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ABSTRACT Specific emitter identification (SEI) enables the discrimination of individual radio emitters
with the external features carried by the received waveforms. This identification technique has been widely
adopted in military and civil applications. However, many previous methods based on hand-crafted features
are subject to the present expertise. To remedy these shortcomings, this paper presents a novel SEI algorithm
using deep learning architecture. First, we perform Hilbert-Huang transform on the received signal and
convert the resulting Hilbert spectrum into a grayscale image. As a signal representation, the Hilbert
spectrum image has high information integrity and can provide abundant information about the nonlinear
and non-stationary characteristics of signals for identifying emitters. Thereafter, we construct a deep residual
network for learning the visual differences reflected in the Hilbert spectrum images. By using the residual
architectures, we effectively address the degradation problem, which improves efficiency and generalization.
From our analysis, the proposed approach combines high information integrity with low complexity, which
outperforms previous studies in the literature. The simulation results validate that the Hilbert spectrum image
is a successful signal representation, and also demonstrate that the fingerprints extracted from raw images
using deep learning are more effective and robust than the expert ones. Furthermore, our method has the
capability of adapting to signals collected under various conditions.

INDEX TERMS Deep residual network, Hilbert spectrum grayscale image, information integrity, Rayleigh
fading, relay, specific emitter identification.

I. INTRODUCTION
Specific emitter identification (SEI) is a technique to identify
individual radio emitters by extracting external features from
a given signal [1]. The external features, namely radio fre-
quency (RF) fingerprinting, are primarily the result of hard-
ware variability in the device’s analog components. Given
that RF fingerprinting is unique for each emitter and diffi-
cult to counterfeit, the SEI technique plays an increasingly
important role in military and civil fields, such as battlefield
spectrum management [2], and wireless network security [3].

The key of SEI is a set of features that renders identification
possible. In prior open research, features may be predefined
or inferred [4]. Predefined features relate to the well-
understood signal characteristics known in advance prior to
signal recording. For example, Brik creatively proposes a
passive radiometric device identification system (PARADIS)
that differentiates 138 wireless devices with accuracy of
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over 99% [5]. The characteristics are imperfections in the
modulation domain, such as frequency offset, I/Q origin off-
set, error vector magnitude, and magnitude and phase errors.
Based on PARADIS, several imperfections reflected in the
modulation domain are further utilized, thereby achieving
superior identification performance [6], [7]. Additionally, Liu
identifies wireless devices by estimating the nonlinearity of
the power amplifier (PA) [8]. The nonlinear PA model is
described by a Taylor series expansion, and the power-series
coefficients derived by observing the spectral regrowth are
used as the RF fingerprints. In [9], the characteristics of the
phase noise originating from the RF oscillator imperfections
are used as the unique device tags.

Differently from the predefined features, we say that
features are inferred when they are extracted from signals
by means of some spectral transformations. Numerous sig-
nal characteristics have been investigated using fast Fourier
transform, including power spectrum density [10] and spec-
tral correlation function [11]. However, the performances of
these methods are far from satisfactory because the subtle
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differences between emitters are difficult to manifest in the
power spectrum. Therefore, other complicated transforma-
tions have attracted the attentions of scholars. In [12], features
are extracted using discrete wavelet transform to identify
the individual RF emitters. Another common approach to
RF fingerprinting involves developing the bispectrum char-
acteristics. Square integral bispectra provide useful identi-
fication features [13]. Han further improves identification
accuracy by utilizing the distribution of the bispectrum
phase [14]. Furthermore, methods based on Hilbert-Huang
transform (HHT) have been demonstrated for successful RF
fingerprinting [15]–[17]. Specifically, the EM2 algorithm
uses energy entropy and color moments as identification
fingerprints [15], [16], which are extracted from the Hilbert
spectrum of the received signal. These features can differ-
entiate emitters by evaluating the uniformity of the Hilbert
spectrum. Consequently, several different spectral features,
including spectral flatness, spectral brightness, and spectral
roll-off, are further explored for improving identification
accuracy [17].

However, predefined and inferred features are largely
subject to the present expertise. The former is limited to
prior knowledge of the types and characteristics of signals,
whereas the latter relies on the existing tools of signal
processing.

In recent years, deep learning has achieved a series
of breakthroughs in machine vision and speech recogni-
tion. Motivated by such success, scholars have used deep
neural networks in modulation recognition [18], [19] and
radar waveform recognition [20], [21]. As the differences
between the individual emitters are subtle, SEI using deep
learning is still in a nascent stage. A convolutional neu-
ral network (CNN) operating on the time-domain complex
baseband error signal has achieved 92.29% identification
accuracy on a set of seven commercial ZigBee devices [22].
It should be noted that the architecture of CNN is more
suitable for extracting features from images than waveforms.
This implies that the method in [22] cannot maximize the
powerful self-learning capabilities of CNN, which degrades
identification accuracy. Another pioneer has demonstrated
that CNNs trained on a compressed bispectrum consid-
erably outperform conventional methods based on hand-
crafted features [23]. However, we notice that identification
performance using the bispectrum is far from satisfac-
tory [15], [16], [23]. Therefore, using a bispectrum image
as the data representation of the received signal is not an
ideal choice. In addition, dimensionality reduction may lead
to the loss of important details while removing the redundant
information.

To remedy these shortcomings, this paper presents a novel
SEI approach using deep learning architecture. First, we per-
form the HHT on the received signal and convert the resulting
Hilbert spectrum into a grayscale image. Thereafter, we con-
struct a deep residual network for learning the visual differ-
ences reflected in the Hilbert spectrum images in order to
discern the devices.

The main contributions are summarized as follows:
1) The Hilbert spectrum image is used as the data repre-

sentation of the received signal, which lays the foun-
dation for RF fingerprinting extraction using deep
learning architectures. To the best of our knowledge,
this attempt is the first time that the Hilbert spectrum
image is adopted as a signal representation.

2) We apply a deep residual network to the RF fingerprint-
ing problem. Deep residual network, which effectively
addresses the degradation problem, can ease the train-
ing of deep networks.

3) We further investigate the performance of our approach
under fading channels in single-hop and relaying sce-
narios. Simulation results demonstrate that the pro-
posed approach is robust to complex communication
systems and wireless channels.

The remainder of this paper is organized as follows.
Section II shows a concise description of the system model.
Section III introduces the novel deep learning methodology
for SEI, and provides the performance and complexity analy-
sis. Section IV presents a series of simulations and discusses
the experimental results. Finally, Section V concludes the
paper.

As a general convention, we use the following notations
throughout the paper: real part of complex number, <{·};
maximum value, max{·}; round toward negative infinity, b·c;
and mathematical expectation, E{·}.

II. SYSTEM MODEL
A. NONLINEAR MODEL
RF fingerprinting is possible due to hardware imperfections
in the analog circuitry introduced at the manufacturing pro-
cess. Here, we concentrate our attention on the PA, which is
the final stage prior to transmission.

As a memoryless nonlinear system, PA may cause distor-
tions of the frequency and amplitude characteristics, includ-
ing the amplitude/amplitude and amplitude/phase conver-
sions [24]. In general, the system response of PA is described
in a Taylor polynomial form. Let s0(t) represent the baseband
signal and fc be the carrier frequency. With the input s(t) =
<
{
s0(t)ej2π fct

}
, the output signal of PA can be given as

x(t) =
R∑
i=1

λi (s(t))i, (1)

where R is the Taylor polynomial order and {λ1, λ2, · · · , λR}
denotes the nonlinearity coefficients, which can be regarded
as the RF fingerprinting. As a convention, λ1 = 1.

B. SINGLE-HOP SCENARIO
Fig. 1(a) illustrates the typical communication system of
the single-hop scenario. The received signal transmitted by
emitter k can be expressed as

r(t) = α · x(t)+ ν(t)

= α

Re∑
i=1

λek,i (s(t))
i
+ ν(t), (2)
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FIGURE 1. Typical communication systems: (a) single-hop, and
(b) relaying.

where α is the fading coefficient, Re indicates the Taylor
polynomial order, λek,i represents the i-th nonlinearity coeffi-
cient of the k-th emitter, and ν(t) denotes the white Gaussian
noise process corrupting the signal. When α = 1, it refers to
the additive white Gaussian noise (AWGN) channel, whereas
when α is Rayleigh-distributed, it is the Rayleigh fading
channel.

C. RELAYING SCENARIO
Now, we consider the relaying scenario shown in Fig. 1(b).
The signal is amplified and retransmitted at the relay before
being collected by the receiver. Hence, for specific emitter k ,
the received signal at the relay can be given by

r ′(t) = α
Re∑
i=1

λek,i (s(t))
i
+ ν(t), (3)

where {λek,1, λ
e
k,2, · · · , λ

e
k,Re} are the nonlinearity coeffi-

cients of emitter k , α indicates the fading coefficient, and
ν(t) represents the noise of the channel from the emitters to
the relay. Similarly, the received signal at the receiver can be
written as

r(t) = β · r ′(t)+ υ(t)

= β

Rr∑
m=1

λrm

(
α

Re∑
n=1

λek,n (s(t))
n
+ ν(t)

)m
+ υ(t), (4)

where {λr1, λ
r
2, · · · , λ

r
Rr } refer to the nonlinearity coefficients

of the relay, Rr denotes its Taylor polynomial order, β is the
fading coefficient, and υ(t) indicates the channel noise from
the relay to the receiver. The fingerprinting of emitters, car-
ried by r(t) in (4), is contaminated by the relay characteristics,
thereby increasing the difficulty of discerning the individual
emitters.

III. METHOD
In essence, SEI is a classification problem. The key to address
the problem lies in the effectiveness and reliability of the
features used. Previous studies based on hand-crafted features
have been subject to the present expertise. Even experts can
hardly understand and extract complex high-dimensional fea-
tures, but such capability is the advantage of deep learning.

A. SIGNAL REPRESENTATION
Inspired by the excellent work of [15], we represent the signal
data using HHT, which is a powerful method for analyzing
nonlinear and non-stationary data [25]. The key technique is
empirical mode decomposition (EMD), with which compli-
cated data can be decomposed into a finite number of intrin-
sic mode functions (IMFs) that admit well-behaved Hilbert
transforms.With the Hilbert transform, the IMFs yield instan-
taneous frequencies as functions of time that give the results
as an energy-frequency-time distribution.

EMD is like a sifting process. Local maxima and minima
are identified to produce the upper and lower envelopes by
fitting. Designate the mean of envelopes as m1, and the the
difference between the data r(t) andm1 is the first component,
i.e. h1(t) = r(t)−m1. Then, the second component is h11(t) =
h1(t)−m11, where h1(t) is treated as the data. We repeat this
sifting process M times until h1M (t) is an IMF. The process
can be stopped by limiting the size of the standard deviation

ε =
∑T

t=0
|h1(M−1)(t)−h1M )(t)|2

h21(M−1)(t)
. Let c1(t) , h1M (t) be the first

IMF. Once c1(t) is obtained, we can separate c1(t) from the
rest of the data by

r(t)− c1(t) = e1(t), (5)

Since the residue e1(t) still contains IMF components,
the procedure can be repeated as

e1(t)− c2(t) = e2(t), · · · , eN−1(t)− cN (t) = eN (t), (6)

The procedure is stopped by the predetermined criterion [25].
By summing up (5) and (6), the received signal is decom-
posed as

r(t) =
N∑
i=1

ci(t)+ eN (t), (7)

where N represents the number of IMF components, and
eN (t) is the final residue.

By performing the Hilbert transform on each IMF compo-
nent, we can express the signal in the following form

r(t) = <

{
N∑
i=1

ai(t)ej
∫
ωi(t) dt

}
, (8)

where ai(t) =
√
c2i (t)+ ĉ

2
i (t) and ωi(t) =

dθi(t)
dt indicate the

instantaneous amplitude and frequency of ci(t), respectively.
θi(t) = arctan ci(t)

ci(t)
, ĉi(t) is the Hilbert transform of ci(t).

Equation (8) enables us to represent ai(t) and ωi(t) as func-
tions of time in a three-dimensional plot. The frequency-
time distribution of the amplitude is designated as the Hilbert
spectrum H (ω, t).
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FIGURE 2. Hilbert spectrum images for different emitters with PA
nonlinearity. The emitter in (b) has further serious nonlinear distortion.

To represent the signal data, we convert the Hilbert spec-
trum into a grayscale image. LetHi,j be the (i, j)-th amplitude
value of H (ω, t) and Gi,j be the (i, j)-th pixel value of the
greyscale image. Hence, the ζ -bit Hilbert spectrum image can
written as

Gi,j =

⌊(
2ζ − 1

) Hi,j
max

{
Hi,j

}⌋, (9)

where b·c stands for the round toward negative infin-
ity. The Hilbert spectrum image is mapped to an interval
of
[
0, 2ζ − 1

]
.

To form some intuitions, Fig. 2 visualizes the Hilbert
spectrum images for different emitters with PA nonlinearity
as described in Section II, where the emitter in Fig. 2(b) has
further serious nonlinear distortion. As is seen, the energy
of the received signal is mainly concentrated in the high-
frequency part (i.e., carrier frequency). In the intermediate-/
low-frequency parts, abundant frequency components are
present, which may provide the discriminative features

for identification. Furthermore, the higher the nonlinearity
of the PA, the more the frequency components that leak into
the intermediate-/low-frequency parts, which leads to more
chaotic distribution in the Hilbert spectrum.

As mentioned, the algorithms proposed in [15]–[17]
extract the features from the Hilbert spectrum. It is worth
noticing that feature extraction is a process of information
loss. Each feature in [15]–[17] only describes the characteris-
tics of the Hilbert spectrum from a certain perspective. Due to
limited knowledge, it is difficult to provide enough features to
obtain a panoramic view of theHilbert spectrum. This leads to
amount of information being lost inevitably. Hence, we turn
to deep learning.

B. NETWORK ARCHITECTURE
Deep neural networks naturally integrate low-/mid-/high-
level features, which promises to overcome the limitations
of expert features. Recent evidence reveals the importance of
network depth. However, deeper neural networks are more
difficult to train. One obstacle is the notorious problem of
vanishing/exploding gradients [26], which hampers conver-
gence from the beginning.

FIGURE 3. Residual unit.

To address the degradation problem, we apply the deep
residual network [27] to extract the RF fingerprinting. The
residual unit with a shortcut connection shown in Fig. 3 is
heavily used in a deep residual network, which allows the
features to operate flexibly at multiple scales and depths
through the network. Denoting the desired underlying map-
ping as H (x), we let the stacked nonlinear layers fit another
mapping of F(x) = H (x)− x. The original mapping is recast
into F(x) + x. As the residual mapping is easier to optimize
than the original one, the residual unit leads to considerable
improvements in efficiency and generalization.

Here, we feed the Hilbert spectrum images into the deep
neural network to distinguish individual emitters. The input
images have a unified size of 300×300. We do not per-
form any expert feature extraction, thereby allowing the
neural network to learn overall features directly from the
raw images. Fig. 4 depicts the structure of the used deep
residual network, in which four residual units are utilized.
In practice, the number of residual units is selected through
simulations (see Section IV-B). The parametric rectified
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FIGURE 4. Layout of the used deep residual network.

linear unit [28] is selected as the activation function for all
applicable layers except for the output layer where Softmax
is utilized. We adopt batch normalization [29] right after each
convolution and before activation. The network has a total
of 167,781 trainable parameters.

C. PERFORMANCE AND COMPLEXITY ANALYSIS
Now, we analyze the identification performance of the pro-
posed approach in comparison with the EM2 algorithm [15]
and the CNN-based one [23]. As we mentioned earlier, infor-
mation carried by the received signal is corrupted or lost
during feature extraction. Indeed, the integrity of information
determines the identification performance. Here, we provide
the performance analysis from a perspective of information
integrity.

Using (5) and (6), the received signal is decomposed as a
sum of several IMFs ci(t) and the final residue eN (t). It is
apparent that the decomposition in (7) does not corrupt any
information. From (8), the spectrum H (ω, t) is derived by
performing the Hilbert transform on each IMF component.
Due to the reversibility of the transform, information carried
by the received signal is completely preserved in H (ω, t).
Note that, with an appropriate ζ , error introduced by image
mapping in (9) is negligible. Therefore, the image fed into

the network has considerably high information integrity. This
lays the foundation for deep learning, thereby guaranteeing
excellent identification performance.

Unlike the proposed approach, three hand-crafted fea-
tures are extracted from the Hilbert spectrum image in the
EM2 algorithm. Suppose thatGi,j represents the (i, j)-th pixel
value of the greyscale image, Nr and Nc are the number of
rows and columns, respectively. The energy entropy, mean
and standard deviation are given by

I = −
Nr∑
i=1

Nc∑
j=1

Gi,j logGi,j, (10)

µ =
1

Nr · Nc

Nr∑
i=1

Nc∑
j=1

Gi,j, (11)

σ =

√√√√√ 1
Nr · Nc

Nr∑
i=1

Nc∑
j=1

(
Gi,j − µ

)2
, (12)

It is easily checked that these fingerprints can reflect
some differences of the individual emitters. Nevertheless,
more characteristics beyond our knowledge remain undis-
covered. Clearly, present expertise limits the identification
performance.

For the CNN-based algorithm, compressed bispectrum
image is adopted as the signal representation. Assuming that
received signal is divided into P segments, with Q samples
per segment. Then, the estimated bispectrum is expressed as

B̂ (ω1, ω2) =

δ∑
τ1=−δ

δ∑
τ2=−δ

ĉ (τ1, τ2)ω (τ1, τ2) e−j(ω1τ1+ω2τ2),

(13)

where δ < Q − 1, ĉ (τ1, τ2) is the estimated third-order
cumulant, ω (τ1, τ2) is the hexagonal window function. As a
statistic, c (τ1, τ2) can retain only part of the information
carried by received signal. This means that bispectrum is not a
successful data representation. Unfortunately, dimensionality
reduction leads to a loss of important details, which further
worsens the identification performance. It is clear that the
CNN is powerless when the feeding images have poor infor-
mation integrity.

Next, we concentrate on the computational complexity.
As the training can be offline, we take no consideration of
its cost. The computational load of the proposed algorithm
involves with Hilbert spectrum estimation and greyscale
image mapping. As the signal decomposition in (9) is empir-
ical, the complexity of the first part can be roughly expressed
as O (MNL +MN logL + NL logL) [15], where M refers
to the sifting number to obtain an IMF, N represents the
number of IMFs (no more than 10, generally) and L is
the signal length. Generally speaking, M and N are small
numbers. The cost of the second part is linear with the
Hilbert spectrum size SH = Nr · Nc, i.e. O(SH ). Hence, the
computational complexity of the proposed approach is
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TABLE 1. Computational complexity of the algorithms.

O (MNL +MN logL + NL logL + SH ). Differently from
the proposed method, the EM2 algorithm performs artificial
feature extraction on the Hilbert spectrum image. This leads
to an additional complexity of O(6SH ). For the CNN-based
algorithm, the main computational load comes from bispec-
trum estimation and dimensionality reduction, whose com-
plexities are O

(
PQ logQ+ 2Q2

)
and O

(
S2B
)
, respectively.

(SB is the bispectrum size.) It is worth stressing that the
complexity of the CNN-based algorithm is approximately
quadratic. This may become a burden provided that SB = SH .
For the sake of clarity, Table 1 presents the comparison of the
computational complexity.

IV. RESULTS
In this section, we investigate the performance of the pro-
posed method through simulations. To assess the signal-to-
noise ratio (SNR) under different channels, we define the
average SNR as

γ̄ = Es/N0 · E
{
α2
}
, (14)

where Es/N0 refers to the ratio of symbol energy to noise
power spectral density, and E

{
α2
}
is simply the average

value of α2. The case of Rayleigh fading channel corresponds
to when α has a Rayleigh distribution, whereas α = 1
characterizes the AWGN channel.

In the following simulations, K = 5 radio emitters are
to be identified. All devices operate at the 420 KHz center
frequency, and the received signals are digitized at a sampling
rate of 1 MHz. Specifically, QPSK modulation, 200 Kbps
data rate, and the shaping filter is the raised cosine filter
with a roll-off factor of 0.35. Signals are generated with the
impairment parameters [15], [16] shown in Table 2.

TABLE 2. Impairment parameters of the emitters.

For each emitter, N = 5000 segments per SNR and
M = 100 symbols per segment are present. Each segment
is converted to one 8-bit Hilbert spectrum image with a reso-
lution of 300×300 pixels. The dataset is randomly partitioned
into 60% training data and 40% testing data. We train the
network for 6000 epochs each with a batch size of 300,
and each batch is randomly shuffled at each epoch during
training. The Glorot uniform initialization [30] is used for
the kernel initialization of all convolutional and dense layers.

Categorical cross-entropy is used to compute the loss. The
Adam optimizer with a learning rate α = 0.05 is utilized to
ensure convergence [31].

Four NVIDIA Titan Xp GPUs are used to train and test the
networks. All data pre-processing is performed by MATLAB
R2015a. The deep residual networks are implemented in
Python with TensorFlow 1.3.0 as the backend.

A. IDENTIFICATION PERFORMANCE BY
SHORTCUT CONNECTION
We first investigate the effect of shortcut connection on iden-
tification performance. Experiments are conducted to com-
pare the residual network shown in Fig. 4 with the plain one.
Here, the plain network has the same number of parameters,
depth, and width, except for the shortcut connection. In this
simulation, signals are collected under the AWGN channel in
the single-hop scenario.

FIGURE 5. Identification performance affected by shortcut connection.

Fig. 5 depicts the identification performance affected by
the shortcut connection. As is seen, the residual network
with the shortcut connection outperforms the plain network
without the shortcut connection. Much information is being
lost when data pass through the plain network. The residual
network solves this problem to some extent by directly pass-
ing input information to the output, which protects informa-
tion integrity. As the shortcut connection introduces neither
extra parameter nor computation complexity, it is attractive
for us to use the residual network with the shortcut connection
in the following simulations.

B. IDENTIFICATION PERFORMANCE BY DEPTH
The number of residual units related to depth may con-
siderably affect the capability to extract complex features
accurately. Here, we consider the influence of the number of
residual units on identification performance. In this simula-
tion, the number of residual units used in the network is set to
2, 4, 6, 8, and 10, respectively. Table 3 gives the structures of
the different networks. Here, signals are collected under the
AWGN channel in the single-hop scenario.
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TABLE 3. Layouts of the networks, along with the number of parameters and training time spent on a single batch.

FIGURE 6. Identification performance affected by depth.

Fig. 6 presents the identification performance affected by
the number of residual units. It is apparent that the network
with two residual units achieves the lowest accuracy. This
implies that the network is not deep enough to extract com-
plex RF fingerprints from the images. When the number of
residual units is not less than four, no substantial gain on
identification accuracy occurs with the increase in depth.
However, as shown in the bottom of Table 3, the number of
parameters and training time spent on a single batch increase
with the deepening network. Hence, we use four residual units
in the following simulations for simplicity.

C. IDENTIFICATION PERFORMANCE UNDER
THE AWGN CHANNEL
In this subsection, we examine the performance of the algo-
rithm proposed in Section III (denoted as HilSpec-ResNet)

FIGURE 7. Identification performances in the single-hop scenario under
the AWGN channel.

under the AWGN channel. Experiments are performed for
comparison with the three other algorithms: (1) ComBiSpec-
ResNet representing the signal with the compressed
bispectrum proposed in [23], which uses the residual network
introduced in Section III-B; (2) BiSpec-ResNet representing
the signal with the uncompressed bispectrum image, which
also uses the residual network introduced in Section III-B;
and (3) EM2-SVM, which involves the conventional algo-
rithm EM2 [15] by using a support vector machine for
classification.

To begin, we consider the single-hop scenario. Fig. 7
illustrates the identification performances in the single-
hop scenario under the AWGN channel. Clearly, the pro-
posed algorithm achieves a remarkable improvement on
identification accuracy compared with the EM2 algorithm.
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This validates the foregoing discussion that deep learn-
ing can avoid the limitations of hand-crafted features
and extract RF fingerprinting from raw images. The pro-
posed algorithm also outperforms BiSpec-ResNet, thereby
corroborating the Hilbert spectrum image is a success-
ful signal representation with high information integrity.
This is why the HHT-based algorithms are superior to
those based on bispectrum, as shown in [15], [16], [23].
By comparing BiSpec-ResNet with ComBiSpec-ResNet,
an evident gap in identification accuracy is revealed.
This is expected, because dimensionality reduction causes
loss of important details while removing the redundant
information.

Similarly, we consider the relaying scenario. The masked
RF fingerprints are further difficult to discover because sig-
nals are amplified and retransmitted at the relay. As shown
in Fig. 8, the performances of all four algorithms are affected
by the relay to some degree. However, the proposed algorithm
remains superior to the other three. This demonstrates the
effectiveness and robustness of the proposed algorithm in the
relaying scenario.

FIGURE 8. Identification performances in the relaying scenario under
the AWGN channel.

Here, there are K = 5 radio emitters to be identified. With
a large set of devices, the performances of all SEI algorithms
will be degraded, inevitably. Within the reasonable range
of PA nonlinearity, the larger set of devices, the smaller
difference between emitters. This increases the difficulty
of discerning the devices. Nevertheless, the deep learning
architecture will have less performance degradation com-
pared with the hand-crafted features, because the fingerprints
extracted by deep neural network will be more intrinsic and
more resilient.

D. IDENTIFICATION PERFORMANCE UNDER
THE RAYLEIGH FADING CHANNEL
In this subsection, we further examine the performance of the
proposed algorithm under the Rayleigh fading channel. The
residual network is trained with the signals collected under

FIGURE 9. Identification performance in the single-hop scenario under
the Rayleigh fading channel.

FIGURE 10. Identification performance in the relaying scenario under the
Rayleigh fading channel.

such channel. Figs. 9 and 10 present the identification perfor-
mances in single-hop and relaying scenarios, respectively.

Comparing the results in Figs. 7 and 8 with those
in Figs. 9 and 10, we can easily observe that a severe penalty
in SNR is paid as a consequence of the fading character-
istics of the received signal. Despite the penalty, the pro-
posed algorithm has substantially less loss in identification
accuracy than EM2-SVM. The improved robustness fur-
ther validates the advantages of deep learning. Furthermore,
the proposed algorithm outperforms BiSpec-ResNet and
ComBiSpec-ResNet in Figs. 7–10, which demonstrates that
the Hilbert spectrum image is a better signal representation
than the bispectrum image used in [23].

E. IDENTIFICATION PERFORMANCE UNDER THE
FREQUENCY-SELECTIVE CHANNEL
In this subsection, we examine the performance of the
proposed algorithm under the frequency-selective channel.
We apply an empirical multipath channel model, h(t) =
δ(t) + 0.6δ (t − T0) + 0.3δ (t − 2T0), where T0 is the sym-
bol period. The residual network is trained with the signals
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FIGURE 11. Identification performance in the single-hop scenario under
the frequency-selective channel.

FIGURE 12. Identification performance in the relaying scenario under the
frequency-selective channel.

collected under such channel. Figs. 11 and 12 present the
identification performances in single-hop and relaying sce-
narios, respectively. As is seen, the proposed algorithm per-
forms better than BiSpec-ResNet, ComBiSpec-ResNet, and
EM2-SVM under the frequency-selective channel in both the
single-hop and relaying scenarios. It is worth stressing that
the performances under the multipath channel approximate
those under the AWGN channel, even better than those under
the Rayleigh fading channel. This implies that inter-symbol
interference introduced by themultipath channel has a similar
effect on the distribution in the spectrum images of different
emitters; whereas the fading coefficient α of the Rayleigh
channel leads to more randomness, which blurs the difference
between emitters.

V. CONCLUSION
Many previous studies based on hand-crafted features are
largely subject to the present expertise. In this paper,
we propose a novel SEI algorithm based on the deep
residual network. Our network operates on Hilbert spec-
trum grayscale images and enables learning the complicated

high-dimensionality features from raw images. The Hilbert
spectrum image that can provide rich information is validated
as a good choice of signal representation. The residual units
with shortcut connection effectively address the degradation
problem, thereby improving efficiency and generalization.
Simulation results demonstrate that our approach outper-
forms those of previous studies. Furthermore, it can adapt to
signals collected under various conditions. Our future work
involves increasing the robustness of the network architec-
tures to allow the extension of our approach to include data
captured from a large set of devices.
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