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ABSTRACT This paper proposes a position estimation method for a planar switched reluctance
motor (PSRM). In the method, a second-order sliding mode observer (SMO) is used to achieve sensorless
control of a PSRM for the first time. A sensorless closed-loop control strategy based on the SMO without
a position sensor for the PSRM is constructed. The SMO mainly consists of a flux linkage estimation,
an adaptive current estimation, an observing error calculation, and a position estimation section. An adaptive
current observer is applied in the current estimation section to minimize the error between the measured and
estimated currents and to increase the accuracy of the position estimation. The flux linkage is estimated by
the voltage equation of the PSRM, and the estimated flux linkage is then used to estimate the phase current in
the adaptive current observer. To calculate the observing error of the SMO using the measured and estimated
phase currents, the observing error of the thrust force is introduced to replace the immeasurable state error
of the position and speed of the mover. The sliding surface is designed based on the error of the thrust force,
and stability analysis is given. Once the sliding surface is reached, the mover position is then estimated
accurately. Finally, the effectiveness of the proposed method for the PSRM is verified experimentally.

INDEX TERMS Position estimation, planar switched reluctance motor (PSRM), sensorless control, sliding
mode observer (SMO).

I. INTRODUCTION
Direct-drive planar motors have gained increasing attention
in the advanced manufacturing industry because of their
advantages of direct drive, simple structure, high reliability,
low friction, and no backlash compared with conventional
planar motors with cumbersome mechanical transmission
mechanisms [1]–[4]. Among the different kinds of planar
motors, the planar switched reluctance motor (PSRM) is
an attractive candidate in two-dimensional (2-D) positioning
devices because it features high precision, low cost, low heat

The associate editor coordinating the review of this manuscript and
approving it for publication was Gaolin Wang.

loss, easy manufacturing, and strong resilience to harsh envi-
ronments [5]–[6]. A variety of research studies on PSRMs
have been reported over the past decade. An inverse force
function using sparse least squares support vector machines
(LS-SVMs) was proposed in [7] to achieve nonlinear mod-
eling for precision motion of a PSRM. An improved PSRM
using an optimization design was developed in [8] to mini-
mize the electromagnetic force ripple. An adaptive controller
was applied to a PSRM in [9], and the experimental results
showed that the controller had better position control perfor-
mance than a proportional integral derivative (PID) algorithm
in dynamic index, static index, and robustness to distur-
bances. A theoretical and experimental study of an efficiency
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improvement for a PSRM was performed, which employed
a novel current distribution method with a maximum-force-
per-ampere strategy [6]. A position detection approach to
achieve sensorless control of a PSRM using a current injec-
tion method was proposed in [10], and the effectiveness of
sensorless position detectionwas verified through simulation.

For precision control of a PSRM, accurate mover position
feedback is essential, which can be obtained via direct posi-
tion sensors or indirect sensorless control methods. Direct
position sensors, such as linear optical encoders or magnetic
scales, offer accurate position signals continuously; however,
they result in higher cost, a more complicated system struc-
ture, and lower system reliability. To avoid this issue, devel-
oping a sensorless control method, which features a lower
cost, a less complicated system structure, and higher system
reliability, is effective for the PSRM.

However, few studies have comprehensively reported
sensorless control of a PSRM thus far. Over the past
three decades, multifarious sensorless control methods have
been proposed to eliminate the position sensors for rotary
switched reluctance motors (RSRMs), e.g., impressed diag-
nostic pulse-voltage methods [11]–[12], modulation-based
methods [13]–[14], current waveform monitoring meth-
ods [15]–[19], flux/current methods [20], neural-network-
based methods [21]–[22], fuzzy-logic-based methods
[23]–[24], and state observer methods [25]–[27].

Among these sensorless control methods, the impressed
diagnostic pulse-voltage method, the flux/current method,
and the state observer method are more feasible in terms
of realizing sensorless control of a PSRM. The flux/current
method takes advantage of the inherent flux/current magnetic
characteristics to infer the mover position from the measure-
ment data of the current and the flux [20]. There are three
drawbacks if this method is applied to a PSRM: 1) the number
of the stator poles for a PSRM is usually much larger than that
for an RSRM; thus, it is difficult to guarantee the same flux-
current-position profile for all pole pitches of the mover and
stator because ofmanufacturing error; 2) a largememory stor-
age is needed to store precision flux-current-position data;
3) the detected current is usually susceptible to noise caused
by the drivers, whichwill result in a large error for the position
estimation. The impressed diagnostic pulse-voltage method
probes an unexcited phase with a short-duration voltage pulse
and evaluates the resulting current to measure the mover posi-
tion [12], [28]. However, a nonnegligible opposite force is
generated by the diagnostic pulse when the PSRM operates at
high speed; thus, this method is only applicable for initial and
low-speed position estimations. The state observer method is
commonly categorized as the Luenberger observer and the
sliding mode observer (SMO). Both approaches employ the
operating current and voltage to calculate the mover posi-
tion. The Luenberger observer is computationally intensive,
and the linear Luenberger observer is sensitive to parameter
changes. Since the PSRM is magnetically saturated under
a heavy load condition, the stability and robustness of the
Luenberger observer are unsatisfactory. The SMO has good

adaptability and robustness to interior nonlinear and external
disturbances. Furthermore, this method has the advantage of
generating zero opposite force without an injected pulse [12].
As mentioned above, the SMO is the desired method for
sensorless control of a PSRM.

The PSRM, like the RSRM, is developed based on the min-
imum reluctance principle; nevertheless, it is different and
challenging to apply the SMO in a PSRM because the PSRM
has three disadvantages with regard to position estimation
compared with the RSRM.

1) Higher requirements for accuracy and the calculation.
Most RSRMs operate under speed control mode, while the
PSRM is usually applied in position control mode. Position
estimation for RSRMs usually only requires several discrete
position signals for speed estimation, while for a PSRM,
the estimated position information is required to be con-
tinuous and more precise for real-time position feedback
and phase inductance calculations. Therefore, the accuracy
requirement for the position estimation for a PSRM is much
higher than that of an RSRM. Moreover, the real-time capa-
bility requirement of the system is also higher, as the SMO is
computationally intensive and a continuous estimation results
in a larger calculation than that required for an RSRM.

2) Smaller variation in the inductance. The SMO utilizes
inductance variation information to determine the position
on account of the phase inductance of the RSRM varying
significantly with the rotor position. The ratio of the maxi-
mum to minimum inductance in an RSRM is generally three
or even larger, while that of the proposed PSRM is only
approximately 1.2 owing to a smaller pole pitch of the PSRM.
The inductance-position curve is generally measured offline
based on the assumption that the air gap is constant. Actually,
the air gap varies due to the attraction force when the machine
is running. For an RSRM, the attraction force can be balanced
due to the symmetrical structure, while in the case of a PSRM,
the attraction force directly acts downward on the moving
platform, causing the variation in the air gap. Due to the
small ratio of the maximum to minimum inductance, a small
variation in the air gap will lead to a large position estimation
error for the PSRM. This indicates that the sensitivity of the
inductance to position for a PSRM is much lower than that
of an RSRM, and the position estimation accuracy is easily
affected by the air gap.

3) Non-periodical characteristic. Theoretically, the current-
inductance-position curves are the same at each pitch in an
RSRM and a PSRM. Actually, due to the factor of process-
ing, the current-inductance-position curve in each pitch is
different. The number of stator poles in an RSRM is usually
6, 8, or 12, while that in a PSRM is generally more than
100. Compared to RSRMs, it is impossible for a PSRM
to measure the current-inductance-position curves of every
pole pitch. Therefore, PSRMs suffers more from the non-
periodical characteristic than RSRMs.

In this paper, an SMO-based position estimation method is
proposed to achieve sensorless control of a PSRM. The con-
tributions and novelty of this paper consist of the following:
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i) developing an SMO for a PSRM to achieve sensorless
control for the first time; ii) extending the sensorless control
study to a PSRM.

The organization of the remainder of the paper is as fol-
lows. The mathematical model of the PSRM is given in
section II. The proposed position estimation method is clari-
fied in section III. The experimental setup, results, and anal-
ysis are given in section IV. Section V concludes the paper.

TABLE 1. Specifications of the PSRM.

FIGURE 1. Structure of stator sets, combination of four stator blocks and
one stator block. (a) Stator sets. (b) Four stator blocks. (c) Stator block.

II. MATHEMATICAL MODEL OF THE PSRM
The proposed PSRM is a two-dimensional motor that can
be considered as two linear switched reluctance motors with
orthogonal magnetic circuits [8]. The prototype of the PSRM
developed in our laboratory is presented in [6]. The spec-
ifications of the PSRM are listed in Table 1. This PSRM
comprises two components: 1) a stator platform and 2) amov-
ing platform. The stator platform consists of a stator base,
stator sets, a y-axis linear guide and a y-axis linear encoder
on the stator base. The stator sets are the combination of
four stator blocks laminated with 0.3 mm silicon steel plates,
as shown in Fig. 1. The moving platform consists of a y-axis
moving platform, an x-axis linear guide, an x-axis moving
platform on the y-axis moving platform, and an x-axis linear
encoder. Two sets of three-phase movers are installed on the
x-axis moving platform perpendicular to each other, as shown
in Fig. 2(a). The movers are laminated with 0.3 mm silicon
steel plates with three-phase coils, as shown in Fig. 2(b)-(c).
Due to the perpendicular arrangement, the two sets of three-
phase wingdings are decoupled magnetically. Phases xa, xb,
and xc are responsible for motion in the x-axis, and phases
ya, yb, and yc are responsible for motion in the y-axis.

FIGURE 2. Structure of the x-axis moving platform and the mover.
(a) x-axis moving platform. (b) Silicon steel plates. (c) Mover.

FIGURE 3. Phase inductance versus mover position of l -axis.

The mathematical model of the PSRM under the assump-
tion of magnetic linearity can be represented as

ψ̇lk = Ulk − ilkRlk (1)

v̇l = −
B
ml

vl +
1
m l

(fl − fL) (2)

ṡl = vl (3)

fl =
c∑

k=a

1
2
∂Llk
∂s

i2lk (4)

whereψlk ,Ulk , ilk , Rlk , and Llk are the flux linkage, the phase
voltage, the phase current, the resistance, and the inductance
of phase k (k = a, b, c) in the l-axis (l = x, y), respectively.
sl and vl are the mover position and mover speed in the l-
axis, respectively. Define the position where the salient pole
of the mover completely aligns with the salient pole of the
stator as the origin position. fl is the electromagnetic thrust
force in the l-axis, and fL is the external load force. B is the
viscous damping coefficient, andml is themass of themoving
platform. The phase flux linkage ψlk , the mover position sl ,
and the mover speed vl constitute the state variables. When
the fringe effect and saturation effect that lead to the magnetic
nonlinearity are neglected, the phase inductance of the PSRM
linearly varies with the mover position for a given current
[29], as shown in Fig. 3. The inductance in the l-axis is
assumed to be given by

Lla(sl (t)) = Ls + Lo − L1 cos(
2πsl (t)
τ
+
π

3
)

Llb(sl (t)) = Ls + Lo + L1 cos(
2πsl (t)
τ

)

Llc(sl (t)) = Ls + Lo − L1 cos(
2πsl (t)
τ
−
π

3
)

(5)

where τ is the pole distance. Ls, Lo, and L1 are the leakage
inductance, average inductance, and variation in the induc-
tance in the l-axis, respectively. Rearranging (4) with (5),
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FIGURE 4. Position sensorless control of the PSRM system based on the sliding mode observer.

the thrust force can be expressed as

fla(t) =
πL1i2la sin(

2πsl (t)
τ
+
π

3
)

τ

flb(t) = −
πL1i2lb sin(

2πsl (t)
τ

)

τ

flc(t) =
πL1i2lc sin(

2πsl (t)
τ
−
π

3
)

τ

(6)

Lo and L1 are given by

Lo =
Lmax + Lmin

2
(7)

L1 =
Lmax − Lmin

2
(8)

where Lmax is the inductance of the mover coil when the
mover is at the aligned position, which is the maximum
inductance. Lmin is the inductance of the mover coil when
the mover is at the unaligned position, which is the minimum
inductance.

III. PROPOSED SLIDING-MODE-OBSERVER-BASED
POSITION ESTIMATION METHOD
A. SENSORLESS CONTROL STRATEGY
Fig. 4 depicts the position sensorless control drive system of
the PSRM based on the SMO. The force distribution control

method is applied to generate the desired thrust force with a
low ripple. The outer loop of the control system is the position
loop, and the inner loop is the current loop. The output of the
position controller is a given thrust force, and the thrust force
is assigned to the thrust force distribution function to obtain
the given thrust force and current of each phase.

For linear motion in the x-axis, the mover position is
estimated by the SMO algorithm. Ŝx is compared with the
reference position sx−ref , and the position error ex is pro-
cessed to produce the thrust force command fx via an x-axis
PID controller. In terms of fx and Ŝx , the three-phase current
commands ixa, ixb, and ixc are obtained from the force cur-
rent conversion algorithm.ixa,ixb, ixc, and the detected three-
phase currents i′xa, i

′
xb, i
′
xcare processed via the current drive

to provide three-phase currents to the PSRM for achieving
x-axis motion. The y-axis operates on the same principle as
the x-axis.

In the SMO algorithm, the measured three-phase currents
and voltages are utilized to calculate the flux linkage accord-
ing to the phase voltage equation. The phase currents are
then estimated based on the flux linkage and the inductance
model of the PSRM. In this paper, an adaptive current esti-
mation algorithm is applied to minimize the effect of current
noise and to increase the precision of the position estimation.
Comparing the estimated currents with the ones measured by
the current drive, the error is then used to estimate the position
of the mover by the observer.
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B. ADAPTIVE CURRENT ESTIMATION
The measured variables in the sensorless PSRM drive system
are the phase current ilk and the phase voltage Ulk . In the
SMO, the measured phase current ilk and the estimated phase
current îlk are used to calculate the observing errors. Neglect-
ing the saturation nonlinearity, the estimated initial current î0
is given as

î0 =
ψ̂0

Llk (sl(t))
(9)

where ψ̂0 is the initial flux linkage of phase k in the l-axis
in each cycle. To reduce the estimation error of the current
at each subsequent moment, a PI adaptive observer is used to
improve the current estimation accuracy,

în+1 =
ψ̂n+1

Llk (sl(t))
+kp(in+1− în)+ki

∫
(in+1 − în)dt (10)

where kp and ki are the proportional and integral coefficients
of the PI controller, respectively.

C. SLIDING-MODE-OBSERVER-BASED
POSITION ESTIMATION
The phase flux linkage is computed by the integration of (1) as

ψ̂lk =

∫
(Ulk − ilkRlk)dt (11)

on the assumption that the error in the state variable ψlk is
zero.

The viscous damping coefficient B in (2) is much smaller
than the mass of the mover ml , so (2) can be rearranged as

v̇l =
1
m l

(f̂l − fL). (12)

Therefore, a reduced observer for the PSRM model is
designed. The second-order SMO can be configured as

˙̂sl = v̂l + klssigmoid(els) (13)

˙̂vl =
1
m l

(f̂l − fL)+ klvsigmoid(elv) (14)

where Ŝl and v̂l are the estimated mover position and the
estimated mover speed in the l-axis, respectively. kls and klv
are the observer gains. The sigmoid function is applied to
reduce chattering instead of the sign function, which is non-
linear [31]–[33].

Define the observing errors as

els = sl − ŝl (15)

elv = vl − v̂l . (16)

However, the state variables sl and vl are immeasurable in
this sensorless PSRM drive system. As a result, els and elv
are also not measurable. In this paper, the observing error of
the thrust force elf is introduced to replace els and elv. elf is
configured as

elf =
c∑

k=a

(flk − f̂lk ) (17)

where flk is the thrust force of phase k in the l-axis. It must
be noted that the thrust force fl is equivalent to the load force
fL, while the PSRM system is working on the sliding mode
surface

Sls = els = sl − ŝl = 0 (18)

i.e., elf is now zero. Hence, if the thrust force increases at
this time (elf > 0), the mover will consequently accelerate,
causing the position estimated error elv and the speed esti-
mated error els to increase to greater than 0. If the thrust
force decreases rather than increases at this time (elf < 0),
the mover will decelerate, causing elv and els to decrease to
smaller than 0. It can be concluded that

sgn(elf ) = sgn(els) = sgn(elv). (19)

Therefore, the indirect sliding surface

elf =
c∑

k=a

(flk − f̂lk ) = 0 (20)

may be used to substitute the desired sliding surface els = 0.
This means that it is reasonable to select elf to be a substitu-
tion of elv and els. Then, the observer is represented as

˙̂sl = v̂l + klssigmoid(elf ) (21)

˙̂vl =
1
m l

(f̂l − fL)+ klvsigmoid(elf ) (22)

Define the Lyapunov function

V =
1
2
S2ls. (23)

The differential equation of V is

V̇ = Sls · Ṡls = els(elv − klssigmoid (elf )). (24)

The reaching and stability conditions are satisfied for any
initial values of the states as long as the following inequality
is true:

V̇ = els(elv − klssigmoid(elf )) < 0 (25)

This condition is satisfied provided that

kls > |elv| (26)

which guarantees that the sliding surface will be reached.
From (13) to (16), the errors of the SMO are defined as

ėls = elv − klssigmoid(elf ) (27)

ėlv =
1
m l

(fl − f̂l)− klvsigmoid(elf ). (28)

The first term on the right side of (28) can be neglected, as the
difference between the actual and estimated thrust force is a
small number, klv is typically a much larger number. Then, the
first term on the right side can be neglected and ėlv becomes

ėlv = −klvsigmoid(elf ). (29)

On the sliding surface Sls = 0, the average value of ėls can
be considered 0, which gives from (27)

elv = klssigmoid(elf ) (30)
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TABLE 2. The parameters of the SMO and the PI parameters of the
adaptive current estimation.

and then (29) can be rewritten as

ėlv = −
klv
kls
elv. (31)

Therefore, the speed error converges exponentially to zero on
the assumption that condition (26) is met.

FIGURE 5. Experimental setup of the PSRM.

IV. EXPERIMENTAL VERIFICATION AND ANALYSIS
A. EXPERIMENTAL SETUP
Based on the dSPACE loop simulation platform, a position
sensorless control experimental platform for the PSRM is
built. The experimental platform consists of a PSRM with
a power supply, a computer, a dSPACE module, a current
drive, and a voltage isolation acquisition board, as shown in
Fig. 5. The control algorithm is designed based onMATLAB/
Simulink, and it is uploaded to the dSPACE modular hard-
ware for realizing real-time control. The position estimation
is realized with a sensor associated operation in this paper.
Two linear optical encoders with dual resolutions of 50 nm
and 100 nm are used to detect the actual positions, which
is the foundation for the operation and commutation of the
PSRM.

The voltage and current of the mover coil are obtained in
real time by the voltage isolation acquisition board and the
current drive. Furthermore, to reduce the effect of the offset
voltage and noise in the voltage and current sampling process,
an offset correction program and a low-pass filter with a
cutoff frequency of 200 Hz are employed. These real-time

FIGURE 6. Experiment results of planar motion. (a) T = 10 s. (b) T = 15 s.

FIGURE 7. Estimated flux linkage without adaptive current estimation.

voltage and current data are input to the SMO for position
estimation.

B. EXPERIMENTAL RESULTS
The parameters of the SMO and the PI parameters of the
adaptive current estimation are given in Table 2. The exper-
iment is designed to drive the PSRM to make a planar
motion, which can be disassembled into trajectories in the
x- and y-axes. These trajectories have an amplitude of 50mm,
and the planar trajectory experimental results with different
duties (T = 10 s and T = 15 s) are shown in Fig. 6.
The planar motion with a duty T of 10 s is split into the
x- and y-axes for analysis. The estimated current and mover
position of the x-axis are shown in Figs. 7-12, and the exper-
imental results in the y-axis are shown in Figs. 13-16.

Fig. 7 shows the calculated flux linkage in every phase,
and Fig. 8 shows the estimated current in the x-axis without
adaptive current estimation. The current estimated error of
phase xa ranges from −5.026 A to 2.339 A, and the average
current absolute error is 0.547 A. The current estimated error
of phase xb is from −2.474 A to 1.746 A, and the average
current absolute error is 0.338 A. The current estimated error
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FIGURE 8. Estimated current results and estimated errors without
adaptive current estimation in the x-axis.

of phase xc is from −0.956 A to 3.176 A, and the average
current absolute error is 0.673 A.

Fig. 9 shows the estimated flux linkage, and Fig. 10 shows
the estimated current in the x-axis with adaptive current
estimation. The current estimated error of phase xa ranges
from −1.853 A to 0.867 A, and the average current absolute
error is 0.222 A. The current error of phase xb is from
−1.157 A to 1.008 A, and the average current absolute error
is 0.201 A. The current estimated error of phase xc is from
−0.782 A to 1.081 A, and the average current absolute error

FIGURE 9. Estimated flux linkage with the adaptive current estimation.

is 0.215 A. Compared with the situation in which adaptive
current estimation is not applied, the maximum errors of the
current estimation of phases xa, xb, and xc are reduced by
63.1%, 59.3%, and 66.0%, respectively.

Fig. 11 shows the position estimation results in the x-axis
without adaptive current estimation, and Fig. 12 shows the
position estimation results when adaptive current estimation
is applied. Without adaptive current estimation, the error
between the measured position and the estimated position
ranges from −3.014 mm to 6.642 mm, and the absolute
position error is 2.483 mm on average. With adaptive cur-
rent estimation, the position estimating error ranges from
−2.239 mm to 1.785 mm, and the absolute position error is
0.885 mm on average. Compared with the situation in which
adaptive current estimation is not applied, the maximum
position estimated error is reduced by 66.3%.

Fig. 13 shows the estimated current in the y-axis without
adaptive current estimation. The current estimated error of
phase ya ranges from −0.742 A to 3.531 A, and the average
current absolute error is 0.784 A. The current estimated error
of phase yb ranges from−2.273A to 1.838A, and the average
current absolute error is 0.349 A. The current estimated error
of phase yc ranges from−5.256A to 7.675A, and the average
current absolute error is 0.555 A.

Fig. 14 shows the estimated current in the y-axis with
adaptive current estimation. The current estimated error of
phase ya is from−0.951A to 2.036A, and the average current
absolute error is 0.172A. The current estimated error of phase
yb is from −1.157 A to 1.008 A, and the average current
absolute error is 0.201A. The current estimated error of phase
yc is from −0.754 A to 0.673 A, and the average current
absolute error is 0.086 A. Compared with the situation in
which adaptive current estimation is not applied, the maxi-
mum errors of the current estimation of phases ya, yb, and yc
are reduced by 67.6%, 73.5%, and 63.4%, respectively.

Fig. 15 shows the position estimation results in the y-axis
without adaptive current estimation, and Fig. 16 shows the
position estimation results when adaptive current estimation
is used. Without adaptive current estimation, the position
estimated error ranges from−7.119mm to 6.896mm, and the
absolute position error is 3.372mmon average.With adaptive
current estimation, the position estimated error ranges from
−2.365mm to 2.535 mm, and the absolute position error is
1.093 mm on average. Compared with the situation in which
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FIGURE 10. Estimated current results and estimated errors with the
adaptive current estimation in the x-axis.

adaptive current estimation is not applied, the maximum error
of the position estimation is reduced by 63.4%. Table 3 shows
a detailed comparison of the errors in the estimated phase
current ilk (l = x, y, k = a, b, c) and the estimated position
sl (l =x, y) in both cases with and without adaptive current
estimation.

C. ANALYSIS
Based on theoretical analysis and the experimental results,
the factors that may lead to potential estimated errors are
analyzed as follows.

FIGURE 11. Estimated position results without adaptive current
estimation in the x-axis: (a) Measured position and estimated position.
(b) Estimated position error.

FIGURE 12. Estimated position results with the adaptive current
estimation in the x-axis: (a) Measured position and estimated position.
(b) Estimated position error.

1) EFFECT OF THE MEASURED PHASE
CURRENT AND VOLTAGE
In this paper, the phase current is measured by the interior
current sensor of the motor drive, and the phase voltage
is measured by the voltage isolation acquisition board. The
offset and noise have been detected in these sensors. To min-
imize the offset and signal interference, an offset correc-
tion program and a low-pass filter with a cutoff frequency
of 200 Hz are employed.

2) EFFECT OF THE COIL RESISTANCE
The flux linkage is calculated by the integration of the phase
current and voltage as discussed in (11), so the variation in the
coil resistance will affect the estimation of the flux linkage.
Due to the continuous operation of the PSRM, the tem-
perature of the coil will increase [34], and the relationship
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FIGURE 13. Estimated current results and estimated errors without
adaptive current estimation in the y-axis.

between the coil resistance and the temperature variation can
be expressed as

R = R0(1+ α1T/100) (32)

where α is the temperature coefficient of the resistance,
and R0 is the resistance at T0. In the proposed method,
the flux linkage integration is cleared when the commutation
is performed to reduce the accumulated error from the varia-
tion in the coil resistance in each electric period. The error
caused by the temperature before the commutation cannot
be eliminated by this method during every electric period.

FIGURE 14. Estimated current results and estimated errors with the
adaptive current estimation in the y-axis.

However, the electrical period is so small that the variation
in the temperature in each period can be ignored. Therefore,
the variation in the coil resistance in every electric period can
also be ignored.

3) EFFECT OF THE PHASE INDUCTANCE
The average inductance Lo and the inductance variation L1 in
the inductance model used in (5) are not fixed values but vary
with the mover position, which leads to estimated errors of
the current. However, the adaptive current estimation in this
paper can effectively reduce this error.
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TABLE 3. Estimated error of the current and position.

FIGURE 15. Estimated position results without adaptive current
estimation in the y-axis: (a) Measured position and estimated position.
(b) Estimated error.

FIGURE 16. Estimated position results with the adaptive current
estimation in the y-axis: (a) Measured position and estimated position.
(b) Estimated error.

4) EFFECT OF THE MECHANICAL MODEL
It can be seen from (2) that the friction of the motor is
not taken into account; however, the motor has a large nor-
mal force during operation in practice, which will generate

friction in the horizontal direction, so the estimation of the
mover acceleration v̇l is not accurate enough. The estimated
position is obtained by the integration of the mover speed vl ,
which is the integration of v̇l . In this process, the integration
accumulates the errors of the mover position. In response
to this problem, a position and speed correction module
was developed to clear the estimated position. The module
clears the value of the estimated position when the reference
position of the mover is judged to be 0 mm. Similarly, the
estimated speed is cleared when the reference speed is judged
to be 0 m/s to clear the accumulated error in the integration
process.

V. CONCLUSION
This paper presents the first attempt to comprehensively
report sensorless control for a PSRM. The SMO-based
position estimation method for sensorless control of a PSRM
has been proposed. Themover position is estimated by detect-
ing the voltage and current of every phase. The experimental
results indicate that the errors of the current and position are
greatly reduced by using adaptive current estimation, and the
mean absolute error of the estimated position is 0.885 mm in
the x-axis and 1.093 mm in the y-axis, respectively. It can be
concluded that the proposed method is feasible for a PSRM
without employing a position sensor. This method requires
neither additional hardware, nor massive experimental data,
nor huge interior memory. Furthermore, this method has the
advantage of generating no opposite force without an injected
pulse. The imprecisemechanicalmodel that does not consider
friction, which is applied to develop the SMO, is the main
source of the position error. Future work will focus on an
accurate mechanical model considering friction to improve
the accuracy of the estimated position.
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