf which are similar to
each other. A Clone class (CC) can be defined as

VOLUME 7, 2019 58723

J. Kanwal et al.: Evolutionary Perspective of Structural Clones in Software

FIGURE 2. Structural clones (a) simple clones in methods (MCC) (b) method clones in files (FCC) (c) graphical
representation of FCC.

CC = {cf1, cf2, cf3, . . . , cfn} such that for any pair
cfi, cfj, sim(cfi, cfj) > k, 1 ≤ i, j ≤ n ∧ i 6= j.

In this paper, clone pair and clone class will be referred
to as simple clones. An example of simple clones is shown
in Figure 1 where three code fragments cf1, cf2, cf3 are
similar to each other and are clone instances of a clone class.

B. STRUCTURAL CLONES
The concept of structural clones was introduced to understand
cloning at a higher level than simple clones [8]. Structural
clones are the recurring patterns of simple clones in software.
Structural clones are formed by grouping clone classes (two
or more) that are participating in those recurring patterns. For
example, a group of clone classes whose clone instances are
repeatedly occurring in same files, form a structural clone
class [8]. There are various types of structural clones dis-
cussed in literature [8]–[10] ranging from small software enti-
ties e.g. method level clones to bigger entities like component
level clones. In this section we discuss various examples to
understand the concept of structural clones and their useful-
ness in software maintenance.

The most basic type of structural clones discussed in lit-
erature are containment based structural clones. Detection
of containment based structural clones is supported by the
CloneMiner [8] tool. Table 1 represents various types of con-
tainment based structural clones. Column1 shows types of
clone classes and column2 shows types of recurring patterns
of clones in software entities.

The simplest type of structural clones are Method Clone
Classes (MCC) as shown in Figure 2(a). Recurring patterns

TABLE 1. Various types of software clones detected by CloneMiner.

of Simple Clone Classes (SCC) are called Simple Clone
Structures (SCS). The methods that contain SCS and fulfill
a defined threshold (percentage of LOC of SCS/LOC of
methods) of SCS are called MCC . Generic representation
of MCC is given in Figure 2(a) where clone instances of
three simple clone classes CC1, CC2 and CC3 are repeat-
edly occurring across three methods forming three SCS
i.e. {cf11, cf21, cf31}, {cf12, cf22, cf32} and {cf13, cf23, cf33}.
An example of MCC from JHotDraw consists of variations
of init() method in four different files DrawApplet.java,
NetApplet.java, PertApplet.java and SVGApplet.java. Clone
instances of three simple clone classes repeatedly occur
in these methods. To understand the concept of SCS in
MCC through a real world example, Figure 3 shows source
code of init() method of two files SVGApplet.java and
PertApplet.java which consist of clone instances of three
different simple clone classes (Source code of these files are
not shown here to save space). In this example, three clone
instances in init() method of SVGApplet.java form an SCS1
and three clone instances in init() method of PertApplet.java
form SCS2. Similarly, clones in init() method of DrawAp-

58724 VOLUME 7, 2019

J. Kanwal et al.: Evolutionary Perspective of Structural Clones in Software

FIGURE 3. An example of SCS (Simple Clone Structures) in MCC (Method Clone Classes).

plet.java and NetApplet.java also form SCS3 and SCS4 which
form anMCC .
These types of structural clones are beneficial in change

impact analysis because they represent cloning at method
level which is more manful thn code frg. Thus a developer
knows all the simple clones present in themethods of anMCC
which will help in understanding the impact of change at a
broader level.

Another type of containment based structural clones are
File Clone Classes (FCC). Recurring patterns of Method
Clone Classes (MCC) in files are called Method Clone
Structures (MCS) as shown in Figure 2(b). The files that
contain MCS and fulfill a defined threshold of MCS are
called File Clone Classes (FCC). Generic representation of
FCC is shown in Figure 2(c). An example of FCC from
JHotDraw 7.2 contains two files, SVGPathFigure and ODG-
PathFigure in package ‘org.jhotdraw.samples.odg.figures’.
The files share 11 cloned methods named getPath(), flat-
tenTransform(), restoreTransformTo(), contains(), set-
Bounds(), getDrawingArea() getTransformRestoreData(),
handleMouseClick(), getActions(), createHandles() and
transform(). The reason of cloning in these files is the
implementation of similar functionalities for two different
types of figures SVGFigure andODGFigure. Further analysis
shows that these files are also similar in other perspectives
such as both files extend the same abstract class Abstrac-
tAttributedCompositeFigure and implement same interface
ODGFigure. Analysis of other structural clones shows that
containment based structural clones often share other rela-
tionships also e.g. same inheritance relation or same method

TABLE 2. An example of directory level clones.

call. FCC can be helpful in software understanding and
taking refactoring decisions at a higher level e.g. applying
clone refactoring at file level instead of method level where
needed. Directory Clone Classes (DCC) are the largest type
of containment based structural clones. Recurring patterns
of File Clone Classes (FCC) in directories are called File
Clone Structures (FCS). Directories that contain FCS and
fulfill a defined threshold of FCS are called DCC . An exam-
ple of DCC is shown in Table 2. Recurring pattern of
four FCC (File Clone Classes) exist in two directories odg
and svg. Each FCC contains two similar files e.g. FCC1
contains ‘/org/jhotdraw/samples/odg/ODGView.java’ and
‘/org/jhotdraw/samples/svg/SVGView.java’. Examples of
directory clones show that containment based clones also
reveal system design and can be helpful in software under-
standing and design recovery.

In the following, we will discuss a higher level of structural
clones where a set of File Clone Classes (FCC) have a calling
relation with each other. These structural clones present an

VOLUME 7, 2019 58725

J. Kanwal et al.: Evolutionary Perspective of Structural Clones in Software

FIGURE 4. An example of structural clones (FCC) of collaborating classes.

example of component level cloning in the software where
clone instances consist of recurring patterns of collaborating
File Clone Classes across different layers of software. Each
FCC consists of object classes where classes are clones of
each other.

Figure 4 shows an example of structural clone of collabo-
rating classes across different layers of software. This is found
in a real C# system of an industrial company (SES Systems
Pte Ltd) [9]. This structural clone contains two instances.
Each instance consists of four classes calling each other with
the same pattern. These clones arose from the following
situation:

The system consists of more than 20 domain entities
e.g. User, Task. Various operations e.g. Create() for these
entities are designed and implemented in the same manner,
forming clones of each other. Each box in Figure 4 repre-
sents a File Clone Class (FCC) consisting of a number of
classes implementing similar concepts/operations for differ-
ent entities. As a result when a certain operation is executed
for any entity, methods of the classes at GUI layer execute
functionality of classes of Service layer and further, classes at
service layer access data entities at database layer. This type
of structural clone depicts a pattern of collaborating classes
across GUI, service and database layers.

Another example of a structural clone of collaborat-
ing classes across layers is found in JHotDraw V. 7.1 as
shown in Figure 5. Structural clone consists of two
File Clone Classes. FCC1 contains three Java classes.
i.e. NetApplet.java, PertApplet.java and DrawApplet.java.
FCC2 contains NetFactory.java, PertFactory.java, and Draw-
FigureFactory.java.Methods of Java classes inFCC1 are call-
ing methods of Java classes in FCC2 and making a structural

FIGURE 5. An example of file level structural clone (FCC) in JHotDraw.

clone of collaborating classes consisting of three instances.
Each instance consists of two Java classes with a method call
relation between them. These clones arose from the following
situation:

JHotDraw is a Java drawing framework for developing
graphics applications. To read andwrite objects of NetApplet,
it requires parameters of NetFactory. Methods of three Java
classes i.e. NetApplet.java, PertApplet.java and DrawAp-
plet.java are calling corresponding methods in files NetFac-
tory.java, PertFactory.java, and DrawFigureFactory.java. All
the methods also use objects of NanoXMLDOMOInput and
NanoXMLDOMutput to read and write data respectively.

As we discussed in Section 1, clones offer some benefits
such as reuse of existing code. Above examples show that
structural clones present a higher level similarity of code that
is why reuse approach can be useful at higher level i.e. reuse
of design. Structural clones can help in understanding and
recovering system design through implementation. More-
over, structural clones also help in better software refactoring

58726 VOLUME 7, 2019

J. Kanwal et al.: Evolutionary Perspective of Structural Clones in Software

than when only simple clones are considered because struc-
tural clones identify places where high level refactoring
can be applied. As shown in Figure 5, three Java classes
i.e. NetApplet.java, PertApplet.java and DrawApplet.java are
clones of each other. A developer will consider refactoring of
Java classes instead of clone methods of these classes (as in
simple clones, refactoring can be applied at the level of code
fragments or methods only) which may be more beneficial in
terms of maintenance cost.

For structural clones, no formal definition has been pro-
vided. In the following, we provide formal definition of
structural clones.

FORMAL DEFINITION OF STRUCTURAL CLONES
A structural clone, as shown in Figure 2(c) is a set of graphs
G1 to Gn where nodes of a graph Gi, 1 ≤ i,≤ n, are clone
instances (of simple clones or containment based structural
clones) and edges are relations between them e.g. same file.
Each Gi represents a structural clone instance, a pair (Gi,Gj)
is called a structural clone pair. In this paper, the terms
structural clones, structural clone pair and structural clone
class are used interchangeably.

A Structural Clone Class (SCC) can be defined as:
SCC = {G1,G2, . . . ,Gn} such that sim(Gi,Gj) >

k, 1 ≤ i, j ≤ n ∧ i 6= j. Gi contains a
set of nodes N = {cu1, cu2, cu3, . . . , cun} where cui ∈
{CU1,CU2, . . . ,CUn} , 1 ≤ i ≤ n and CU repre-
sent a Clone Unit which may be a simple clone class CC
or containment based structural clone class (for example,
in case of simple clones, N = {cf1, cf2, cf3, . . . , cfn} cfi ∈
{CC1,CC2, . . . ,CCn} , 1 ≤ i ≤ n and a set of edges E =
{e1, e2, e3, . . . , em} where E ⊆ {N × N } such that ei =
(cfp, cfq), 1 ≤ i ≤ m ∧ p 6= q. In case of structural
clones, edges represents relationships among software enti-
ties e.g. inheritance, method call, containment. A set of such
relationships are denoted as R. In containment based struc-
tural clones, a graph edge will be an element of R e.g. same
file, as shown in Figure 2(c) whereas, in general, graph edges
may be a subset of R.

As structural clones are represented through graphs, their
similarity is a case of graph similarity. Before defining the
structural clone formally, we will discuss graph similarity.
Completely similar graphs are called isomorphic graphs. Two
graphs are said to be isomorphic which contain the same
number of graph vertices connected in the same way. G1 and
G2 are said to be isomorphic if there is a permutation p of
N such that

{
fi, fj

}
is in the set of graph edges E(G1) ⇐⇒{

p(fi), p(fj)
}
is in the set of graph edges E(G2).

Isomorphic graphs represent identical (completely similar)
structural clones. An example of an identical structural clone
is given in Figure 2(c). However, structural clones are not nec-
essarily completely isomorphic graphs. Similarity of graphs
should fulfill some defined thresholds/criteria k. For example,
consider two graphs G1 and G2 with graph vertices N1 and N2
such that N1 = {cu11, cu12, cu13,cu1p} where cu1i ∈
{CU1,CU2, . . .CUn}, 1 ≤ i ≤ p and

N2 = {cu21, cu22, cu23,cu2m} where cu2j ∈ {CU1,CU2,

. . .CUn}, 1 ≤ j ≤ m.
G1 and G2 are said to be similar when (cu1i, cu2j) is in

the set of graph edges E1(G1) ⇐⇒ (cu1i, cu2j) is in the
set of graph edges E2(G2) and for node cu1i in N1, there is a
node cu2j in N2 such that cu1i and cu2j are clone instances of
same clone class and number of such mappings is defined by
a threshold. Edgesmay be directed or non-directed depending
upon the kind of relation.

Definition of structural clones covers all types of structural
clones but containment based structural clones have been
mostly discussed and analyzed in the literature [8] [11]. We
discussed some examples of containment based structural
clones in the beginning of this section. Graph representation
of containment based structural clones is similar to the one
shown in Figure 2(c), where all nodes are connected to each
other and all edges represent only one relation i.e. same file.

IV. EVOLUTION OF SOFTWARE CLONES
To discuss clone evolution, it is important to first define the
required terminology. For the purpose of our study, a software
system S = {F1, ...,Fn} consists of a set of n source code
files Fi, 1 ≤ i ≤ n. A system exists in multiple
versions V where the complete system can be retrieved for
all versions V :

S(V) = {FV1,FV2, ...,FVn} (1)

is the system in versions V where V1,V2, . . . ,Vn denotes
versions of a system S. The differences between two versions
V1 and V2 of a system can be identified by a set of changes:
Let D(V1,V2) denote the set of changes {d1, ..., dk} between
S(V1) and S(V2). Evolution of a software system is the study
of changes between its different versions [30].

Evolution of software clones is studied through clone
genealogies [12]. A clone genealogy is a directed acyclic
graph that connects a clone class of a particular version with
the corresponding clone classes in the next version. An exam-
ple of clone genealogy is given in Figure 6. Clone genealogies
are generated from clone classes across the versions based
on clone evolution patterns. Clone evolution patterns are
the changes a clone class went through from version Vn to
the next version Vn+1. CCn represents a clone class in Vn ,
CCn+1 represents its counterpart inVn+1such that there exist a
cloning relation between CCn and CCn+1. CC(Vn) represents
set of all clones classes in Vn and CC(Vn+1) represents set of
all clone classes in Vn+1.

A. CLONE EVOLUTION PATTERNS
A clone evolution pattern represents a kind of change that
a code clone class went through from one version Vn to
a subsequent version Vn+1. Evolution patterns for simple
clones are described in [12].

1) EVOLUTION PATTERNS FOR SIMPLE CLONES
Same: None of the clone fragments of a clone class in Vn+1
was changed from Vn. For all cfi ∈ CCn ∧ for all cfj ∈
CCn+1, 1 ≤ i ≤ Num(CCn) ∧ 1 ≤ j ≤ Num(CCn+1)

VOLUME 7, 2019 58727

J. Kanwal et al.: Evolutionary Perspective of Structural Clones in Software

FIGURE 6. An example of structural clone evolution genealogy.

CCn.cfi = CCn+1.cfj for all i = j ∧ Num(CCn) =
Num(CCn+1) where Num(CC) represents the number of code
fragments in clone class CC.
Add: At least one code fragment in Vn+1 is newly added.
CCn+1 = CCn ∪

{
cfj

}
where cfj represents a new code

fragment ∧ q ≥j ≥ 1 where q is a any finite number.
Subtract: At least one code fragment from Vn does not

appear in Vn+1.
CCn+1 = CCn − {cfi} where cfi is a code fragment of

CCn ∧ q ≥ i ≥ 1
New: A new clone class CCn+1 is introduced in Vn+1.

CC(Vn+1) = CC(Vn) ∪ {CCn+1}

Removed: A clone class from Vn does not appear in Vn+1.

CC(Vn+1) = CC(Vn)− {CCn}

In order to define the following two clone evolution pat-
terns formally, we introduce the change function φ for code
fragments. φ : cf → cf ′. It takes a code fragment cf and
changes it to a corresponding code cf ′. There can be several
such changes and we denote them by φ1, φ2, . . . , φn.
Consistent Change: All code fragments of a clone class in

Vn appear in Vn+1 after undergoing the same change.
CCn.cfi = CCn+1.cf ′j ∧ Num(CCn) = Num(CCn+1)

where φ(cf) = cf ′ represents change on code fragments.
Inconsistent Change: At least one code fragment from

Vn changed differently than others in Vn+1. Different code
fragments can undergo different types of changes.
CCn.cfi = CCn+1.cf ′j where φ1(cf) = cf ′ ∧ CCn.cfi =

CCn+1.cf ′′j where φ2(cf) = cf ′′ and so on.

2) EVOLUTION PATTERNS FOR STRUCTURAL CLONES
To study evolution in structural clones we need to define how
structural clone classes change between the consecutive ver-
sions. For structural clones, clone evolution patterns need to
be redefined because structural clones are structures (groups)
of simple clones. Figure 6 shows some structural clone evolu-
tion patterns. Changes in a structural clone class can occur at
the level of structures i.e. addition of a whole structure, and at
the level of simple clones i.e. addition of new simple clones
in existing structures. To study structural clone evolution sys-
tematically, we formally define their evolution patterns based
on the evolution patterns of simple clones. SCCn represents
a structural clone class in Vn, and SCCn+1 represents its
counterpart in Vn+1 such that there exist a cloning relation
between SCCn and SCCn+1. SCC(Vn) represents set of all
clones classes in Vn and SCC(Vn+1) represents set of all clone
classes in Vn+1.
Same: None of the graphs of a structural clone class in

Vn+1 was changed from Vn. For all CGi ∈ SCCn, 1 ≤
i ≤ Num(SCCn.CG) ∧ for all CGj ∈ SCCn+1, 1 ≤ j ≤
Num(SCCn+1.CG)

SCCn = SCCn+1 iff

SCCn.CGi = SCCn+1.CGj

AND
SCCn.CGi.cfk,i = SCCn+1.CGj.cfk,j where k represents

the number of code fragments in each graph.
Addition of Graph: InVn+1, at least one new graph is added

in SCC

58728 VOLUME 7, 2019

J. Kanwal et al.: Evolutionary Perspective of Structural Clones in Software

SCCn+1 = SCCn ∪
{
CGj

}
where CGj represents a new

structural instance ∧ p ≥ j ≥ 1 where p is any finite number.
Addition of Node: In Vn+1, at least one new clone class is

added in existing graphs of SCC.
SCCn+1.CGi = SCCn.CGi ∪

{
SCCn.CGi.cfl,i

}
where cfl,i

represent new code fragments ∧ p ≥ l ≥ 1
Subtraction of Graph: In Vn+1, at least one new Graph is

subtracted in SCCn
SCCn+1 = SCCn−CGj where CGj represents a structural

instance in SCCn ∧ p ≥ j ≥ 1
Subtraction of Node: In Vn+1, at least one new clone

fragment is subtracted in existing graphs of SCCn.
SCCn+1.CGj = SCCn.CGj − SCCn.CGj.cfl,j where cfl,j

represent code fragments in SCCn ∧ p ≥ l ≥ 1
New: A new structural clone classSCCn+1 is introduced in

Vn+1.

SCC(Vn+1) = SCC(Vn) ∪ {SCCn+1}

Removed:A structural clone class from Vn does not appear
in Vn+1.

SCC(Vn+1) = SSC(Vn)− {SCCn}

Consistent Change: All graphs of a structural clone class
in Vn appear in Vn+1 after undergoing the same change.
SCCn.CGi = SCCn+1.CG′j∧Num(SCCn) = Num(SCCn+1)

where φ(CG) = CG′ represents change on structural
instances.
Inconsistent Change: At least one code fragment in any

one graph of a structural clone in Vn changed differently than
others in Vn+1.
SCCn.CGi =SCCn+1.CG′j where φ1(CG) = CG′ ∧

SCCn.CGi = SCCn+1.CG′′j where φ2(CG) = CG′′and so on.

B. CLONE GENEALOGIES
To study clone evolution, a clone class in one version Vn is
mapped to its counterpart in subsequent versions. A clone
class can go through one or more change patterns (discussed
in Section 4.1.2) between two versions. Clone lineage is a
sequence of changes on a clone class in versions. Clone lin-
eages (CLIN) represent the clone classes in versions i.e. CC1
is a clone class in V1 and CCn is the clone class in Vn.
CLIN = {CC1,CC2,CC3, . . . , CCn} where every

CCi, 1 ≤ i ≤ n, represents different versions of a clone class.
Clone genealogy is comprised of one or more clone lin-

eages of a clone class [12]. Clone genealogy is the set of clone
lineages belonging to same origin (i.e. clone class).
CGEN = {CLIN1,CLIN2,CLIN3,,CLINm} where

every CLINj starts from the same CC, 1 ≤ i ≤ m.
Clone genealogy helps in studying clone evolution semanti-
cally and structurally [12]. Clone genealogies represent the
changes (or evolution patterns) in clone classes in various
versions of a software system. Clone classes of a version
are mapped to their counterpart in next versions and changes
are observed between them. Fig. 3 shows a clone geneal-
ogy having a structural clone class containing two structural

instances i.e. {CG1,CG2} in Vn, which remain the same in
Vn+1. In Vn+2, a new structural instance (CG3) is added into
it. In Vn+3, evolution pattern is also an ‘Add pattern’ but
this time it is addition of instances of simple clone class
{CC1,CC2,CC3} in existing structures. In Vn+4, a structural
instance is subtracted from the class.

Clone genealogies can be categorized according to evolu-
tion patterns such as consistent/inconsistent genealogies or
according to its life time such as dead genealogy and alive
genealogy. Clone genealogies that remain in the system till
the last release are called alive genealogies. Clone genealo-
gies that disappear during software evolution are called dead
genealogies.

C. MAINTENANCE IMPLICATIONS OF STUDYING
STRUCTURAL CLONE EVOLUTION
Various studies performed on software clones suggest that
clones require proper management. Detection of code clones
in a software provides basic information (number of clone
instances, length of cloned fragments) for the developers so
that developers should be aware of the cloning in the software.
To perform any maintenance task on a clone class, developers
should know certain characteristics of a clone class e.g. pro-
gram dependencies, history of that clone class. Study of clone
evolution tells about evolutionary characteristics of clones
which help developers in taking decisions during software
evolution.

For efficient software maintenance, understanding of the
system is required to deal with ripple effects of changes. If a
developer is given a change task e.g. fixing a bug in cloned
entities, a lot of information is required to perform this task.
A developer needs to understand the change dependencies to
analyze the impact of fixing a bug on other parts of the soft-
ware. Simple clone class contains only a set of source code
fragments whereas structural clones present a broader picture
of cloning i.e. all the simple clone classes in those entities.
This view of cloning will help developers to analyze change
impact as compared to analyzing only source code fragment.
For example, in Method Clone Classes, if a developer knows
all the simple clone classes in those cloned methods, there
are more chances that all parts that can be impacted will be
detected. Evolution study of structural clones may improve
change impact analysis because it gives historical perspective
of the changing behavior of clone classes i.e. clone geneal-
ogy of an MCC reveals whether a clone class is changing
frequently or infrequently, consistently or inconsistently in
versions.

Another scenario is when addition of new feature/
functionality is required in a software. A developer will
search if similar features exist in the software. For this type of
change, developers need to understand the system at higher
level. For example, if a new feature requires defining some
new files/classes, then a developer needs to know which
methods/functions need to be declared for these classes,
which interfaces are required to be implemented, what would
be their inheritance structure. Structural clones like FCC are

VOLUME 7, 2019 58729

J. Kanwal et al.: Evolutionary Perspective of Structural Clones in Software

FIGURE 7. Proposed approach for clone genealogy analysis and extraction from software version repositories.

helpful in this type of analysis because these clones contain
multiple cloning at method level as well as they contain same
inheritance structures and same interface implementations.
Structural clones of collaborating files/classes are also help-
ful in this case because they reveal cloning at higher level
which gives information about clone files as well as execution
flow among the clone entities. To take advantage of existing
structural clones for reuse, it is necessary that the clones
should be stable software entities (e.g. cloned files/classes).
Evolutionary characteristics of clones such as clone lifetime
help developers in estimating the stability of clone classes
e.g. long lived clones are more reliable for reuse.

To improve the design of software systems, various refac-
toring or restructuring techniques are applied during software
lifetime. Developers need to know which parts of the system
require such improvements. Study of structural clone evolu-
tion helps in identifying those parts and taking appropriate
decisions. For example, there are some clone classes that
exist in a software for a long time, then developer may not
be interested in refactoring them for removal or may give a
low priority to their refactoring. Moreover, clone evolution
study reveals interesting characteristics of clones e.g. clones
that are regularly and consistently updated by developers but
remain in the system for many versions. This information
helps developers in tracking/managing them in future.

V. STUDY DESIGN
In this section, we describe the detailed setup for our study.
Figure 7 shows the process of clone genealogy extraction
from version repositories. In the first step, we selected subject
systems from GIT repository [32]. To select subject systems,
the first criterion was the availability of multiple versions,
so that an evolutionary study can be performed on them. Sec-
ondly, they should be well known systems and should have
been studied previously for clone research. For our experi-
ments, we selected five Java systems i.e. JabRef, Xerces_J,
Guava, JFreeChart and JHotDraw.

JabRef is a reference management system that provides
a graphical interface to BibTEX and BibLATEX style used
by the LATEX typesetting system [33]. Xerces_J is Apache’s

TABLE 3. Studied software systems showing release information and size
of systems.

collection of software libraries for the purpose of parsing,
validating and manipulating XML schema. Xerces_J uses
various standard APIs for XML parsing [34]. Guava is basi-
cally a set of Java libraries commonly used by Google devel-
opers and suit of core utility functions which provides fea-
tures like functional programming, graphs and caching [35].
JFreeChart is an open source Java chart library that provides
user to make high quality charts for their applications [36].
JHotDraw is a Java framework for technical and structured
drawing editors. It is very well known for software design
patterns [32]. We selected some of the latest versions of
these systems. Statistics of these software systems are given
in Table 3.

A. CLONE DETECTION
To study clones in versions, we need to detect code clones
for each version of software. For this purpose, we used the
tool CloneMiner [8]. CloneMiner is a Java plug-in and detects
simple clones and structural clones of a system. In our exper-
iments, we set the minimum clone threshold of 30 tokens for
simple clone detection because in literature it is shown that
too small threshold value of tokens detects a large number
of clones which may not be meaningful for maintenance
and too large threshold value of tokens will detect a small
number of clones and some important clones may be missed
so token size of 30 token is more suitable for token based

58730 VOLUME 7, 2019

J. Kanwal et al.: Evolutionary Perspective of Structural Clones in Software

TABLE 4. Statistics of simple clones and structural clones in subject systems.

clone detection tools [8], [11]. No other customization were
used for Clone Miner. CloneMiner detects a variety of struc-
tural clones discussed in Section 3.2. To extract these clones
from CloneMiner tool, we used Navicat Premium tool [37]
because CloneMiner visualizes clones in a GUI. Using Nav-
icat, we accessed the database of CloneMiner and store the
required clones in Excel files. CloneMiner detect structural
clones at different levels such as method level (MCC), file
level (FCC) and directory level (DCC). We selected FCC [8]
to study evolution of structural clones because FCC represent
structural clones of reasonable size and are more interesting
for a maintainer as compared to MCC and DCC. MCC are
the most basic type of structural clones and are smaller in
size and less significant as compare to FCC. DCC represent
much bigger clones and in some software systems, number
of DCC may be very small. As we discussed in Section 3.2,
FCC represent recurring patterns of Method Clone Struc-
tures (MCS) in files that fulfill a defined threshold of MCS.
In this study, we selected all FCCs that contain at least one
pair of MCC, for our analysis. MCC1 = {mc11,mc12,mc13}
and MCC2 = {mc21,mc22,mc23}, MCS will be as follows:
MCS1 = (mc11,mc21), MCS2 = (mc12,mc22), MCS3 =
(mc13,mc23) where FCC = {MCS1,MCS2,MCS3} and its
general notation will be FCC = {G1,G2,G3}.

B. CHANGES EXTRACTION
Changes occurring in source code are stored in software
version repositories such as GIT repository. We developed
a web crawler in Java that extracts co-change information
from the source repository. To analyze the evolution of clones,
we extract the changes at release level because it is shown in
previous studies that at revision level, users perform cloning
on experimental basis so most of the clones at revision level
are temporary clones [12].

C. CLONE GENEALOGY EXTRACTION
To study clone evolution, we need to track clone classes
across various versions of the software. For this pur-
pose, we developed an application in C#. Our application
takes information of clone classes for various versions and
co-change information which contains source code entities
that are changed in the same change commit.

In a clone genealogy a clone class of a particular version
is connected with all corresponding clone classes in the next
version. To connect the clone classes of consecutive versions,
we implemented the structural clone evolution patterns dis-
cussed in Section III. Based on these mappings, structural
clone genealogies are extracted from multiple versions of
software.

Various techniques have been used in the literature to map
clone classes of different versions to each other [12], [13].
We used an approach based on CRD (Clone Region
Description) [38]. CRD approach has been used in studying
clone evolution of simple clones. In this approach, instead of
source code, region of code fragment is mapped. Identifying
the region of a simple clone at fragment level is difficult.
But in our case, as we considered method level simple clones
(detected by CloneMiner), identifying the region of clones
is straightforward. CloneMiner reports the clone class as a
group of methods, their file names and full path of the file.
CRD of a clone class can be represented as ‘method a()
of file f in package p’. Where there is any ambiguity such
as for one clone class in a particular version there are two
clone classes in a subsequent version that are equally likely,
we selected (included) both of them in a genealogy. If file of
a particular clone instance is removed or renamed, location
of that clone instance will be lost but as we applied the best
match strategy (all clone instances will be matched with the
instances of clone class in next version), a renamed or moved
file will not result in the pattern of dead clones rather it will
be considered as a shift pattern where one clone instance is
removed and another is added.

VI. EXPERIMENTAL RESULTS AND ANALYSIS
In this section, we discuss the results of structural clone evolu-
tion. We first analyze the clone statistics of five Java software
systems. Table 4 shows the number of clone classes, average
number of clone instances and their standard deviation in a
clone class for simple clones and structural clones of five Java
systems. These averages are calculated in different versions
of these systems. Table 4 shows the averages in min - max
format which represent minimum and maximum averages in
different versions e.g. 95 - 156 represents that the minimum
average number of simple clone classes is 95 and the maxi-
mum average number of simple clone classes is 156 in studied
versions of Jabref.

VOLUME 7, 2019 58731

J. Kanwal et al.: Evolutionary Perspective of Structural Clones in Software

TABLE 5. Characteristics of clone genealogies for simple clones and structural clones.

Average number of instances in simple clones and struc-
tural clones remains almost same in different versions.
In Jabref, JFreeChart and JHotDraw, standard deviation of
structural clones is much less than simple clones. For exam-
ple, in JFreeChart, standard deviation of structural clones is
1.5 - 2.8 which is less than simple clones (5.5 in all versions).
This indicates that structural clones classes are more stable
than simple clones in terms of clone class size.

To perform any study on structural clones, it is very
important to know about the simple clone coverage (i.e. how
many simple clones are a part of structural clones) by struc-
tural clones in the studied systems. In the literature, it is
reported that 54% of simple clones are represented in struc-
tural clones [11]. In our subject systems, 50%-60% simple
clones are present in structural clones. This indicates that a
large number of simple clones exist in some structural form
i.e. recurring patterns of simple clones in files/directories.
Presence of such a large number of simple clones in structural
clones emphasizes on the need of structural clones to be
studied for better software maintenance and evolution.

We also analyzed the size of structural clone classes
i.e. how many simple clones are contained in a structural
clone class. Table 4 shows the number of simple clones in
the largest structural clone class for five software systems
e.g. in Guava, largest structural clone class contains 81 simple
clones. Average number of simple clone instances in struc-
tural clone classes is also shown in Table 4. Average size of
structural clone classes varies for different subject systems
such as the minimum average size is 5 simple clones for
Jabref and JHotDraw and maximum average size is 19 for
Guava.
RQ1: What are the characteristics of structural clones

compared to simple clones in terms of clone lifetime?
Motivation: Lifetime of clones is a very important mea-

sure for identifying the relevance of clone types for clone
management tasks. Clones that remain in the software for a
very long time require different management as compared
to those which disappear very quickly [22]. In the case of
structural clones, long-lived clones may indicate intentional
clones i.e. the clones are a deliberate outcome of a certain
design decision and developers are aware of their presence in
the software.
Results: Table 5 shows the number and size of clone

genealogies in simple clones and structural clones for

the test systems. Clones genealogies reduce the unrelated
clone classes (shown in Table 4) into clone genealogies
e.g. in JabRef, 1414 simple clone classes reduce to 339 clone
genealogies and 106 structural clone classes reduce to
31 clone genealogies. Average clone size of genealogies in
JFreeChart and Guava is greater than other systems for struc-
tural clones whereas it is greater in Jabref and JFreeChart for
simple clones. Size of alive clone genealogies is more than
dead clone genealogies for all subject systems. This indicates
that smaller clone classes are more vulnerable to changes
i.e. they disappear during software evolution whereas bigger
clone classes sustain in the system for a long time.

Table 5 also shows the lifetime of alive genealogies and
dead genealogies in simple and structural clones. In case of
alive genealogies, there is very little difference (less than one
version) between the lifetime of simple clones and structural
clones in all subject systems. Lifetime of alive genealogies
is substantially greater than lifetime of dead genealogies in
both types of clones for all studied software systems. This
finding is similar to [13], [22] in which clone genealogies of
simple clones are analyzed. In our test systems, some alive
genealogies remain in the system throughout all the studied
versions. Life of dead genealogies is less than five versions in
both structural clones and simple clones. It means that dead
clone genealogies represent short lived (unsustainable) clones
in the software and are removed from the systems earlier.

Number/percentage of alive genealogies is greater than
percentage of dead genealogies in Xerces_J, JFreeChart and
JHotDraw in both simple and structural clones whereas in
other two systems, these are almost same for both types of
clones. However, in most cases, percentage of dead genealo-
gies of structural clones is greater than that of simple clones
which indicates that structural clones are removed/refactored
more often than simple clones in the studied systems.
Summary: Lifetime analysis of clone genealogies shows

that there is no major difference in lifetime of simple clones
and structural clones. However, some common patterns are
observed for clone lifetime such as alive clone genealogies
are generally greater in number, bigger in size and more
sustainable than dead clone genealogies. It indicates that
developers are aware about presence of alive genealogies in
the system and are managing them regularly during software
evolution. This information can help developers in software
reuse such that developers can reuse long lived genealogies

58732 VOLUME 7, 2019

J. Kanwal et al.: Evolutionary Perspective of Structural Clones in Software

with more assurity because these clones have been managed
by developers for many versions. Moreover, for structural
clones, alive clone genealogies represent persistent design
information which also helps in understanding system design
decisions. Lifetime of dead genealogies indicates that dead
clone genealogies represent unsustainable clones which are
removed from the system earlier. Moreover, dead clone
genealogies have a smaller clone class size which indicates
that smaller clones are more vulnerable to changes and disap-
pear earlier in software lifetime. This information is also help-
ful for developers in prioritizing their work i.e. a developer
should give priority (e.g. deciding about refactoring) to clones
whose lifetime is less than five versions (average lifetime of
dead genealogies in all subject systems).
RQ2: How consistently and frequently structural clones

change as compared to simple clones?
Motivation: Frequency of change indicates the relation of

clones to cost of maintenance i.e. a change in one clone
instance may require changing other instances [22], [39].
Developers are more interested in frequently changing clones
because any inconsistent change in themmay increase cost of
maintenance substantially.
Approach: To analyze the frequency of (in)consistent

changes in simple clones and structural clones, we observed
the changes at level of clone class because the purpose of
our analysis is to investigate whether developers maintain
clone instances of a clone class simultaneously or not. In the
case of structural clones, a clone instance does not represent
a code fragment but a group of code fragments (structural
instance). We observed the changes in structural clones in
two ways: a change in number of structural instances, and
change in size of structural instances (simple clone instances
added/deleted in structures). To analyze the consistent and
inconsistent changes in structural clones, we also follow the
same approach. For structural clones, a consistent change
means that all simple clone instances in each structural
instance of a structural clone class are changed in same
change commit and remain clones of each other in the next
version, thus preserving co-change similarity. An inconsis-
tent change means that some simple clone instances in any
structural instance of a structural clone class are changed in
same change commit but some remain unchanged or they are
changed in later commits or versions.
Results: Our results show that changes in structural clones

are less frequent and more inconsistent than simple clones
as shown in Figure 8. Low frequency of changes in struc-
tural clones indicates that structural clones incur less cost
of maintenance than simple clones. As the size of structural
clones is greater than simple clones, a high frequency means
a considerable increase in maintenance cost. Low change
frequency is a positive indicator with respect to maintenance
cost.

The analysis of inconsistent changes shows that there are
more inconsistent changes than consistent ones in simple
clones. In structural clones, all the changes are inconsistent.
The reason may be the larger size of structural clone classes

FIGURE 8. Changes in simple clones and structural clones.

i.e. in a class of ten clones (average coverage of simple clones
in structural clone classes in our studied systems), there is
less chance that all of them are changed in the same change
commit. In previous clone evolution studies, it is observed
that small sized clones are changed consistently than larger
clones. For example, in a recent clone evolution study on
micro clones revealed that consistent changes in micro clones
are significantly greater than regular clones (as discussed
in Section 2 also) [25]. Another observation is reported
in [13], [22] that Type 2 and Type 3 clones are changed
more inconsistently than Type1 clones. It is discussed in
literature [40], inconsistent changes in code clones can nega-
tively impact software quality because an inconsistent change
may introduce bugs in software and it may incur additional
cost of maintenance.

Analysis of inconsistently changing clone classes shows
that in most cases, proportion of changed clone instances is
less than non-changing clone instances in a structural clone
class in all the five Java systems. For example, if there are
eight instances in a structural clone class, only one or two
instances are changed whereas others remain unchanged.
In JFreeChart, all changes in structural clones are inconsistent
(19% of total structural clone classes) but the ratio of clone
instances of these classes is less than 25% of total instances.

There may be different reasons of inconsistent changes
in structural clones. Structural clones are groups of differ-
ent simple clone classes which are grouped together based
on cloning patterns in software. As structural clones con-
sist of different simple clone classes which have different
code implementations, a change in one clone class may
not be required in other clone classes. Another reason of
inconsistent changes in structural clones may be the lack of
tool support for structural clones. As there is no industrial
level tool available for tracking structural clones in software,
developers may not be aware of the presence of structural
clones in a system and thus may make inconsistent changes.
In case of structural clones, inconsistent changes may not be
harmful for software quality (i.e. may not introduce bugs)
but they may result in information loss of software design
similarity. As structural clones help in understanding soft-
ware design, loss of a structural instance may be harmful in

VOLUME 7, 2019 58733

J. Kanwal et al.: Evolutionary Perspective of Structural Clones in Software

FIGURE 9. Examples of evolution pattern (a) Subtract pattern and (b) Add pattern.

software understanding. A tool for structural clone manage-
ment can help inmakingmore conscious changes in structural
clones.
Summary: Our results show that changes in both simple

clones and structural clones are mostly inconsistent. There
may be different reasons of inconsistent changes. For exam-
ple, developers are not aware about the presence of clones
in the system and they make the change only on the clone
instance that is involved in the current maintenance task and
leave others. These results help in deciding about managing
clones such as consistently changing clones are more suitable
candidates for refactoring whereas inconsistently changing
clones need to be tracked to assist developers in making
further required changes in clones during evolution. Some
studies show that inconsistent changes may not necessar-
ily introduce bugs or impact the software negatively [30].
In some cases, clones need to be evolve differently to meet the
new requirements. To understand the reason of inconsistent
changes in structural clones, we investigate them manually in
our next research question (RQ3).
RQ3: How structural clone classes change between the

versions in evolving software?
Motivation: In depth analysis of changes in structural

clones in versions tells how structural clones are actually
changed during software evolution. An analysis of reasons
of changes in structural clones will help in their better man-
agement.
Approach:To answer this question, we analyze how a clone

class changes between consecutive versions e.g. what type
of evolution pattern is frequently occurring in a clone class

during evolution. We explore the actual source code changes
that made the evolution pattern occur. In the following we
will discuss some examples to understand structural clone
evolution.
Examples: In case of structural clones, a clone instance

represents a group of simple clone instances belonging to
different simple clone classes. In Figure 9(a), a structural
class contains three structural clone instances comprised of
instances of different simple clone classes. To illustrate exam-
ples of evolution patterns, we define the following parameters
for a structural clone instance.

Struct_ins_id, clone_ins_id, method_name, file_name,
where struct_ins_id denotes a structural instance, clone_
ins_id denotes simple clone instance which is part of the
structural clone instance, method_name, denotes name of
the method where simple clone instance resides, file_name
denotes name of the file where the method is declared.

Figure 9(a) illustrates an example of subtract pattern.
There are three structural instances S1, S2, S3 in Ver-
sion 1.0.12 of JFreeChart. In these instances three simi-
lar clones C1,C2,C3 are repeatedly occurring in methods
of three files (DefaultIntervalXYDataset.java, DefaultXY-
Dataset.java, and DefaultXYZDataset.java.). According to
parameters, first instance of this structural clone class can
be defined as follows: S1, C1, equals(), DefaultIntervalXY-
Dataset.java

In next version, S3 is subtracted from the structural clone
class. To understand the reason of this evolution pattern (sub-
traction of a structure), we analyzed the source code of both
versions. Analysis of a subtract pattern shows that clones of

58734 VOLUME 7, 2019

J. Kanwal et al.: Evolutionary Perspective of Structural Clones in Software

TABLE 6. Clone evolution patterns for simple and structural clones in versions of subject systems.

these files are similar in functionality but dimension points
of charts are a little different in all the three files. In Ver-
sion 1.0.13, more checks are applied in equals() method of
DefaultXYZDataset.java and DefaultIntervalXYDataset.java
but DefaultXYDataset.java remained unchanged. That’s why
it does not remain a part of structural clone in next version.
An inconsistent change in one simple clone instance is the
reason of this subtraction from the structural clone class.

Some other examples of inconsistent changes show that
sometimes the reason of an inconsistent change is the cor-
rection of an error in implementation. For example, in another
structural clone containing multiple instances of equals meth-
ods in different files, the equals() methods are inconsistently
changed to remove some implementation anomalies. In [41],
Rupakhet et al. also discussed the implementation anomalies
of equals() method in Java applications. These examples
indicate that with time, clones may become more correct and
reliable to be reused.

Another example is of an Add pattern shown in Fig 8 (b).
In this example, it can be seen how an add pattern changes
the structural clone class. This pattern represents two types
of changes on a structural clone class as discussed in
Section 3 i.e. addition of a structural instance and addition
of simple clones in existing structures. In the following we
will discuss an example of both cases.

Figure 9(b) illustrates an example of Add pattern where a
structural clone class consists of two structural instances S1,
S2 in Version 7.1 of JHotDraw. In next version, S3 is added in
the structural clone class. Source code analysis of both ver-
sions indicates that clones entities of newly added structure
i.e. show() and updateOpenRecentMenu(), methods of file
DefaultMDIApplication.java already exist in the Version 7.1.
It is similar to the methods of other two files according to
functionality but different in implementation. To show draw-
ings on panels it uses JFrames whereas other two methods
are implemented through JInternalFrame. In next version,
developer changed the implementation of show() method of
DefaultMDIApplication.java and this method becomes part
of the clone class. Analysis of other examples of change
patterns reveal that two reasons are commonly observed
for newly added structures. Methods already exist in pre-
vious versions but are not similar enough to become the
part of clone class. Some code changes in the next ver-
sion make addition of new clone pairs in the existing clone
structures. This shows that with time, more simple clones

classes become a part of existing structural clones in con-
secutive versions. In other cases, a new method is added in
a file and it becomes a part of clone class because the same
method(s) already exists in the other file(s). Addition of new
method makes another simple clone class part of the existing
structures.
Summary: Our analysis reveals that independent evolution

of clone instances is the main reason of inconsistent changes
in structural clone classes. In most cases, when new func-
tionality is added, developers write code without following
the software design, or standard implementations. But in next
versions, code is refined or refactored which make changes
in clones. This analysis helps developers in understanding
evolution from the perspective of system design such as code
that does not follow the design may need to be updated
in future to remove the inconsistency. Further analysis of
evolution patterns revealed some interesting situations where
methods with similar functionality already exist in previous
versions but their similarity with other clone methods is less
than the defined similarity threshold set for clone detection
tool. That is why they did not become the part of clone class
in the current version. Source code changes in next version
make it a part of existing structural clone class.
RQ4: How evolution of structural clones differs from the

evolution of simple clones between the versions?
Motivation: Study of clone evolution patterns between the

versions will help developers in understanding the kind of
changes occurring in software clones during their evolution.
Finding trends in the clone evolution patterns will help in
software understanding and will be a useful guide in devising
better clone management systems.
Approach: To investigate how structural clones change in

versions, we analyzed the structural clone evolution patterns
as defined in Section 3. Evolution patterns of simple clones
are also analyzed for comparison with structural clones for all
the studied versions.
Results: Table 6 shows the percentage of evolution pat-

terns in simple and structural clones in different versions for
five Java systems. Most frequent pattern is ‘Same pattern’
i.e. more than 50% clones remain same between the versions
for all subject systems for both simple and structural clones.
Second most frequent pattern is ‘New pattern’ which shows
that new clone classes have been added in versions. Analysis
of ‘New pattern’ in all studied versions of five Java sys-
tems revealed that new clones have been added consistently

VOLUME 7, 2019 58735

J. Kanwal et al.: Evolutionary Perspective of Structural Clones in Software

FIGURE 10. Evolution patterns of simple and structural clones in various versions of five Java systems.

between the versions. Frequency of ‘New pattern’ is almost
same in simple and structural clones. In JHotDraw, ‘New
pattern’ is more frequent (39% in simple clones and 31% in
structural clones) than other four systems (maximum 20%
in JabRef). Analysis of source code and change data of
JHotDraw showed that JHotDraw 7.1, is a major departure
from previous versions of JHotDraw because only the basic
architecture remains same whereas the API and almost every
part of the implementation have been reworked to take advan-
tage of the Java SE 6 platform [32]. This is the reason of
significant increase in number of new clones in JHotDraw.
Other evolution patterns are Add, subtract, shift and Dead
patterns. Frequencies of these patterns range from 1% to 10%
in both simple clones and structural clones which represent
these are relatively uncommon patterns. These patterns are
more frequent in structural clones than simple clones. These
patterns are important to analyze in case of structural clones
because they represent change in system design e.g. ‘Add
pattern’ shows that more code entities are becoming part of
existing structural clones. This may indicate that an existing
design is becoming more stable.

We also analyzed evolution patterns in versions. Figure 10
shows evolution patterns in different versions of five Java
systems for simple clones. In analysis of evolution patterns
between the versions, it is observed that all evolution pat-
terns are following a zigzag pattern. It means that number
of evolution patterns are high in one or two versions and
then they significantly decreased in next few versions (again
one or two mostly). After that they again increased in next
version. For example, in JFreeChart, number of ‘add patterns’
are high (11) in 2nd version, and then in next three versions,
they remain 2 to 6 and then in the 6th version number of
‘add pattern’ are high (12) again as shown in Fig. 9. similar
situation can be observed in Xerces_J also. Changes in clone
classes (e.g. 10 add patterns are observed) in few versions,

and then in next few versions, the number of changes is very
less.

In Xerces_J, number of ‘add patterns’, subtract and shift
patterns are high in 3rd version (version 2.6.0) but in in
next two versions they remain 1 to 3 and then again high in
next version (version 2.7.0). One reason is that these are the
main releases of Xerces_J.Major changes such as compliance
of XercesJ with most recent APIs are carried out in major
versions. For example, in V2.7.0, a complete implementation
of the parser related portions of JAXP 1.3 is incorporated
and compliance of Xerces with other APIs e.g. SAX 2.0.2 is
provided. A new package ‘org.apache.xerces.xs.datatypes’
has been added to Xerces’ XML Schema API that provides a
full schema data type to object mapping.

We also analyzed the clone evolution patterns system wise
as shown in Figure 11. All systems show similar trends
e.g. number of ‘same pattern’ and new pattern are generally
greater in all the systems. JFreeChart and JHotDraw show a
different behavior in some cases. In JFreeChart, number of
‘New pattern’ is less than other systems. Analysis of release
history of JFreeChart shows that these are regular releases.
New features have been added in the releases but new clone
classes are less. JHotDraw shows a different behavior than
other systems because ‘New pattern’ and ‘Same pattern’
show a high peak in version 7.1 and 7.2 (version 4 and
5 according to Figure) respectively. As discussed above,
changes are applied in all parts of JHotDraw 7.1 to take
advantage of the Java SE 6 platform. Out of 44 clone classes
in version 6.0, only two simple clone classes remain same
whereas for structural clones, no clone class remains same.
In next version, there is significant increase in number of
clones for other patterns e.g. ‘same pattern’ and ‘add pat-
tern’ are significantly increased. A number of new clones
are introduced in 7.2 also which indicates that the impact
of changes made in previous version has been continued in

58736 VOLUME 7, 2019

J. Kanwal et al.: Evolutionary Perspective of Structural Clones in Software

FIGURE 11. System wise trend of clone evolution patterns in versions of five Java systems.

next versions. In version 7.3, software seems getting stable
as most clones remain same while a few ‘add’ and ‘subtract
pattern’ is observed. This also verified the pattern that even
after major changes are applied in software, software clones
gets stable in a few releases.

Another different behavior is observed in JFreeChart,
where number of ‘New pattern’ is less than other systems.
There are no visible peaks in ‘New pattern’ as compared
to other systems. Analysis of release history of JFreeChart
shows that major changes occurred in some releases. New
features have been added in the releases but new clone classes
are less. We analyzed the ‘New pattern’ in JFreeChart and
other systems to find the reasons of new clones being added
in the system in subsequent versions. Usually new clone
classes emerge in next version as a result of addition of similar
functionality. For example, amethodwith particular function-
ality already exists in a version, a new method with similar
functionality is added in next version, which introduces new
clone classes. In JFreechart, all releases are regular releases
with minor improvements and bug fixes. Addition of new
functionality is less as compared to other systems.
Summary: Analysis of evolution patterns of simple clones

and structural clones in versions reveals that all evolution
patterns are following similar trends in all subject systems
i.e. number of evolution patterns are greater in one or two
versions and then they significantly decreased in next few
versions and henceforth they again increased. In cases, where
major changes occur in a version (e.g. in JHotDraw 7.1),
number of evolution patterns increased significantly but after
one or two releases number of evolution patterns decreases.
This evolution trend shows that major releases make major
changes in software clones but clones get stable in a few
releases. Analysis of evolution patterns show that major
changes in clones occur in major releases i.e. new clone
classes are added, clone instances are added and deleted
in existing clone classes. In major releases, new features

have been implemented, existing implementations have been
improved and major and minor bugs have been fixed. This
analysis helps developers in understanding the evolution
trends in clones such as with the addition of new features
in major releases, software stability may deteriorate and to
counter this, a good understanding of software cloning and
an intelligent clone management is required.

VII. CONCLUSION
In this paper, we presented an empirical study on the evo-
lution of structural clones in different versions of five Java
systems.We presented a formal definition of structural clones
and their evolution patterns. Based on these patterns we
extracted structural clone genealogies to study evolution of
structural clones. We also compared the evolutionary char-
acteristics of structural clones with simple clones to know
whether design level similarities evolve differently than tex-
tual similarities. Our analysis on five Java systems shows
that understanding structural clone evolution is helpful for
software maintenance tasks.

Study of software clones in versions gives quantitative
facts that lead to qualitative inferences/implications about the
evolutionary behavior of clones. These implications will be
helpful for maintainer in clone management during software
evolution. For example, lifetime analysis of clone genealogies
in our studied systems showed that life of alive clone genealo-
gies is greater than dead clone genealogies for both simple
clones and structural clones. This implies that alive clone
genealogies represent sustainable clones and developers are
managing them regularly during evolution of the software
systems. These findings will help developers in prioritizing
their work for future software maintenance such as attending
to long lived clones more thoroughly than short lived clones.

Inconsistent change in structural clones indicates that
developers may not be aware of the presence of structural
clones in the system. One reason may be that structural

VOLUME 7, 2019 58737

J. Kanwal et al.: Evolutionary Perspective of Structural Clones in Software

clones represent design level similarities and managing them
requires a high level understanding of the system. As there
is less support of tools to understand high level cloning in
the system, developers may not be able to manage structural
clones properly. As structural clones evolve inconsistently,
are bigger in size and encompass some design similarity
in software, they need more intelligent clone management
systems. We believe that our study on structural clone evo-
lution will help in devising tools to support proper manage-
ment of structural clones. In future, we will include more
subject systems of other languages such as C++ to verify
the generalizability of our findings regarding structural clone
evolution.

REFERENCES
[1] C. K. Roy, M. F. Zibran, and R. Koschke, ‘‘The vision of software clone

management: Past, present, and future,’’ in Proc. Softw. Evol. Week-IEEE
Conf. Softw. Maintenance, Reeng., Reverse Eng., Feb. 2014, pp. 18–33.

[2] S. Jarzabek and S. Li, ‘‘Unifying clones with a generative programming
technique: A case study,’’ J. Softw. Maintenance Evol., Res. Pract., vol. 18,
no. 4, pp. 267–292, 2006.

[3] C. J. Kapser andM.W.Godfrey, ‘‘‘Cloning considered harmful’ considered
harmful: Patterns of cloning in software,’’ Empirical Softw. Eng., vol. 13,
no. 6, pp. 645–692, 2008.

[4] C. K. Roy and J. R. Cordy, ‘‘A survey on software clone detection
research,’’ Queens School Comput., vol. 541, no. 115, pp. 64–68, 2007.

[5] S. Rahman and C. K. Roy, ‘‘A change-type based empirical study on the
stability of cloned code,’’ in Proc. 14th Int. Work. Conf. Source Code Anal.
Manipulation SCAM, 2014, pp. 31–40.

[6] M. Zibran, ‘‘Management aspects of software clone detection and
analysis,’’ Ph.D. dissertation, Dept. Comput. Sci., Univ. Saskatchewan,
Saskatoon, SK, Canada, 2014.

[7] N. Göde, ‘‘Clone removal: Fact or fiction?’’ in Proc. 4th Int. Workshop
Softw. Clones, 2010, pp. 33–40.

[8] H. A. Basit and S. Jarzabek, ‘‘A data mining approach for detecting
higher-level clones in software,’’ IEEE Trans. Softw. Eng., vol. 35, no. 4,
pp. 497–514, Jul. 2009.

[9] H. A. Basit and S. Jarzabek, ‘‘Detecting higher-level similarity patterns
in programs,’’ ACM Sigsoft Softw. Eng. Notes, vol. 30, pp. 156–165,
Sep. 2005.

[10] H. A. Basit and S. Jarzabek, ‘‘A case for structural clones,’’ in Proc. Int.
Workshop Softw. Clones, 2009, pp. 7–11.

[11] H. A. Basit, U. Ali, S. Haque, and S. Jarzabek, ‘‘Things structural clones
tell that simple clones don’t,’’ in Proc. 28th Int. Conf. Softw. Maintenance,
2012, pp. 275–284.

[12] M. Kim, V. Sazawal, D. Notkin, and G. Murphy, ‘‘An empirical study
of code clone genealogies,’’ ACM SIGSOFT Softw. Eng. Notes, vol. 30,
pp. 187–196, Sep. 2005.

[13] S. Bazrafshan, ‘‘Evolution of near-miss clones,’’ in Proc. 12th Int. Work.
Conf. Source Code Anal. Manipulation, 2012, pp. 74–83.

[14] L. Aversano, L. Cerulo, and M. Di Penta, ‘‘How clones are maintained:
An empirical study,’’ in Proc. 11th Eur. Conf. Softw. Maintenance Reeng.,
2007, pp. 81–90.

[15] P. Jablonski and D. Hou, ‘‘CReN: A tool for tracking copy-and-paste code
clones and renaming identifiers consistently in the IDE,’’ inProc. OOPSLA
Workshop Eclipse Technol. Exchange, 2007, pp. 16–20.

[16] F. Jacob, D. Hou, and P. Jablonski, ‘‘Actively comparing clones inside the
code editor,’’ in Proc. 4th Int. Workshop Softw. Clones, 2010, pp. 9–16.

[17] D. Hou, F. Jacob, and P. Jablonski, ‘‘Exploring the design space of proac-
tive tool support for copy-and-paste programming,’’ in Proc. Conf. Center
Adv. Stud. Collaborative Res., 2009, pp. 188–202.

[18] D. Hou, P. Jablonski, and F. Jacob, ‘‘CnP: Towards an environment for the
proactive management of copy-and-paste programming,’’ in Proc. 17th Int.
Conf. Program Comprehension, 2009, pp. 238–242.

[19] J. Kanwal, H. A. Basit, and O. Maqbool, ‘‘Structural clones: An evolution
perspective,’’ in Proc. 12th Int. Workshop Softw. Clones, 2018, pp. 9–15.

[20] R. Koschke, ‘‘Survey of research on software clones,’’ in Proc. Dagstuhl
Seminar. Wadern, Germany: Schloss Dagstuhl-Leibniz-Zentrum für Infor-
matik, 2007, pp. 1–24.

[21] J. R. Pate, R. Tairas, and N. A. Kraft, ‘‘Clone evolution: A systematic
review,’’ J. Softw., Evol. Process, vol. 25, no. 3, pp. 261–283, 2013.

[22] R. Saha, C. Roy, K. A. Schneider, and D. E. Perry, ‘‘Understanding the
evolution of type-3 clones: An exploratory study,’’ in Proc. 10th Work.
Conf. Mining Softw. Repositories, 2013, pp. 139–148.

[23] M.Mondal, C. K. Roy, andK. A. Schneider, ‘‘An insight into the dispersion
of changes in cloned and non-cloned code: A genealogy based empirical
study,’’ Sci. Comput. Program., vol. 95, pp. 445–468, Dec. 2014.

[24] M. Mondal, C. K. Roy, and K. A. Schneider, ‘‘Bug-proneness and late
propagation tendency of code clones: A comparative study on different
clone types,’’ J. Syst. Softw., vol. 144, pp. 41–59, Oct. 2018.

[25] M. Mondai, C. K. Roy, and K. A. Schneider, ‘‘Micro-clones in evolv-
ing software,’’ in Proc. IEEE 25th Int. Conf. Softw. Anal., Evol. Reeng.
(SANER), Mar. 2018, pp. 50–60.

[26] F. Zhang, S.-C. Khoo, andX. Su, ‘‘Predicting change consistency in a clone
group,’’ J. Syst. Softw., vol. 134, pp. 105–119, Dec. 2017.

[27] M. Mondal, S. Rahman, C. K. Roy, and K. A. Schneider, ‘‘Is cloned code
really stable?’’ Empirical Softw. Eng., vol. 23, no. 2, pp. 693–770, 2018.

[28] W. Qian, X. Peng, Z. Xing, S. Jarzabek, and W. Zhao, ‘‘Mining logical
clones in software: Revealing high-level business and programming rules,’’
in Proc. 29th Int. Conf. Softw. Maintenance ICSM, 2013, pp. 40–49.

[29] Y. Lin et al., ‘‘Clonepedia: Summarizing code clones by common syntactic
context for software maintenance,’’ in Proc. Int. Conf. Softw. Maintenance
Evol., 2014, pp. 341–350.

[30] J. Krinke, ‘‘A study of consistent and inconsistent changes to code clones,’’
in Proc. 14th Work. Conf. Reverse Eng., 2007, pp. 170–178.

[31] C. K. Roy and J. R. Cordy, ‘‘Benchmarks for software clone detection:
A ten-year retrospective,’’ in Proc. IEEE 25th Int. Conf. Softw. Anal., Evol.
Reeng. (SANER), 2018, pp. 26–37.

[32] (2018). JHotDraw. [Online]. Available: http://www.jhotdraw.org//
[33] (2018). JabRef. [Online]. Available: http://www.jabref.org/
[34] (2018) Xerces. [Online]. Available: http://xerces.apache.org/
[35] (2018). Guava. [Online]. Available: https://github.com/google/guava
[36] (2018). JFreeChart. [Online]. Available: http://www.jfree.org/jfreechart/
[37] (2019).Navicat. [Online]. Available: https://www.navicat.com/en/store/navicat-

premium/
[38] E. Duala-Ekoko and M. p. Robillard, ‘‘Tracking code clones in evolving

software,’’ in Proc. 29th Int. Conf. Softw. Eng., 2007, pp. 158–167.
[39] N. Bettenburg,W. Shang,W. Ibrahim, B. Adams, Y. Zou, and A. E. Hassan,

‘‘An empirical study on inconsistent changes to code clones at release
level,’’ in Proc. 16th Work. Conf. Reverse Eng., 2009, pp. 85–94.

[40] N. Bettenburg, W. Shang, W. M. Ibrahim, B. Adams, Y. Zou, and
A. E. Hassan, ‘‘An empirical study on inconsistent changes to code clones
at the release level,’’ Sci. Comput. Program., vol. 77, no. 6, pp. 760–776,
2012.

[41] C. Rupakheti and D. Hou, ‘‘An empirical study of the design and imple-
mentation of object equality in java,’’ in Proc. Conf. Center Adv. Stud.
Collaborative Res., Meeting Minds, 2008, Art. no. 9.

JAWERIA KANWAL received the M.Phil. degree
in computer science from Quaid-i-Azam Univer-
sity, Islamabad, Pakistan, in 2011, where she is
currently pursuing the Ph.D. degree in computer
science.

She was a Research Fellow with the Gradu-
ate School of Information Science and Technol-
ogy, Osaka University, Japan, in 2016. She was
a Research Fellow with the Computer Science
Department, Lahore University of Management

Sciences, Pakistan, in 2017. She has published in well reputed software
engineering conferences and journals. Her research interests include mining
software repositories to study evolutionary aspects of software systems,
clone analysis, machine learning, software maintenance and evolution, and
software refactoring.

58738 VOLUME 7, 2019

J. Kanwal et al.: Evolutionary Perspective of Structural Clones in Software

ONAIZA MAQBOOL received the Ph.D. degree
in computer science from the Lahore University of
Management Sciences, in 2006.

She was with the software industry for some
years. She is currently an Associate Profes-
sor with the Department of Computer Science,
Quaid-i-Azam University, Islamabad, Pakistan.
She has published more than 30 papers in
well-reputed journals and conferences. Her
research interests include exploring machine

learning techniques to solve software engineering problems and other
research areas.

HAMID ABDUL BASIT received the Ph.D. degree
from the National University of Singapore, where
he held a postdoctoral position. He then taught at
the Computer Science Department, Lahore Uni-
versity of Management Sciences, as a full time
Faculty Member. He is currently supervising the
development of a complete clone management
tool suite that handles both simple and struc-
tural clones. He is also a Software Engineering
Researcher and a Practitioner. He has published in

top software engineering conferences and journals. His research interests
include software maintenance, software reuse, and code recommendation
systems.

MUDDASSAR AZAM SINDHU received the
M.Sc. degree in computer science from Punjab
University, Lahore, Pakistan, in 2004, and the
Licentiate degree in engineering and the Ph.D.
degree in computer science from the Royal Insti-
tute of Technology (KTH), Stockholm, Sweden,
in 2011 and 2013, respectively.

He is currently an Assistant Professor of
computer science with Quaid-i-Azam University,
Islamabad, Pakistan. His research interests include

automatic test case generation process from both formal and informal
requirements of software, and grammatical inference of software systems
along with developing techniques and tools for analyzing/testing of safety
and security vulnerabilities in software.

VOLUME 7, 2019 58739

	INTRODUCTION
	LITERATURE SURVEY
	TOWARDS A FORMAL DEFINITION OF SOFTWARE CLONES
	SIMPLE CODE CLONES
	CLONE PAIR
	CLONE CLASS

	STRUCTURAL CLONES

	EVOLUTION OF SOFTWARE CLONES
	CLONE EVOLUTION PATTERNS
	EVOLUTION PATTERNS FOR SIMPLE CLONES
	EVOLUTION PATTERNS FOR STRUCTURAL CLONES

	CLONE GENEALOGIES
	MAINTENANCE IMPLICATIONS OF STUDYING STRUCTURAL CLONE EVOLUTION

	STUDY DESIGN
	CLONE DETECTION
	CHANGES EXTRACTION
	CLONE GENEALOGY EXTRACTION

	EXPERIMENTAL RESULTS AND ANALYSIS
	CONCLUSION
	REFERENCES
	Biographies
	JAWERIA KANWAL
	ONAIZA MAQBOOL
	HAMID ABDUL BASIT
	MUDDASSAR AZAM SINDHU

