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ABSTRACT A fast and accurate non-iterative direction-of-arrival (DOA) estimation algorithm for multiple
targets in additive white Gaussian noise is devised in this paper. The proposed estimator makes use of the
two highest magnitudes discrete Fourier transform (DFT) coefficients of the input data and two of their
associated neighboring bins, resulting in a deterministic complexity of O(N (1+ log(N ))) with N being the
number of sensors. The bias and mean squares error of the DOA estimates are analyzed. The simulation
results are presented to validate the correctness of theoretical derivation and demonstrate the superiority of
the devised estimator over several conventional DOA estimators.

INDEX TERMS Direction-of-arrival, single snapshot, interpolation, discrete Fourier transform.

I. INTRODUCTION
Direction-of-arrival (DOA) estimation can be found in
numerous areas such as single-input single-output [1],
multiple-input single-output radar/sonar range-Doppler
imaging [2] and array processing [3]–[8], which refers to
accurately finding the locations of sources using a finite
set of noisy observations in terms of either parametric or
nonparametric methodologies [9], [10]. In the former one,
the signal is assumed to be described as a known func-
tion, and no asumptions are made on the signal in the lat-
ter approach. The parametric algorithms usually allow the
derivation of the optimal estimators, but the performance
may deteriorate when the assumed signal model and actual
one are mismatched. Although the nonparametric ones may
not provide the optimum estimation performance, it can be
utilized in more applications even when there is no prior
knowledge of the signal.

Classical nonparametricmethods such as Capon [11]–[13],
multiple signal classification (MUSIC) [14], [15] and esti-
mation of signal parameters via rotation invariance tech-
niques (ESPRIT) [16] are popular solvers. However, they
involve extensive computational cost because peak searching
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is required. Amplitude and phase estimator (APES) is sug-
gested in [17] and [18], which can accurately locate multiple
sources using multiple snapshots. Although these methods
can obtain accurate DOA estimation in the case of high
signal-to-noise ratio (SNR) or numerous snapshots, their
computational complexity is very high.

To alleviate the computational complexity problem, dis-
crete Fourier transform (DFT) on noisy measurements
can be applied. Several two-step algorithms have been
suggested [19]–[21], where the coarse DOA estimates deter-
mined in the DFT step are refined in the second step by a
spectral peak interpolation method in the spectral domain.
Although the two-step approach can achieve high estimation
accuracy with low computational complexity, it has not yet
been applied to multiple-target DOA estimation. In [22],
the observed time-domain sequence is first preprocessed by
different windows, and the largest-magnitude and its neigh-
bors of the DFT coefficients of windowed data are utilized
to provide an unbiased estimation. Candan [23] proposes
an unbiased DFT interpolation method, which employs the
Taylor series expansion (TSE) on the largest-magnitude DFT
coefficient and the neighbor bins. As the approximation of
TSE is utilized, it cannot be extended to the multiple-target
DOA estimation directly. Furthermore, [24] suggests an iter-
ative interpolation method, which uses all DFT coefficients.

55620
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0001-9368-5958
https://orcid.org/0000-0002-0751-8959
https://orcid.org/0000-0001-8396-7898


Y. Chen et al.: Non-Iterative DOA Estimation Using DFT Interpolation

FIGURE 1. Illustration of uniform linear array.

For existing interpolation methods, they are devised
according to the single-target model and thus cannot be
applied directly to multiple-target scenario. A DOA estima-
tor known as non-iterative fast method (NIFM) is devised
in this paper, which can estimate the DOAs with low and
deterministic complexity. A two-target scenario is taken as an
illustration, which can be applied in the area of the long linear
microphone array [25]. Our method is based on the two-step
approach provided in [26], where the fine-tune procedure is
realized by interpolation. A new DFT interpolation criterion
is developed in Section II for multiple-target case, such that
the proposed method only requires the two spectral peaks
and two of their neighboring bins to provide accurate DOA
estimates. The two-target scenario is taken as an example
to illustrate the algorithm. The performance of the NIFM
is analyzed in Section III by the application of TSE on the
DFT spectral interpolation equations derived in Section II.
Theoretical analysis of the estimation bias and mean squares
error (MSE) is provided. The discussion of the algorithm
computational complexity is also included. Computer sim-
ulation results are presented in Section IV, which demon-
strate the accurate estimation performance and the very low
computational complexity of the developed method when
comparedwith themethods by Jacobsen andCandan,MUSIC
and ESPRIT. Finally, conclusions are drawn in Section V.

II. PROPOSED METHOD
Without loss of generality, we consider a uniform
linear array (ULA) [27] with N well-calibrated and
identically-polarized sensors, where P uncorrelated narrow-
band source targets impinge from far field. Then the p-th
target, referred to as Ap, is taken as an illustration in Figure 1.
The observed single-snapshot data of the n-th sensor, denoted
by yn, can be modeled as:

yn =
P∑
p=1

Ape−j2πnd cos(θp)/λ + qn,

n = 0, 1, . . . , N − 1, (1)

where θp ∈ [0◦, 180◦) is the azimuth angle corresponding to
the p-th target, λ denotes the wavelength, d is the distance
between two adjacent sensors with the value of λ/2 [28] and

qn is the independent identically distributed (IID) complex
noise term following the zero-mean white Gaussian distri-
bution with unknown variance σ 2. Our task is estimating
{θp}

P
p=1 from observations {yn}

N−1
n=0 . Let $p = −π cos

(
θp
)
,

the signal model in (1) can be rewritten as

yn =
P∑
p=1

Ap exp(j$pn)+ qn. (2)

Since $p and θp are one-to-one mapping relationship,
theDOAestimation task is converted to finding {$p}

P
p=1 from

observations {yn}
N−1
n=0 .

Consider the N -DFT on {yn}
N−1
n=0 . The k-th DFT coeffi-

cient, referred to as Yk , is expressed as

Yk =
N−1∑
n=0

yn exp (−jωkn) ,

= Sk + Qk , k = 0, 1, . . . ,N − 1. (3)

The signal component is given by

Sk =
P∑
p=1

Ap exp
(
j
$p − ωk

2
(N − 1)

) sin
(
$p−ωk

2 N
)

sin
(
$l−ωk

2

) , (4)

where ωk = −π + 2πk
N and Qk denote the noise compo-

nents associated with the DFT coefficients. Let Lp (p =
1, 2, . . . , P) be the P largest-magnitude peak indices among
{Yk}

N−1
k=0 , so that the true values of$p are represented as

$p = −π +
2π (Lp + δp)

N
, p = 1, 2, . . . , P, (5)

where −0.5 ≤ δp ≤ 0.5 denote the offsets between the
index of $p from the bins at Lp, respectively. Since {Lp}Pp=1
are obtained according to DFT, the task is now converted
to estimate {δp}Pp=1 from observations {yn}

N−1
n=0 . Employ-

ing (4)–(5), the DFT coefficient Sk corresponding to m-th
(m = 1, 2, . . . , P) peak and its neighbors has the form of

SLm =
P∑
p=1

{
Ap exp

(
j
π (N − 1)

N
(Lpm + δp)

)

•
sin
(
π
(
Lpm + δp

))
sin
(
π
N

(
Lpm + δp

))} , (6)

SLm−1 =
P∑
p=1

{
Ap exp

(
j
π (N − 1)

N
(Lpm + δp + 1)

)

•
sin
(
π
(
Lpm + δp + 1

))
sin
(
π
N

(
Lpm + δp + 1

))} , (7)

SLm+1 =
P∑
p=1

{
Ap exp

(
j
π (N − 1)

N
(Lpm + δp − 1)

)

•
sin
(
π
(
Lpm + δp − 1

))
sin
(
π
N

(
Lpm + δp − 1

))} , (8)

where Lpm = Lp − Lm and • denote the scalar product oper-
ator. In the scenario of large N , with the use of the fact that
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exp (π (K + x)) sin(π (K + x)) = exp (πx) sin(πx), (6)–(8)
can be simplified as

SLm =
P∑
p=1

Ap exp
(
jπδp

)
sin
(
πδp

)
sin
(
π
N

(
Lpm + δp

)) , (9)

SLm−1 =
P∑
p=1

Ap exp
(
jπδp

)
sin
(
πδp

)
sin
(
π
N

(
Lpm + δp + 1

)) , (10)

SLm+1 =
P∑
p=1

Ap exp
(
jπδp

)
sin
(
πδp

)
sin
(
π
N

(
Lpm + δp − 1

)) . (11)

Furthermore, (9)–(11) are
P∏
`=1

sin
(π
N
(L`m+δ`)

)
Spm

=

P∑
p=1

Ap exp
(
jπδp

)
sin
(
πδp

)∏
6̀=p

sin
(π
N
(L`m + δ`)

)
,

(12)
P∏
`=1

sin
(π
N
(L`m+δ` + 1)

)
Spm−1

=

P∑
p=1

Ap exp
(
jπδp

)
sin
(
πδp

)∏
6̀=p

sin
(π
N
(L`m + δ`+1)

)
,

(13)
P∏
`=1

sin
(π
N
(L`m+δ` − 1)

)
Spm+1

=

P∑
p=1

Ap exp
(
jπδp

)
sin
(
πδp

)∏
6̀=p

sin
(π
N
(L`m + δ` − 1)

)
.

(14)

According to the product-to-sum property of trigonometric
functions, there exists three coefficients a0, a1 and a2 such
that

a1
P∏
`=1

sin
(π
N
(L`m + δ`)

)
Spm

+ a2
P∏
`=1

sin
(π
N
(L`m + δ` + 1)

)
Spm−1

= a0
P∏
`=1

sin
(π
N
(L`m + δ` − 1)

)
Spm+1. (15)

To illustrate the problem clearly, we take two tar-
gets as an illustration, where P = 2. Let L1 and L2
(0 < L1 < L2 < N − 1) be the two largest-magnitude peak
indices among {Yk}

N−1
k=0 , such that the true values of $1 and

$2 are represented as

$1 = −π +
2π (L1 + δ1)

N
, (16)

$2 = −π +
2π (L2 + δ2)

N
, (17)

where −0.5 ≤ δ1, δ2 ≤ 0.5 denote the offsets between the
true values from the bin values at L1 and L2, respectively.
As L1 and L2 are straightforwardly obtained by DFT, the esti-
mation task is converted to finding δ1 and δ2. Let4δ = δ2−δ1
and L = L2 − L1. Considering the first two terms in (3),
the DFTs on {sn}

N−1
n=0 with peaks at S$1 and S$2 are

S$1 = A1N + A2
exp

(
j
(
N−1
2N π4δ − π

N L
))

sin (π4δ)

sin
(
π
N (4δ + L)

) ,

(18)

S$2 = A2N + A1
exp

(
−j
(
N−1
2N π4δ − π

N L
))

sin (π4δ)

sin
(
π
N (4δ + L)

) .

(19)

It can be seen from (18) and (19) that S$p (p = 1, 2)
are influenced by both $1 and $2. Note that the existing
interpolation schemes with assumption of single-target model
cannot provide the satisfactory estimation performance since
they ignore this information.

In the absence of noise term Qk , the first peak and its
neighboring bins, namely, L1-th, (L1 − 1)-th and (L1 + 1)-
th DFT coefficients, are given by

YL1 =
γ1

sin
(
πδ1
N

) + γ2

sin
(
π (L+δ2)

N

) , (20)

YL1−1 = exp
(
−
jπ
N

) γ1

sin
(
π (δ1+1)

N

)+ γ2

sin
(
π (L+δ2+1)

N

)
 ,
(21)

YL1+1 = exp
(
jπ
N

) γ1

sin
(
π (δ1−1)

N

)+ γ2

sin
(
π (L+δ2−1)

N

)
 .
(22)

where

γ1 = A1 exp
(
jπδ1

N − 1
N

)
sin(πδ1), (23)

γ2 = B2 exp
(
jπδ2

N − 1
N

)
sin(πδ2), (24)

and B2 = A2 exp
(
−jπ L

N

)
. Then (20)–(22) satisfy

sin
(
π (δ1+1)

N

)
sin
(
π (L+δ2+1)

N

)
exp

(
jπ
N

)
YL1−1

+ sin
(
π (δ1−1)

N

)
sin
(
π (L+δ2−1)

N

)
exp

(
−jπ
N

)
YL1+1

=2 cos
(π
N

)
sin
(
πδ1

N

)
sin
(
π (L+δ2)

N

)
YL1 . (25)
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Similarly, the neighbors of the L2-th bin satisfy the following
relationship:

sin
(
π (δ1 + 1− L)

N

)
sin
(
π (δ2 + 1)

N

)
exp

(
jπ
N

)
YL2−1

+ sin
(
π (δ1−1− L)

N

)
sin
(
π (δ2−1)

N

)
exp

(
−jπ
N

)
YL2+1

=2 cos
(π
N

)
sin
(
π (δ1−L)

N

)
sin
(
πδ2

N

)
YL2 . (26)

Let µ1 = tan
(
πδ1
N

)
and µ2 = tan

(
πδ2
N

)
. Knowing that µ1

and µ2 are real numbers, therefore, we can consider the real
part of the DFT coefficients alone as

Employing the product-to-sum formulas of trigonometric
functions on (25)–(26), we have

r0 = Re
{
YL1
}
, `0 = Re

{
YL2
}
,

r1 = Re
{
exp

(
j
π

N

)
YL1−1

}
,

r2 = Re
{
exp

(
−j
π

N

)
YL1+1

}
,

`1 = Re
{
exp

(
j
π

N

)
YL2−1

}
,

`2 = Re
{
exp

(
−j
π

N

)
YL2+1

}
, (28)

C1 = tan
(π
N

)
, C2 = tan

(
π (L + 1)

N

)
,

C3 = tan
(
π (L − 1)

N

)
, C4 = tan

(
πL
N

)
,

D1 = cos
(
πL
N

)
, D2 = cos

(
π (L + 1)

N

)
,

D3 = cos
(
π (L − 1)

N

)
, B =

2D1

D2D3
, (29)

where Re{x} denotes the real part of x. To remove the term
µ1µ2, (27), as shown at the bottom of this page can be
simplified as two quadratic equations, which are

µ2
2

(
xTAz

)
+ µ2

(
xTBz

)
+ xTCz = 0, (30)

µ2
1

(
xTDz

)
+ µ1

(
xTWz

)
+ xTQz = 0, (31)

where (32)–(38), shown at the top of the next page.
Solving (30) and (31) using the roots of quadratic equation

allows us to estimate µ1 and µ2, namely, µ̂1 and µ̂2 as

µ̂2 =
−xTBz+

√(
xTBz

)2
− 4(xTAz)(xTCz)

2(xTAz)
, (39)

µ̂1 =
−xTWz+

√(
xTWz

)2
− 4(xTDz)(xTQz)

2(xTDz)
. (40)

Since |µ1| and |µ2| (|µ1|, |µ2| < tan
(
π
2N

)
) are small,

we select the smaller root as the estimates.
After µ̂1 and µ̂2 have been estimated, combin-

ing (27)–(40), as shown at the bottom of this page, the
estimates of θ1 and θ2, referred to as θ̂1 and θ̂2, are then:

θ̂1 = cos−1
(
1−

2L1
N
− 2

tan−1(µ̂1)
π

)
, (41)

θ̂2 = cos−1
(
1−

2L2
N
− 2

tan−1(µ̂2)
π

)
. (42)

To further improve the performance, we divide δ1 or δ2
into different subranges without additional computational
complexity. Actually, we can divide the subrange into any
ranges, however, increasing the number of subrangeswill also
result in the higher computational complexity, which is not
desirable. Taking nine subranges as an example, the accuracy
and computational cost will be as high as performing the algo-
rithm twice. Since the iterative application of the proposed
algorithm is equivalent to using more subranges, we choose
dividing the offset into three subranges.

To choose the subrange, it must satisfy three conditions:
first, the union of all subranges should cover the whole ranges
of each offset; second, the length of subrange should be equal
to each other to avoid biased estimation; finally, the over-
lapped subrange is not a good choice, since it results in biased
estimation. Based on the above discussions, we choose the
subranges with boundaries of 0.25 and −0.25. Take δ1 as an
illustration, and the case for δ2 follows similarly. The three
cases are

δ1 ∈


[−0.5,−0.25), |YL1−0.25| > |YL1 |
(0.25, 0.5], |YL1+0.25| > |YL1 |,
[−0.25, 0.25], otherwise.

(43)

The reduced estimation range of δ1 or δ2 will help to reduce
the MSE of θ̂1 and θ̂2. The details of the NIFM algorithm are
shown in Tables 1 and 2.

TABLE 1. Estimation algorithm with θ1 in three scenarios.
.


r1
D3
+

r2
D2
− Br0

C2 r1
D3
+
C3 r2
D2
− BC4 r0

C1 r1
D3
−
C1 r2
D2

`1

D2
+
`2

D3
− B`0

C1`1

D2
−
C1`2

D3
BC4`0 −

C3`1

D2
−
C2`2

D3

 ·
µ1µ2
µ1
µ2

 = −

C1C2 r1
D3

−
C1 C3 r2
D2

C1C2`2

D3
−
C1C3`1

D2

 . (27)
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x =


Re
{
YL2
}

Re
{
exp

(
j
π

N

)
YL2−1

}
Re
{
exp

(
−j
π

N

)
YL2+1

}
 , z =


Re
{
YL1
}

Re
{
exp

(
j
π

N

)
YL1−1

}
Re
{
exp

(
−j
π

N

)
YL1+1

}
 , (32)

A =


B2 C4 −

B(C1 + C4)
D3

B(C1 − C4)
D2

−
BC3

D2

C1 + C3

D2D3

C3 − C1

D2
2

−
BC2

D3

C1 + C2

D2
3

C2 − C1

D2D3

 , (33)

B =


B2 C2

4 −
BC2(C1 + C4)

D3

BC3(C1 − C4)
D2

−
BC3(C1 + C4)

D2

(C1 + C2)(C1 + C3)
D2D3

C2
3 − C

2
1

D2
2

BC2(C1 − C4)
D3

C2
2 − C

2
1

D2
3

(C1 − C3)(C1 − C2)
D2D3


, (34)

C =


0 0 0

−
BC1C3C4

D2

C1C2(C1 + C3)
D2D3

C1C3(C3 − C1)

D2
2

BC1C2C4

D3
−
C1C2(C1 + C2)

D2
3

C1C3(C1 − C2)
D2D3

 , (35)

D =


B2 C4 −

BC2

D3

−BC3

D2
B(C1 − C4)

D2

C2 − C1

D2D3

C3 − C1

D2
2

−B(C1 + C4)
D3

C1 + C2

D2
3

C1 + C3

D2D3

 , (36)

W =


−B2 C2

4
BC2(C4 − C1)

D3

BC3(C4 + C1)
D2

BC3(C4 − C1)
D2

(C2 − C1)(C1 − C2)
D2D3

C2
1 − C

2
3

D2
2

BC2(C1 + C4)
D3

C2
1 − C

2
2

D2
3

−
(C1 + C3)(C1 + C2)

D2D3


, (37)

Q =


0

BC1C2C4

D3
−
BC1C3C4

D2

0
C1C3(C1 − C2)

D2D3

C1C3(C3 − C1)

D2
2

0 −
C1C2(C1 + C2)

D2
3

C1C2(C1 + C3)
D2D3

 . (38)

III. PERFORMANCE AND COMPUTATIONAL
COMPLEXITY ANALYSIS
A. BIAS AND VARIANCE ANALYSIS
In this section, we analyze the bias and variance of θ̂1 and θ̂2.
To simplify the problem, our discussion focuses on the range
of δ1, δ2 ∈ [−0.25, 0.25]. For the other subranges such as
δ1, δ2 ∈ [−0.5,−0.25), according to the subrange criterion in
Section 2, we introduce two new variables δnew1 = δ1+0.5 and
δnew2 = δ2+0.5 (δnew1 , δnew2 ∈ [0, 0.25)). With the use of anal-
ysis in this section as well as δnew1 and δnew2 , the variances of θ̂1
and θ̂2, corresponding to the case of δ1, δ2 ∈ [−0.5,−0.25),
can be derived.

Since µ1 = tan
(
πδ1
N

)
and µ2 = tan

(
πδ2
N

)
, the variances

of δ̂1 and δ̂2 can be derived by those of µ̂1 and µ̂2. To analyze
the performance of µ̂2, we shall first note that µ̂2 is actually
obtained by solving

f (µ̂2) = 0, (44)

where f (µ̂2) = µ2
2

(
xTAz

)
+µ2

(
xTBz

)
+ xTCz. According

to the definitions in (32)–(38), we have

B = AH+ FA, C = FAH, (45)
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TABLE 2. Estimation algorithm with θ2 in three scenarios.
.

where

F =

0 0 0
0 C1 0
0 0 −C1

 , H =

C4 0 0
0 C2 0
0 0 C3

 . (46)

Combining (45)–(46), f (µ̂2) is given by

f (µ̂2) = xTKz (47)

whereK = (µ2I3+F)A(µ2I3+H) with I3 denoting the 3×3
identity matrix.

Utilizing [29], the bias and MSE of µ̂2 can be calculated
by TSE on f (µ̂2) [30]:

Bias(µ̂2) = E{µ̂2} − µ2 ≈ −
E{f (µ2)}
E{f ′(µ2)}

, (48)

MSE(µ̂2) = E{(µ̂2 − µ2)2} ≈
E
{
(f (µ2))2

}
(E{f ′(µ2)})2

, (49)

where f ′(µ2) is the first-order derivative of f (µ2) on µ2 and
E{·} denotes the expectation operator.
We rewrite x and z in (32) as x = xs + xq and z = zs + zq,

where xs and zs denote the signal parts, while xq and zq are
the noise parts. It is also worth pointing out that xq and zq are
IID noise terms with variance σ 2. Then f (µ2) in (47) can be
expressed as

f (µ2) = xTs Kzs + xTqKzq + xTs Kzq + xTqKzs, (50)

According to the Appendix, we have

xTs Kzs = 0. (51)

Utilizing (25)–(26) and the definition of f (µ2), we obtain

E{f (µ2)} = xTs Kzs = 0, (52)

E{f ′(µ2)} = xTs Lzs, (53)

E{(f (µ2))2} = σ 2(Nσ 2tr(KTK)+ xTs KKT xs
+NzTs K

TKzs), (54)

where tr{·} enotes the matrix trace and

L = A (µ2I3 +H)+ (µ2I3 + F)A. (55)

According to (52) and (54), (48) is calculated as

Bias(µ̂2) ≈ 0. (56)

FIGURE 2. Mean squares error versus SNR.

With the use of (49) and (53)–(54), MSE(µ̂2) is expressed as

MSE(µ̂2)≈σ 2Nσ
2tr
(
KTK

)
+xTs KKT xs+NzTs K

TKzs(
xTs Lzs

)2 ,

(57)

Similarly, the bias and MSE of µ̂1, are

Bias(µ̂1)≈ 0, (58)

MSE(µ̂1)≈ σ 2Nσ
2tr
(
MTM

)
+xTs MMT xs+NzTs M

TMzs(
xTs Tzs

)2 ,

(59)

where

M = G1 × D×G2, (60)

T = D×G2 +G1 × D. (61)

where

G1 =

µ1 − C4 0 0
0 µ1 − C3 0
0 0 µ1 − C2

 , (62)

G2 =

µ1 0 0
0 µ1 + C1 0
0 0 µ1 − C1

 . (63)
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FIGURE 3. Absolute biases versus SNR.

Employing the definition in (41)–(42) and according
to [31], the MSEs of θ̂1 and θ̂2, referred to as MSE(θ̂1) and
MSE(θ̂2), have the forms of

MSE(θ̂1) =

(
4

(1+ µ2
1)

2
(
π2 − (πθ1)2

))MSE(µ̂1), (64)

MSE(θ̂2) =

(
4

(1+ µ2
2)

2
(
π2 − (πθ2)2

))MSE(µ̂2). (65)

B. COMPUTATIONAL COMPLEXITY ANALYSIS
The estimation steps of NIFM are summarized as follows:
(1) Calculate the spectrum of observations using fast Fourier
transform (FFT) with O(N log2(N )) flops and search for the
two magnitude peaks with O(N );
(2) Estimate µ1 and µ2 using (39) and (40) twice;
(3) Estimate the two DOA values θ̂1 and θ̂2 using
Tables 1 and 2.
It is vivid that the dominant computational complexity is
the FFT, and the peak search, which makes the algorithm
complexity to be proportional to O(N (1+ log2(N ))).

FIGURE 4. Mean squares error versus sensor number N .

FIGURE 5. Computational times for different N .

IV. SIMULATIONS
To verify the performance of the interpolation formulas,
computer simulations have been conducted. We employ the
empirical MSEs and absolute biases of θ̂1 and θ̂2 as the
performance metrics, which are defined as E{(θp− θ̂p)2} and
|θ̂p−E{θ̂p}|with p = 1, 2, respectively. Two sources locating

55626 VOLUME 7, 2019



Y. Chen et al.: Non-Iterative DOA Estimation Using DFT Interpolation

FIGURE 6. Mean squares error versus θ1 or θ2.

at θ1 = 158◦ and θ2 = 126◦ are considered, whose powers
are 1 and 4, respectively. And hence, the corresponding peak
indices in model (2) are L1 = 2 and L2 = 6, while the
offsets are δ1 = −0.12 and δ2 = 0.018. The Cramér-Rao
lower bound (CRLB) [32] is included as the benchmark while
comparisons with Jacobsen [22], Candan [23], MUSIC [33]
and ESPRIT [10] methods are also provided. For Jacobsen
algorithm, Hanning window is utilized with scaling param-
eter 0.55. All results are simulated using Matlab running on
Intel(R) Core(TM) i7-4790 CPU@3.60GHz and Windows 7
for 1000 Monte Carlo trials with N = 24 sensors.
First of all, we investigate the performance of the proposed

method in different noise conditions. The MSEs and absolute
biases of θ̂1 and θ̂2 versus SNR are plotted in Figures 2 and 3.
It can be observed in Figure 2 that although the proposed
method is suboptimal, it can approach CRLB faster than other
optimal estimators in the case of low SNR. Figure 3 also
verifies this finding since our approach can provide stable
estimates when SNR > 5 dB, but those of the other methods
are only reliable for SNR > 10 dB. It is noted that Jacobsen
and Candan algorithms are biased in estimating θ1 and θ2,
since they are devised with the assumption of single-target
model.

FIGURE 7. Mean squares error versus L.

Second, the MSEs and the computational cost versus sen-
sor number N are plotted in Figures 4 and 5 for the cases
of SNR = 12 dB with N ∈ [20, 80]. Here the parameters
L1, L2, δ1 and δ2 are same with the previous experiment.
Here, the DOAs are θ1 ∈ [156◦, 168◦] and θ2 ∈ [120◦, 151◦].
The stopwatch timer is utilized to measure the run times of all
methods. It is indicated that in the case of nearly optimal esti-
mation performance, the complexity of the proposed method
is significantly lower than theMUSIC and ESPRIT.While the
performance of NIFM is more accurate than the Jacobsen and
Candan schemes with approximately the same computational
cost. Moreover, as the number of sensors increases, the com-
putational complexity of NIFM almost does not change while
other methods grow linearly in high rate.

Third, the estimation performance for different θ1 and θ2
is examined with L1 = 2, L2 = 6 and the SNR is 12 dB. For
different θ1 in [151◦, 163◦], θ2 is fixed to 126◦, while in the
case of different θ2 in [152◦, 156◦], θ1 = 168◦. It is shown
in Figure 6 that the MSEs of all methods approach CRLB
in all values of θ1 and θ2, except the Jacobsen and Candan
algorithms. With the use of the criterion in Table 1, the gap
between the proposed method and CRLB is less than 3.5 dB
in Figure 6, and does not change much as θ1 and θ2 change.
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
g1
D3
+

g2
D2
− Bg0

C2 g1
D3
+
C3 g2
D2
− BC4 g0

C1 g1
D3
−
C1 g2
D2

h1
D2
+

h2
D3
− Bh0

C1 h1
D2
−
C1 h2
D3

BC4 h0 −
C3 h1
D2
−
C2 h2
D3

 ·
µ1µ2
µ1
µ2

 = −

C1C2 r1
D3

−
C1 C3 r2
D2

C1C2`2

D3
−
C1C3`1

D2

, (74)

Finally, the estimation performance in the case of different
DOAs is studied. We vary θ2 from 95◦ to 139◦, when θ1
is fixed to 158◦. Figure 7 shows that in the scenario of
closely-spaced peaks, our method can also perform well,
indicating the stability of the proposed method. It is worth
pointing out that in the case of increasing θ2, the MSEs of
the Jacobsen and Candan algorithms become larger. This is
because these two methods assume that the signal model is
single-target and ignore the influence in dual-target scenario.

In summary, in the scenarios of different SNR, N , θ1
and θ2, the proposed method is nearly optimal, and it has the
lowest computational complexity with unbiased estimation
performance.

V. CONCLUSION
In this paper, a fast and simple DOA estimator, referred to as
NIFM, using the magnitudes of DFT are developed, which
has lower computational complexity than that of existing
methods. Theoretical analysis is investigated to show the
near optimality of the proposed algorithm. Computer simu-
lations show that the performance of the proposed algorithm
is similar to that of Jacobsen, Candan, MUSIC and ESPRIT,
while it can achieve much lower computational complexity.
In particular, the computational complexity of NIFM is not
sensitive to data set size increment, when compared to the
other algorithms discussed in this paper. It is worth point-
ing that although our work focuses on the two-target DOA
estimation in single-snapshot, it can be also extended to the
scenario of multiple targets, even with multiple snapshots.

APPENDIX
Utilizing (32), xs and zs are

xs =


Re
{
SL2
}

Re
{
exp

(
j
π

N

)
SL2−1

}
Re
{
exp

(
−j
π

N

)
SL2+1

}
 (66)

zs =


Re
{
SL1
}

Re
{
exp

(
j
π

N

)
SL1−1

}
Re
{
exp

(
−j
π

N

)
SL1+1

}
 (67)

where Sl has the form of

SL1 =
γ1

sin
(
πδ1
N

)+ γ2

sin
(
π (L+δ2)

N

) ,
SL1−1= exp

(
−
jπ
N

) γ1

sin
(
π (δ1+1)

N

)+ γ2

sin
(
π (L+δ2+1)

N

)
 ,

SL1+1= exp
(
jπ
N

) γ1

sin
(
π (δ1−1)

N

)+ γ2

sin
(
π (L+δ2−1)

N

)
 ,
(68)

SL2 =
α1

sin
(
π (−L+δ1)

N

)+ α2

sin
(
πδ2
N

) ,
SL2−1= exp

(
−
jπ
N

) α1

sin
(
π (−L+δ1+1)

N

)+ α2

sin
(
π (δ2+1)

N

)
 ,

SL2+1= exp
(
jπ
N

) α1

sin
(
π (−L+δ1−1)

N

)+ α2

sin
(
π (δ2−1)

N

)
 .
(69)

with

α1 = A1 exp
(
jπ
L
N

)
exp

(
jπδ1

N − 1
N

)
sin(πδ1), (70)

α2 = A2 exp
(
jπδ2

N − 1
N

)
sin(πδ2). (71)

Equations (68)-(69) satisfy

sin
(
π (δ1+1)

N

)
sin
(
π (L+δ2 + 1)

N

)
exp

(
jπ
N

)
SL1−1

+ sin
(
π (δ1−1)

N

)
sin
(
π (L+δ2 − 1)

N

)
exp

(
−jπ
N

)
SL1+1

= 2 cos
(π
N

)
sin
(
πδ1

N

)
sin
(
π (L+δ2)

N

)
SL1 , (72)

sin
(
π (δ1+1− L)

N

)
sin
(
π (δ2+1)

N

)
exp

(
jπ
N

)
SL2−1

+ sin
(
π (δ1−1− L)

N

)
sin
(
π (δ2−1)

N

)
exp

(
−jπ
N

)
SL2+1

= 2 cos
(π
N

)
sin
(
π (δ1−L)

N

)
sin
(
πδ2

N

)
SL2 . (73)

Employing the definitions of µ1 and µ2 as well as (28)–(29)
and (72)–(73), we have (74), shown at the top of this page,
where

g0 = Re
{
SL1
}
, h0 = Re

{
SL2
}

g1 = Re
{
exp

(
j
π

N

)
SL1−1

}
,

g2 = Re
{
exp

(
−j
π

N

)
SL1+1

}
,

h1 = Re
{
exp

(
j
π

N

)
SL2−1

}
,

h2 = Re
{
exp

(
−j
π

N

)
SL2+1

}
. (74)
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To remove the term µ1µ2, with the use of (66)-(67), (74) can
be rewritten as

µ2
2

(
xTs Azs

)
+ µ2

(
xTs Bzs

)
+ xTs Czs = 0, (75)

Since xsKzs = µ2
2

(
xTAz

)
+ µ2

(
xTBz

)
+ xTCz, we have

xTs Kzs = 0. (76)
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