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ABSTRACT The concept of IoT-based Smart Cities has gained momentum in recent years. The research
in this domain has focused on modeling key characteristics of future smart cities along with exploring their
design and implementation aspects from multiple perspectives. There is, however, a lack of research effort
to provide a holistic approach towards modeling smart city services. A comprehensive approach has to
view the smart city as a dynamic, uncertain and complex environment where multiple events with varying
severity occur in a continuous and non-deterministic manner. These events have to be handled efficiently
with the available resources. In this paper, we present a holistic approach to model the probabilistic as well
as non-deterministic aspects of the emergency management services of a smart city by using probabilistic
model checking. Our proposed model captures the emergency events of varying severity occurring at
several locations in a continuous and non-deterministic manner. These events are responded to by a smart
emergency management unit (SEMU), which dispatches the required emergency response units (ERUs) to
the event location. In addition to modeling a completely automated system, we introduce a human-assisted
decision-making process in the model to reduce false alarms. The proposed model can be used to study and
evaluate key parameters in designing a smart city emergency management system to meet given service level
agreements. We have implemented our proposed model using the PRISMmodel checker and have conducted
several case studies to highlight the effectiveness of our proposed approach for different scenarios of varying
complexities.

INDEX TERMS Smart city emergency services, PRISM, probabilistic model checking.

I. INTRODUCTION
Growing urbanization is placing huge burden on city infras-
tructure that makes it a challenging task to optimally utilize
the available resources to provide basic services to its citizens.
The rapid growth of cities is causing several management
issues including traffic congestion, rapid outbreak of conta-
gious disease (epidemics), air pollution, waste management
and public safety in case of catastrophic events. Smart City
is a recent initiative that uses computing technologies to
assist manage large cities in an efficient manner. Several
definitions of smart city exist in the literature trying to
encompass its scope from technology, people and institu-
tional perspectives [1]. The International Telecommunication
Union (ITU) has defined smart city as ‘‘A smart sustainable
city is an innovative city that uses information and commu-
nication technologies (ICTs) and other means to improve
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quality of life, efficiency of urban operation and services,
and competitiveness, while ensuring that it meets the needs
of present and future generations with respect to economic,
social and environmental aspects’’ [2]. A smart city concept
consists of the following main components:

• Technology: The collection of information and com-
munications technologies which enable the sensing and
collection of data, transmission of the data through the
network and developing applications which utilize the
data to extract meaningful information for making smart
decisions [3].

• Human: Human capital is an indispensable component
of a smart city through which there is an element of
learning and attainment of progressive knowledge for
the betterment of the society as a whole. Social interac-
tions and mutual collaboration for creativity and novel
solutions are proposed and implemented by the people
living in the city [1].
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• Institution: The institutional governance has amajor role
to play in order to implement policies, procedures, and
laws for the safety, well-being and progress of the people
in the smart city, with a focus on optimal utilization
of existing infrastructure and services. Institutions also
help plan and project future needs and requirements to
maintain the smart city objectives [4].

It has been reported that people prefer to live in cities which
have low crime rates, and have high security from natural
disasters (such as floods, earthquakes and forest fires) and
man-made system failures (such as theft/robbery, fire and
electricity outages) [5]. It has been found that there is a wide
variety of service domains which come under the purview of
smart city namely, economy, natural resources, energy, trans-
portation, buildings, living conditions and governance [4].
One of the subdomains under the living conditions domain
is to provide public safety in case of emergencies. These
emergencies cause a loss of life, economic hardships and
mental agony to people. In fact, the IBM global business
services executive report states that improving public safety
and emergency response time as one of the high-impact areas
for smart cities development [6]. The smart city governance
therefore needs to predict these emergencies and prevent
them as early as possible. However, in the event of such
inevitable emergencies, there must be mechanisms and sys-
tems which are ‘‘smart’’ enough to deal with them in the
best possible manner. One of the promising technologies for
public security implementation and monitoring in the context
of smart city is the Internet of Things (IoT) [7].

Any initiative based on IoT requires suitable mecha-
nisms to manage its operations. Efficient implementation of
public safety systems and procedures requires the accurate
and timely information of events, which can be gathered
from safety devices (e.g. monitoring cameras and variety
of sensors) interconnected through wireless communication
technologies (e.g. wireless broadband), as part of the IoT
infrastructure. For instance, a fire mishap in a multi-storey
building can be sensed through fire/smoke sensors (part of a
WSN) and the information about the time, location and event
severity can be communicated to the nearest fire-station.
This information will be helpful in dispatching appropriate
fire-fighting resources to the fire location for immediate res-
cue operation [5]. However, it must be noted that despite
the benefits achieved from an automated monitoring system
based on IoT, one must be cautious regarding the possibility
of false alarms coming from the sensors. A false alarm is
informally defined as a signal that occurs needlessly [8].
For example, a smoke detector can incorrectly identify a
human smoking as a fire incident. Sometimes sensors can
malfunction due to environmental conditions. False alarms
can also be caused with malicious intent. The number of false
alarms dealt by emergency response system is generally very
high. For example, 56% of the reported fires between 2011-
2012 in UK were false alarms [9]. In Salt Lake City, USA,
90-99% of crime related calls received by police department
were false alarms [10]. Significant economic losses have

been reported in the literature by initiating rescue operations
based on false alarms [11]. Several techniques have been
reported to handle the false alarms, including the use of multi
sensor technologies and manual vetting process conducted by
private security company personnel. The human-in-the-loop
(security personnel) approach is found to be quite useful in
minimizing false alarms and reducing the financial cost of
dealing with them [10].

The automated governance mechanism of IoT systems
can be assisted by human decision making during its oper-
ations. Human operators can use personal expertise and
context-specific knowledge tomake better judgments in com-
plex situations. It has been noted that humans in the loop
can improve the system performance [12], but modeling and
incorporating the human behavior in an IoT system is a
challenging task. The work presented in [13] identifies sev-
eral key challenges encountered in incorporating ‘‘humans in
the loop’’ for any cyber-physical system. These challenges
include:
• Identifying the type and level of human involvement
• Modeling of human behavior in the system
• Incorporating the human model in the system

An IoT based autonomous system can have different degrees
of human involvement. In this paper, we focus on systems
which are autonomous but can improve the overall perfor-
mance of the system by human assisted decision making at
certain points during their operations. The proper modeling
of human physiological, psychological and environmental
aspect is also a key challenge. The human decision making is
affected by several factors including their work load, fatigue
and technical competence.

Figure 1 shows an example scenario where emergency
events in a city are managed by a Smart Emergency Man-
agement Unit (SEMU). The SEMU authorizes and controls
several Emergency Response Units (ERUs) like ambulances,
fire engines and police cars. Several types of events can
occur in a non-deterministic manner throughout the city (such
as accidents, fires, and robberies) and these events can be
detected by IoT based mechanisms with possible human
assistance and reported to SEMU. The likelihood and severity
of these events may vary depending upon several factors such
as the location, time of the year and occurrence of large
scale events (such as, earthquake, political rallies, etc). The
severity of events can be categorized into multiple levels
depending upon the potential loss of lives, property and scale
of inconvenience. For example, a road accident without any
injuries or road blocks can be considered a minor event while
a road accident with multiple injuries or traffic blockage can
be considered a major event. It is presumed that a human
assistance would be required to augment the IoT system to
correctly categorize the severity of an event. The accessibility
to the location of an event also varies based on factors such
as traffic congestion at certain time periods and the type
of roads leading to the event location. The likelihood of a
certain type of event, its severity and accessibility to the
event location can vary from city to city. The smart city
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FIGURE 1. An example scenario illustrating several types of events handled by Smart Emergency
Management Unit (SEMU).

designers can obtain such data from city’s historical records
(previous occurrences) or human domain expertise. Given the
nature of IoT based system for event detection, the reported
event and its related information (like severity) might not be
accurate and thus has to be modeled as a probabilistic or a
non-deterministic measure.

The SEMU responds to events occurring throughout the
city by dispatching appropriate ERUs. The ERU dispatch pol-
icy has to take into account the above mentioned factors and
the availability of resources (ERUs, ERU operational staff,
materials etc.). Given the non-deterministic and probabilistic
nature of events, the event location accessibility and the avail-
ability of resources, a human operator might be needed in
the SEMU to assist in the efficient assignment of appropriate
resources for event handling.

In this paper we model the concept of smart city that is
managed by the following key components:
• ‘‘Event detector (ED)’’: This component consists of a
variety of sensors that detect various kinds of incidents
such as fire, road accidents, etc. ED detects the occur-
rence of an event and propagates this information via
available networking channels to the smart emergency
management unit.

• ‘‘Smart emergency management unit (SEMU)’’: It is the
main unit responsible for reacting to the emergency and
taking appropriate action. This unit is a human-in-the-
loop based system, which may resort to human expertise
if needed. Based on a particular type of event, it responds
to the event by sending relevant emergency response unit
to the location of the event.

• ‘‘Emergency response unit (ERU)’’: This unit is sent by
SEMU to take care of the emergency situation.

Our model captures the interaction among these components
and helps us analyze various key parameters that one must

take into consideration in the design of a smart city. Designing
a smart city is a challenging task because of the following
issues:
• Events such as fire, burglary, accident, may occur with-
out any pattern. In other words, their occurrence may
not be fully predictable, thereby making it difficult to
model them as a simple probabilistic measure. Their
non-deterministic nature needs to be preserved in order
to realistically capture the occurrence of such events.

• Sensors deployed to detect events are prone to errors and
may initiate false alarms. Detecting these false alarms
is essential in order to utilize key resources, such as
ambulance or fire engine, of a smart city in efficient
manner.

• The automated system deployed to detect false alarm
may also suffer from its inherent constraints and may
not perform at 100% accuracy. A human-in-the-loop
may help compensate for the errors inherent in a fully
automated system.

• Although the involvement of human in the partially
automated system (hybrid system) helps alleviate the
problems encountered in the fully automated system,
this does not come without a price. A human opera-
tor may also suffer from various constraints, such as
fatigue and work overload conditions, thereby resulting
in degradation of performance even in the hybrid system.

• The degree of human involvement in the hybrid system
within SEMU is another design parameter that needs to
be selected wisely. Various degrees of human involve-
ment may suffice for different types of regions within
the same city.

• A variety of external factors, such as traffic condition at
certain time of a day, as well as internal factors, such
as the availability of resources present at the time of an
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event, influence the emergency response time of ERU
in a smart city. In the presence of these uncertainties,
guaranteeing a certain SLA (service level agreement)
needs careful analysis.

Considering the above mentioned parameters and constraints
inherent in the system, designing a smart city involves ana-
lyzing various situations before the actual deployment and
implementation of various hardware and software resources.
Our work focuses on these parameters and addresses key
issues in the design andmanagement of a smart city. In partic-
ular, with the help of model checking, we are able to answer
key design questions in the pre-design phase in a smart city.
Some of these questions include:
• What is the probability to serve an emergency request
generated from a remote place in a given time in a city
of particular size?

• How do the traffic conditions effect the incident
response time in a city of particular area?

• What level of human involvement is needed to reduce
the number of false alarms to meet a particular service
level agreement (SLA)?

The proposed smart city model allows us to answer such
questions before the actual deployment of the resources.
To the best of our knowledge, this is the first time the afore-
mentioned parameters are used to answer such questions in
the design of a smart city.

II. BACKGROUND
In this section we present the relevant background about
different ways of modeling IoT based smart city governance
aspects. We also elaborate how probabilistic model checker
PRISM can be used to model a system that exhibits proba-
bilistic as well as non-deterministic behavior.

A. RELATED WORK
A smart city initiative heavily depends on the IoT technology.
Thus, in order to implement an IoT-based smart city, it is
essential to focus on the different modeling approaches to
capture the system dynamics [12]. Several approaches have
been proposed in the literature whose brief summary is pre-
sented below.

The deployment of the IoT-based systems in the context of
smart cities significantly increases the complexity, not only in
the number of nodes and structure, but also in the increased
heterogeneity of protocols and mechanisms. In order to cap-
ture and model such a complex system behavior the con-
cept of ‘‘islands of resilience’’is proposed which continue to
function even when disconnected from main system during
emergency situations [14].

A wireless sensor network (WSN) consisting of multiple
smoke and fire sensors was designed and evaluated for early
detection of fire and GSM system was employed to avoid
false alarms [11]. Simulated environment using Fire Dynam-
ics Simulator was used to verify the results achieved from the
real-time system. Their focus is on the dynamics of how a fire
spreads and the prediction of such incidents.

For the city planners to effectively deal with emergency
events, an eMergency-CREAtivity Machine (M-CREAM)
tool has been proposed which is a model-based elicitation
of emergency management scenarios. An emergency case
study involved modelling an environmental hazard related to
drinking water contamination with the aid of ‘‘mini-stories’’
concept [15].

In the context of smart city management, a general
system design and review is proposed which consists of
a central agent which monitors the functioning of three
constituent layers, namely, UAV layer, Robot layer and
WSN layer to achieve the efficient management of emer-
gency situations [16]. Our proposed work is targeting the
same domain but provides a comprehensive model checking
methodology to evaluate the desired resource availability and
incident response time for managing large scale emergency
units without conducting a wholesome simulation for all
possible scenarios.

The behavior of an IoT-based smart application manage-
ment system is modelled using Finite State Machines and
the Continuous Density Input/Output Hidden Markov Model
(CD-IOHMM). The uncertainties of the system behavior are
captured using probabilities and the models are verified using
real datasets [17]. A layered modelling architecture (using
Hybrid Particle Swarm Optimization (HPSO)) has been pro-
posed to capture the uncertainties and heterogeneity inherent
in a smart city which efficiently allocates required resources
at the location of an emergency event [18].

Colored Petrinets (CPN) have been used to model a sus-
tainable security framework for IoT systems catering to the
eHealth service under the smart city domain [19]. The CPN
uses a bipartite graph to model the places and transitions
which are then connected through directed edges to represent
the dynamics of the system under consideration. However,
our proposed approach (PMC) is a formal verification tool
which can be used to examine whether the model of a sys-
tem, which probably was implemented using CPN, meets the
requirements of the system.

An IOT-based smart home security system was modeled to
study the security risks involved in such systems. They used
PRISM, a probabilistic model checking tool, to represent the
threat models through Markov Decision Processes (MDP)
and evaluated risks for various system configurations [20].
However their focus was on security aspects of the IoT-based
systems and our focus is on the optimal resource utilization
for public safety services.

Renewable and pollution-free energy generation is one of
the prime concerns for a smart city infrastructure which has
been studied as a microgrid [21]. The authors have used IoT
technology for monitoring and control of microgrid and have
verified their reliability through probabilistic model checking
tool (PRISM). Their work is specific in nature which studies
the failure rate of individual system components and its effect
on the overall system reliability. However they do not con-
sider the effect of human-in-the-loop which is a prominent
component of a smart-city setup.
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Vehicle-to-Vehicle (V2V) networks are used in a smart
city to alert drivers in case of safety hazards such traffic
congestion, road diversions and approaching of emergency
service vehicles [22]. To study the survivability of such net-
works, the paper modeled the V2V network as a CTMC
and used the PRISM tool to perform impact analysis under
node and link failure conditions. This work models the V2V
network as a CTMC assuming only probabilistic nature of
the system. However, we consider both probabilistic and
non-determinism in our modeling framework.

A System of Systems (SoS) concept is used to model a
mass casualty incident (e.g. massive fire, building collapse)
response system in a smart city, using probabilistic mod-
eling tool (PRISM) [23]. Such a model captures uncertain
behaviors of a SoS in a quantitative manner and performs
statistical model checking in order to verify a user-defined
SoS-level goal (e.g. minimizing average response time to a
casualty incident). Their work emphasizes the modeling of
various flavors of SoS through probabilistic means and does
not elaborate on the exact model details.

A probabilistic approach is proposed which formally
describes and analyzes the reliability and cost-related prop-
erties of the service composition in IoT [24]. A service com-
position in IoT is modeled as a Markov Decision Process
(MDP), which specifies the reliability of service operations.
PRISM, a probabilistic model checker, is then used to verify
and analyze the specified properties. This work is the closest
to our approach, however they focus only on single type of
event (fire mishap) and also they do not take into account the
human involvement in decision-making.

Based on the literature survey performed above, it is pro-
posed to model a system (a smart city in our case) using
PMC due to the following benefits. Firstly, it gives the system
modeler a flexibility to visualize and test various scenarios
which can happen in a city. Without actually a particular
event happening he can know the effects of such an event
on the city dynamics. Secondly, a ‘‘real’’ city infrastructure
need not be experimented with an actual emergency event,
which may adversely affect the lives and property. Lastly,
a parametric analysis can be easily performed by observing
the effect of a particular parameter of interest (e.g. traffic
congestion) on the system behavior. This study can help to
predict the resource requirements which can be arranged in
advance so as to be prepared to deal with the emergency event,
if it actually happens.

B. PROBABILISTIC MODEL CHECKING
Probabilistic model checking is a formal technique that can
capture systemswith probabilistic as well as nondeterministic
behavior. The system is usually represented in the form of
a state-transition diagram where each state represents a set
of values that the system assumes at a particular instant of
time. Actions are defined on each state that trigger transitions
where the systemmoves from one state to the other. An action
with a known probability distribution may take the system
to one of the several possible states with some probability.

If there are more than one action available at a state, an action
may be chosen nondeterministically. Once the system is
modeled with the help of state-transition diagram, it is often
encoded in some meta language so that the system properties
can be verified against this model. System properties are
captured using formulas in some form of temporal logic, such
as linear temporal logic (LTL). The syntax and semantics of
the formulas in temporal logic are well defined. Temporal
logic is equipped with rich temporal operators that can be
used to reason about various time epochs in future. With the
help of these operators, we can capture key properties that we
want to verify in the system.

PRISM is a well known probabilistic model checker that
can be used to model systems with probabilistic as well
as nondeterministic behavior [25]. PRISM has gained its
popularity because various systems from diverse application
domains has been modeled and analyzed with the help of
this tool. Some of the application domains where PRISM
has been successfully used include communication proto-
cols, distributed algorithms, security protocols, and biolog-
ical systems [26]–[30]. PRISM typically captures a system
with the help of the following stochastic models:

1) Discrete-time Markov chains (DTMCs)
2) Continuous-time Markov chains (CTMCs)
3) Markov decision processes (MDPs)
4) Probabilistic automata (PAs)
5) Probabilistic timed automata (PTAs)
We use PRISM for capturing the behavior of each com-

ponent of a smart city. In particular, we design the abstract
model of the components of the system in the form of MDP
andDTMC.As there aremore than one components involved,
each part of the system is modeled individually. The model of
the entire system is obtained through parallel composition of
individual elements. This model is encoded in the language
of PRISM and then it is fed to the tool for the purpose of anal-
ysis. The required specification can be given in the form of
linear temporal logic (LTL). PRISM is used to either check if
the system satisfies the given specifications under a strategy,
or to synthesize a strategy that meets some specifications.

III. COMPUTATIONAL MODEL
The system consists of three main components namely
‘‘Event Detector (ED)’’, ‘‘Smart Emergency Management
Unit (SEMU)’’, and ‘‘Emergency Response Unit (ERU)’’.
Due to its probabilistic nature, the SEMU ismodeled as a Dis-
crete TimeMarkov Chain (DTMC), whereas the ED and ERU
are modeled as Markov Decision Process (MDP) because
events are generated non-deterministically. The models for
ED, SEMU and ERU are depicted in Figures 2, 3 and 4
respectively.

Since any type of event can happen at any location, the ED
module models both the occurrence and the location of an
event nondeterministically. The model assumes input coming
from a variety of sensors installed on the key locations within
a city. These sensors produce large volumes of data that has to
be collected and fused to suggest occurrence of an event [31].
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FIGURE 2. Markov Decision Process (MDP) modeling of Event
Detector (ED).

FIGURE 3. Discrete Time Markov Chain (DTMC) modeling of
human-in-the-loop based Smart Emergency Management Unit (SEMU).

FIGURE 4. Markov Decision Process (MDP) modeling of Emergency
Response Unit (ERU).

Several important resources of Smart City (SC) are mon-
itored by a variety of sensors. For example, streets can be
monitored by acoustic sensors and cameras and buildings can
be monitored with fire, heat, or door sensors. SC authorities
choose appropriate sensors based on requirements, such as
environmental conditions, accuracy, range, cost, resolution,
etc. The sensors report anomaly in the sensed data by for-
warding it to event detector. For example, in the case of heat
sensor, it reports to ED when it detects anomaly in tempera-
ture. In a smart city, CCTV output can be fed to Computer
Vision based algorithms for detecting possible anomalies
(such as accidents). Similarly, human can also provide input
to ED. For example, in the case of an emergency, such as

bank robbery, someone in the bank can initiate an emergency
signal.

ED module examines sensors’ data based on count-based
and time-based thresholds. These thresholds may differ
depending on sensor and event types. Once ED module
reports an emergency event, the sensed data from these sen-
sors is examined at SEMU to possibly respond to an event.
Human operators can help in reducing the number of false
events. ERUs (ambulances, fire brigades, security units) are
sent in response to these emergency events. Consider the
following sets:

E = {e1, e2, . . . en},

Th = {th1, th2, . . . thn | thi ∈ N}, and

t = {t1, t2, . . . tn | ti ∈ N}

and the functions Sensor-Threshold (ST) and Timer-
Threshold (TT) such that ∀ei ∈ E, thi ∈ Th, ti ∈ t :

thi = ST (ei) and

ti = TT (ei)

That is, for every event ei, the model selects appropriate
thresholds, sensor threshold thi, and timer threshold ti, that
dictate when to move to the next state. For an event ei, a value
counti ∈ N is incremented as a sensor input is received.
As soon as counti ≥ thi within certain timeout period ti,
an event is recorded by the ED model as shown in Fig. 2.
Otherwise, if the time passes beyond ti, the model resets itself
to the initial state. The threshold values for an event depends
upon the type of event. For instance, in the case of fire in a
forest, the threshold values (thi and ti) for detecting the fire
may be relatively higher since many sensors need to detect
fire and propagate this information within ti time units.
Consider the following sets representing all possible event

locations and the parameters associated with each event:

Loc = {l1, l2, . . . lm} and

Param = {P1,P2, . . .Pn}

such that ∀ei ∈ E,Pi ∈ Param represents a list of parameters
that is related to event ei. The ED detects the severity of an
event as a function f that depends on the event type ei ∈ E ,
its location lj ∈ Loc, and the parameters Pi = 〈pi1, . . . , p

i
k 〉

relevant to that event. That is:

sevi = f (ei, lj, pi1, . . . , p
i
k ).

For every parameter pij related to an event ei in 〈pi1 . . . p
i
k 〉,

there is a corresponding threshold value T ij in 〈T i1 . . . T
i
k 〉

where ∀j ∈ {1 . . . k}, T ij ∈ {T
low
j ,Tmedj ,T highj }. Thus,

the severity sevi ∈ {low,medium, high} of an event ei can be
defined such that the following formula ϕ evaluates to true.

ϕ = pi1 ≥ T
i
1 ◦ p

i
2 ≥ T

i
2 ◦ · · · ◦ p

i
k ≥ T

i
k

Here the operator ◦ ∈ {∧,∨} joins each propositional state-
ment pij ≥ T ij with others via conjunction or disjunction.
Although in the present model, these thresholds are selected
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probabilistically, but in any realistic scenario, each sensor will
have its own threshold value that depends on the event type
and its severity. For instance, in the case of environmental
monitoring, the severity of the environment pollution can
be calculated from the sensor readings for air quality, noise
levels, and luminosity levels at a particular location [32]. The
abnormal levels of activity observed by the relevant sensors
may indicate an event to be severe, and may be calculated
by fusing different types of available spatial data [33]. For a
particular event ei at a given location lj, we model its severity
probabilistically and the event detector moves to one of the
states based on severity level high, medium, or low with the
probability ph, pm, or pl such that the following holds true.

ph + pm + pl = 1

After an event is detected by event detector, the SEMU
chooses the operator’s assistance with a probability pop
(see Fig. 3). The operator’s involvement depends on the
severity of the event. If the severity level of the event is high,
the highest value of pop is chosen. On the other hand, if the
event is of low severity, pop is reduced by a constant factor c.
That is:

pop =

{
pmaxop if sevi = high
c · pmaxop otherwise (c < 1)

Based on the recent historical event pattern, the operator may
identify the possibility of a false alarm. The operator may also
resort to a detailed analysis before identifying false alarms.
The operator’s performance varies in different workload con-
ditions. That is, an operator with low workload examines the
event with greater accuracy as compared to an operator with
a high workload. Similarly, the operator gets fatigued and
his performance deteriorates as time progresses. We leverage
the operator’s model proposed in [34]. The operator with low
workload examines the event with probabilities plow(fp) and
1 − plow(fp) where fp measures the operator’s fatigue level
and plow(fp) is a function over variable fp. For a fixed fatigue
threshold Fth,

plow(fp) =

{
plow(0) fp < Fth
fd · plow(0) fp ≥ Fth

That is, after a certain threshold, operator’s accuracy is dis-
counted by a factor fd (which is less than 1). The fatigue
discount factor of the operator also depends on the severity of
the event as a severe event tends to increase the focus resulting
in improved operator’s performance.Wemodel it be adjusting
fd by a constant factor. Operator’s accuracy at high workload
phigh(fp) and 1− phigh(fp) is defined in the similar way.
Emergency response unit responds after detecting an event

by setting its destination to be the location of the event. Based
on location information provided by the event detector, ERU
chooses the fastest route available. In the model the route
choice is made nondeterministically (see Fig. 4). We assume
that city routes comprise of three different types of roads,
motorway (MW), open road (OR), or inner road (IR) as per

TABLE 1. The notations used in the model.

EU norms [35]. The traffic conditions on roads is determined
by the probability of congestion pci where i ∈ {MW ,OR, IR}.
For any particular road, these probabilities can be obtained
as the average number of vehicles crossing a street per hour.
For instance, [36] plots the average cars per hour at different
times of the day for a street with two lanes in Duesseldorf
over two months obtained from real-world detectors.

We model the city as a virtual grid of size n × n where
each block of the grid (represented as [i, j]) represents an
area/zone/district within the city as represented by location
Lk in Fig. 4 where k ∈ {1, 2, . . .final}. Here Lfinal ∈ Loc
represents the location of the event. Even though the ERU
selects the best path to its destination, this never guarantees
that the congestion on the selected road stays uniform along
the way. Therefore, the congestion on the road is recomputed
every time when ERU moves from one location/block to
the other. The path that ERU follows to its destination is
represented as the following tuple:

Patheru = 〈L1,L2, . . .Lfinal〉

such that L1 represents the staring position of the ERU, Lfinal
represents the location of the event, and for every Lk in the
Patheru:

Lk = [i, j]⇒ Lk+1 = [i, j± 1] ∨ [i± 1, j]

Each side of the cell in the virtual grid represents unit dis-
tance, which takes one unit time to travel. However, the actual
travel time is determined by road type and traffic conditions.
The service provider is located at the city center, and depend-
ing upon the availability an ERU is immediately dispatched
to the requested location at the occurrence of an event. The
notations used in our model are summarized in Table 1.

The interaction among ED, ERU and SEMU components
is captured by parallel composition of these models. That is,
the alphabetized parallel composition of modulesMed ,Meru,

and Msemu that synchronize on only actions appearing in all
the modules. This parallel composition is associative and
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can be applied to more than two modules at once. Fur-
ther details about other parallel composition operators are
available at [37]. In general, interaction between two models
M1 andM2 is captured asM1||M2 = (Q1×Q2, (q̄1, q̄2),A1×

A2, δ) where the transition relation δ of the product MDP
captures the run of the system. δ is defined such that two
MDPs synchronize on common actions and interleave oth-
erwise. That is, ((q1, q2), a, µ1 × µ2) ∈ δ if and only if one
of the following holds:

• Both models synchronize on common action. That is,
(q1, a, µ1) ∈ δ1, (q2, a, µ2) ∈ δ2, and a ∈ A1 ∩A2

• M1 takes the transition on its action. That is,
(q1, a, µ1) ∈ δ1, µ2 = ηq2 and a ∈ A1\A2

• M2 the transition on its action. That is, (q2, a, µ2) ∈ δ2,
µ1 = ηq1 and a ∈ A2\A1

The product model represents the execution of both running
in parallel and synchronizing at common actions. In the
absence of non-determinism in a model M1, synthesizing a
strategy π for the product MDP (M1||M2) gives the strategy
π ′ forM2. That is, (M1||M2)π =M1||Mπ ′

2 . The resultingMDP
can be solved for finding the optimal value V ∗ for each state
s ∈ S using the following Bellman’s equation:

V ∗(s) = max
a
{R(s, a)+ γ

∑
s′∈S

P(s′ | s, a)V ∗(s′)}

Here R is the reward function and γ is the discount on future
rewards. Value (or policy) iteration can be used to solve this
equation where V ∗ is computed iteratively until it converges.
Now the optimal policy (or strategy) can be calculated as:

π∗(s) = argmax
a
{R(s, a)+ γ

∑
s′∈S

P(s′ | s, a)V ∗(s′)}

Figure 5 depicts the schematic flow of our work.
It shows how PRISM model checker takes input from
non-deterministic model interaction, system specifications
that meet application objectives and component-level con-
straints, and verifies if the system meets the desired
specifications under given constraints. In particular,

FIGURE 5. Schematic diagram of the proposed system.

• Based on the requirements of each application, system
specifications are written in the form of LTL (linear
temporal logic) formulae.

• Constraints related to event generator, event handler,
or service provider can be encoded in PRISM language
as module variables or predicates in PRISM commands.

• Interaction among each module, with its own relevant
parameters, represents non-deterministic behavior of the
system and is captured as the product MDP.

The output of the PRISM model checker is of two types.
It verifies or calculates the probability to meet given prop-
erty specification based on system parameters. It can also
calculate the value of the reward based on input parameters of
the system and given LTL specifications. For example, it can
calculate the probability to service an emergency request
within given constraints (such as in T time units for varying
city sizes). In the property specificationPmax =?[8],8 could
be any LTL expression that needs to be evaluated, such as an
expression indicating that ERU reaches the event location.
Here Pmax is the maximum probability to meet the given
property specification. PRISM can also be used to calculate
the reward (such as expected incident response time) based
on system parameters (such as city size and probability of
congestion). To calculate reward, the property specification
R{reward} =?[8] can be used where R is the PRISM con-
struct for calculating the reward.

IV. MODEL IMPLEMENTATION AND EVALUATION
The system model described in Section III is implemented in
PRISMmodeling language and the system properties are ver-
ified by using PRISM model checker. This section describes
several Smart City (SC) scenarios, and discusses how Proba-
bilistic Model Checking (PMC) can be leveraged to estimate
SC performance metrics. The time and distance units are kept
generic in all scenarios for better applicability. For example,
we assumed the time it takes to traverse one distance unit on
motorways is one time unit. One distance unit could be one
meter or mile or kilometer, etc; similarly one time unit could
be one second or minute or hour, etc. We have divided the
evaluation results into two main cases: (i) smart cities with
fully autonomous emergency response services, and (ii) smart
cities with operator assisted emergency response services.
The list of parameters values are given in Table 2.

A. AUTONOMOUS EMERGENCY RESPONSE SYSTEM
This case study considers the smart cities (SCs) that have
centrally located emergency response units (ERUs) in one
SEMU, which are dispatched autonomously by an automated
system without any involvement of skilled human operators.
We are considering different SCs with areas varying from
25 to 900 sq. units.

1) ESTIMATION OF EMERGENCY RESPONSE LATENCY
The quality of emergency response depends on how quickly a
service team (ERU) has reached the incident location. We are
measuring the latency using Incident Response Time (IRT),
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TABLE 2. Parameters used in PRISM models.

FIGURE 6. The probability to reach the incident location within T time
units for varying smart city sizes.

which refers to the time difference between incident gener-
ation and an ERU reaching the incident location assuming
that ERU is readily available in SEMU. IRT is an important
parameter in the design of SC’s emergency services. High IRT
may significantly increase human and financial losses [38].
Figure 6 shows the probability to service an emergency
request (ER) generated from a distant corner of the city within
T time units for varying city areas. We assumed the roads are
moderately congested (pc = 0.5) and road type is MW. The
objective of this plot is to estimate the best/worst IRT to reach
remote areas of the city. From this figure, we can see that the
minimum and maximum latency to service the request is 6
and 60 time units respectively for a city of area 25 square
units. The latency quickly increases with the increase in city
area. For a large SCwith area 900 sq. units, the minimum IRT
is 46 time units. Under these circumstances, if a SC requires
IRT to be less than 55 time units for 90% of the time, then
the city area cannot exceed 225 sq. units. The IRT can be
reduced by deploying more Smart Emergency Management
Units (SEMUs) across the city. Ideally each suburb of the city
should have one SEMU,whichmay not be feasible due to cost
and space constraints.

2) EMERGENCY RESPONSE LATENCY UNDER VARIOUS
TRAFFIC CONDITIONS
Smart city traffic conditions are influenced by time of the
day, season, activities, etc. Bad traffic conditions, as point
out in [38], significantly influence ERU journey time, fuel

consumption, and air pollution. To study the impact of traf-
fic conditions we varied the traffic congestion probabilities
from 0 (no roads are congested) to 0.8 (highly congested
roads). When the probability of congestion is 1.0 then the
ERUwill not be able to move. High and low values of pc may
represent various realistic situations. For example, low values
of pc can model the situation when ERU has nondeterministi-
cally chosen a highway to reach its destination. On the other
hand, if inner city roads are selected by ERU, pc will assume
a higher value. Our model helps in determining the influence
of traffic congestion on SC emergency services.

Fig. 7 shows the IRT with respect to city size for vary-
ing probabilities of congestion. It can be noticed from the
figure that low to moderate traffic congestion (pc < 0.5)
doesn’t drastically change the IRT especially for small cities
(i.e. SCs < 100 sq units). However, heavy traffic congestion
(pc = 0.9), which are more likely on IRs and less likely
on MWs, has severe impact on IRT. In other words, large
cities with high probability of congestion should deploy
more SEMUs in order to meet the required response time
requirements.

FIGURE 7. The time to reach the incident location for varying city sizes at
different congestion levels.

3) EMERGENCY RESPONSE LATENCY WITH ADDITIONAL
SEMUS
As discussed in previous subsection, installing more
SEMUs will reduce the IRT in smart cities (SCs). Careful
pre-positioning of SEMUs can reduce IRT and the total
number of required SEMUs as suggested in [39]. We have
studied the influence of a number of SEMUs (Nsemu) on
IRT for various SCs under different traffic conditions (pc).
It is assumed that emergency requests in a SC are uniformly
distributed, and hence additional SEMUs are placed evenly
across the city. Fig. 8 shows the Nsemu needed for different
city sizes under distinct traffic conditions. The chosen city
sizes are: small (100 sq. units), medium (200 sq. units),
and large (400 sq. units). These city sizes can be mapped
to any realistic units in sq. km or sq. miles. The traffic
conditions on roads could be: NoCongestion, LowConges-
tion, MidCongestion, HighCongestion. The cities with no
congestion are represented by (pc = 0), whereas high
congestion is represented by (pc = 0.9). The results show
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FIGURE 8. IRT with different number of SEMU locations for three smart
city sizes under various traffic conditions.

that the IRT decreases proportionately with the increase in
Nsemu. Although its influence appears to be higher under
high congestion conditions, the percentage of change is the
same. IRT decreases by 80% when Nsemu is increased to 5,
regardless of traffic conditions and city areas. In other words,
to maintain the same level of response time, Nsemu should be
increased with the traffic congestion. For example, to achieve
the same IRT during the high traffic congestion (pc = 0.9) as
that of the IRT when no traffic congestion (pc = 0), we need
at least 10 uniformly distributed SEMUs across the city.

B. OPERATOR ASSISTED EMERGENCY RESPONSE SYSTEM
In the previous scenarios, the decisions to dispatch ERUs
were made by an autonomous system. Its task was to take
decisions based on the received sensor inputs. There are
several situations where available sensor information is not
sufficient to take correct decisions, and may result in false
positive or negative alarms. Involvement of a skilled human
operator in the decision process will improve the quality
of decisions there by reducing the number of false alarms.
However, human operators have their own drawbacks. Oper-
ator decision making capabilities (quality) are influenced by
their skill levels, current workload, and fatigue thresholds.
These factors need to be considered in the design of smart
city emergency response systems that are assisted by human
operators. In this subsection, we are examining the effect of
different skilled human operators on the service availability
and number of false alarms.

1) FALSE ALARMS
In Section IV-A, we assumed that all service requests are
genuine and there are no false or missed alarms. In reality,
due to various reasons, such as sensor failures, there is a
chance of error in event detection. If these errors are not
identified properly, they may result in either unnecessary
ERU dispatches or emergency events may not get timely
service. A skilled operator can help in reducing/eliminating
the FAs. However, the operator’s performance is influenced
by his current workload and fatigue factors.

Fig. 9 shows the percentage of false alarms for different
levels of operator involvement (pop), fatigue thresholds (Fth)
and workloads (W ). The percentage of operator involvement
in a session is modeled using pop. We chose four levels of pop
- 0, 0.3, 0.6 and 0.9. The value pop = 0 refers to the case
when there is no operator. From this figure, it is evident that
operator involvement reduces the false alarms considerably.
For example, when pop = 0.9 the false alarm percentage
dropped by 81% as compared to the case with no operator
involvement. However, this result didn’t account for operator
workload or his fatigue tolerance. In reality, the human oper-
ator will not produce ideal results under all workloads. His
decision making skills are affected by his current workload
and fatigue thresholds.

FIGURE 9. False alarm percentage for various levels of skilled operator
involvement.

We considered four different operator fatigue thresholds
(Fth) representing four diverse operators; higher values of
Fth mean more robust operator, and workload will have any
little influence on his performance. The results show that
robust operator improves the quality of emergency services
noticeably, especially when pop is high. When pop = 0.9,
a robust operator (i.e. Fth = 9) reduces the FA percentage
by 21% than that of the operator with low fatigue threshold
(Fth = 0). Please note that Fth has no influence on the
performance when there is no operator (pop = 0), and hence
the variance with Fth are omitted for this case from the figure.

We further examined different workload levels of oper-
ator. Fig. 9 shows the results for two workloads (low and
high). Higher workload degrades the operator performance
in all cases. Its impact is more when the operator is heavily
involved in the decision process, regardless of operator’s
fatigue threshold. For example, under high workloads with
pop = 0.9 and Fth = 9, the FA percentage increases by 6%
as compared to less loaded operator.

2) SERVICE AVAILABILITY
In this section, we study the probability of ERU availability
for cities with diverse incident rates. We denote average inci-
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dent rate as probability of volatility (Pvty). We consider three
cities with low (Pvty = 0.1), medium (Pvty = 0.5) and high
(Pvty = 0.9) incident rates. We are measuring the probability
of ERU availability (PSA) during the times of unrest (volatile
times). We also changed the volatility periods (Tvty) from
small duration (20) to long duration (80) time units. We study
these parameters for different levels of operator involvement.

Fig. 10 shows how ERU availability (PSA) is affected
for cities with various incident rates, volatility periods, and
levels of operator involvement. We can see that PSA quickly
drops to low values when the volatility period (Tvty) is high.
In the cities with low probability of volatility (Pvty), the ERU
availability (PSA) is high. A fully autonomous SEMU can
service a city with incident rate less than 10% and volatility
duration less than 20 time units. However, in the cities with
high incident rates an operator involvement up to 60% can
still guarantee a high service availability.

FIGURE 10. Probability of service availability for cities with different
incident rates during periods of distress.

For higher volatility duration an operator must be involved
to maintain service availability. This means, in rare situa-
tions, when safer cities have high periods of unrest, PSA can
be improved by increasing the operator involvement (pop).
However, for the cities with high incident rates (Pvty ≥ 0.6),
a good level of PSA cannot be maintained even with full
operator involvement. In such circumstances, we might need
to bring extra ERUs from other cities.

C. SUMMARY OF RESULTS
As demonstrated in the previous subsections, with the help
of model checking a smart city designer will be able to
decide key parameters before the actual deployment of the
infrastructure. Our approach allows a designer to answer a
broad range of questions. Here are the few examples:
• In cities of varying sizes (small, medium, large) and at a
given traffic congestion, howmany SEMUs are required
to maintain certain incident response time? For example,
in a city of 100 sq. units with no congestion five SEMUs
are needed to achieve IRT of two time units.

• In the presence of human operators of varying skills set
and workload conditions, what is the degree of opera-
tor’s involvement needed to maintain the false alarm rate
under certain threshold? For example, a skilled operator
working at light workload conditions is required to be
involved at least 90% of the time to keep false alarm rate
less than 20%.

• What is the maximum area of a city that could be
serviced, if the response time needs to be less than
certain value for majority of cases? For example, if a city
requires response time to be less than 55 time units for
90% of the cases, then the city area cannot exceed 225
sq. units.

• How will the response time get affected if a city
experiences sudden traffic congestion? For example,
the response time in a city of 400 sq. units will be
increased by 58% if the probability of congestion is
increased by 40%.

• In a city of varying volatility, what is the degree of
operator’s involvement needed to keep the availability of
resources (such as ERUs) within required threshold? For
example, to maintain service availability around 90% in
a moderately volatile city, a minimum of 60% operator’s
involvement is needed.

In general, our work allows a designer to analyze a complex
sets of parameters to meet a variety of service level quality
requirements in a smart city without actual deployment or
time consuming simulations. However, modeling big systems
has to be done with extreme care in order to avoid state
explosion problem. For example, the complex interaction
among multiple SEMUs and ERUs in a smart city may result
in huge number of states and hence the system needs to
be carefully modeled following the general guidelines given
in [37]. Another limitation to our work is related to those type
of events that are catastrophic in nature. These events may
result in total collapse of smart city infrastructure and are not
handled in our present work.

V. CONCLUSION AND FUTURE WORK
This paper modeled emergency management services in
smart cities using probabilistic model checking, and demon-
strated its benefits in planning and analyzing the performance
of these services. We have presented a holistic approach to
model the smart cities as a dynamic, uncertain and complex
environment where multiple events with varying severity take
place in a continuous and non-deterministic manner at several
locations in the city. Our model takes into consideration com-
pletely autonomous emergency management systems as well
as semi-autonomous systems that leverage the proficiency
of a human operator. We have taken several parameters into
account including city size and types, event severity, event
location, incident rate, traffic congestion, and number of
ERUs. Additionally we have also considered key operator’s
characteristics, such as fatigue, workload, operator involve-
ment and studied their impact on emergency management.
By using PRISM, we have modeled extensive set of scenarios
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to capture the effect of these parameters and have provided
useful insights.

There are many possible extensions to the proposed model.
It can be extended to find the optimal placement of SEMUs
in smart cities depending on city parameters such as event
distribution, population density, business locations, road con-
gestion/conditions, etc. Another interesting extension to this
model is malicious human behavior to induce false alarms
in the system, and study robustness of the system in such
scenarios. The model can be extended to a game-based
strategy where PRISM-games can be used to assess various
parameters against each other, thus creating a Pareto curve
between two or more optimization variables. Prism-games
allow minimizing or maximizing the optimization variables
resulting into a Pareto curve that can be used to make an
optimal choice among various variables. This can also lead to
the design of an efficiency evaluation system for comparing
models with different, possibly conflicting, parameters in
emergency management system. These extensions will be
studied as part of future work.
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