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ABSTRACT Making inference on clinical texts is a task which has not been fully studied. With the newly
released, expert annotated MedNLI dataset, this task is being boosted. Compared with open domain data,
clinical texts present unique linguistic phenomena, e.g., a large number of medical terms and abbreviations,
different written forms for the same medical concept, which make inference much harder. Incorporating
domain-specific knowledge is a way to eliminate this problem, in this paper, we assemble a new incorporat-
ing medical concept definitions module on the classic enhanced sequential inference model (ESIM), which
first extracts the most relevant medical concept for each word, if it exists, then encodes the definition of this
medical concept with a bidirectional long short-term network (BiLSTM) to obtain domain-specific definition
representations, and attends these definition representations over vanilla word embeddings. The empirical
evaluations are conducted to demonstrate that our model improves the prediction performance and achieves
a high level of accuracy on the MedNLI dataset. Specifically, the knowledge enhanced word representations
contribute significantly to entailment class.

INDEX TERMS Attentionmechanism, clinical text, medical domain knowledge, natural language inference,
word representation.

I. INTRODUCTION
Natural Language Inference (NLI), also known as Recogniz-
ing Textual Entailment (RTE), is a task concerning semantic
relationship (entailment, contradiction, or neutral) between
a premise and a hypothesis [1]. In recent years, represented
by the Stanford Natural Language Inference (SNLI) [2]
corpus and the Multi-Genre Natural Language Inference
(MultiNLI) [3] corpus, large-scale annotated datasets are
made publicly available, which have pushed the development
of this task. In addition, many deep neural networkmodels are
proposed to achieve the state-of-the-art performance [4]–[6].

In the clinical domain, newly released MedNLI [7]
dataset focuses on NLI task on clinical texts. Owing to
the specialty and particularity of this domain, clinical
texts present unique linguistic phenomena different from
open domain data: (1) the existence of a large num-
ber of medical terms and abbreviations leads to the out-
of-vocabulary (OOV) issue; (2) a medical concept has
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different written forms in different vocabularies, though they
have the same meaning. Table 1 are some examples from
the MedNLI dataset for illustration. The key words in Exam-
ple #1 are ‘‘diaphoresis’’ and ‘‘sweats’’, which express the
same medical concept, but they are written in different forms.
Example #2 and #3 have medical terms (‘‘lumbar puncture’’
and ‘‘coronary artery bypass grafting’’), as well as standard
medical abbreviations (‘‘LP’’ and ‘‘STEMI’’) and not stan-
dard logogram words (‘‘pt’’, meaning patient). If a system
cannot understand these medical terms and abbreviations
correctly, it will misclassify the classes. In general, these
unique linguistic phenomena make inference on MedNLI
much harder.

Since processing of clinical texts requires domain-specific
knowledge, in this paper, we incorporate such knowledge
into the classic open domain model (ESIM) by encoding
the definitions of medical concepts with a bidirectional
LSTM [8] (BiLSTM) and attending the vanilla word embed-
dings to these domain-specific representations. Through this
way, computers are taught to, on one hand, learn the mean-
ings of medical terms and abbreviations, on the other hand,
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TABLE 1. Examples from the MedNLI dataset. P, H, and L stand for
premise, hypothesis, and label, respectively. Domain-specific words for
inference are in italics. ‘‘LP’’ is the abbreviation for lumbar puncture and
‘‘STEMI’’ stands for ST segment elevation myocardial infarction.

identify similarities and differences between medical con-
cepts. We conduct experiments on the MedNLI dataset, and
the results showing that our model outperforms all baselines
done by Romanov and Shivade [7], achieving the state-of-
the-art performance. In addition, we present ablation study
and case study to learn how domain knowledge contributes
to our model.

Our work has three main contributions:
• We propose a knowledge enhanced model for natural
language inference on clinical texts, which combines
BiLSTM and attention to enhance vanilla word embed-
dings with definitions of medical concepts.

• We study of the effectiveness of our model on the
MedNLI dataset, and achieve a higher level of accuracy
than those models without knowledge enhanced.

• Our ablation study and case study reveal some useful
insights for the contributions of knowledge enhanced
word representations.

The rest of this paper is organized as follows. Section II
reviews the related work for natural language inference.
Section III details the design of the proposed model.
Section IV and V present and discuss the experimental set-
tings and results, respectively. Finally, we draw conclusion
in Section VI.

II. RELATED WORK
There are two types of approaches for natural language infer-
ence task: encoding-based models and interaction-based
models [9]. Encoding-based models [2], [4], [10], [11] use
siamese architecture [12] to learn vector representations of
the premise and hypothesis, and then calculate the semantic
relationship between two sentences based on a neural network
classifier. One representative model is InferSent [4], which is
one baseline model of the MedNLI dataset.

Interaction-based models [5], [13], [14] utilize some
sorts of word alignment mechanisms, e.g., attention [15],
then aggregate inter-sentence interactions. As shown in
the SemEval-2016 task of interpretable semantic textual

similarity [16], the semantic relations of aligned chunks
contribute a lot to sentence pair modeling, interaction-based
models have better performance than encoding-based mod-
els. Chen et al. [5] proposed an enhanced sequential infer-
ence model (ESIM), which contains three main components,
i.e., input encoding, co-attention matching, and inference
composition. ESIM is another baseline model of the MedNLI
dataset.

Unlike previous work [6] that enriches NLI mod-
els with lexical-level semantic knowledge about syn-
onymy, antonymy, hypernymy, hyponymy and co-hyponymy
between words, we focus on medical domain and explore
the incorporation of extra knowledge on clinical texts for
natural language inference. Romanov and Shivade [7] also
studied two ways of incorporating domain-specific knowl-
edge into their baseline models. In one way, they modified
pre-trained word embeddings by retrofitting [17], so the input
to models could carry clinical information. However, this way
only degrades the performance. Because retrofitting works
only on directly related concepts, while medical concepts are
more complex, and medical inferences require more steps
of reasoning. Another way is knowledge-directed attention,
which is beneficial to the InferSent and ESIM models. Our
model is similar to the first way, modifying model’s inputs,
but we utilize definition representations to enhance the word
embeddings of medical terms and abbreviations, alleviating
the OOV issue and bridging the semantic gap between differ-
ent written forms of a medical concept.

III. MODEL DESIGN
In this section, we will explain the NLI task and describe
our domain knowledge, i.e., definitions of medical concepts.
Then, we study how to incorporate these definitions into the
ESIM model for natural language inference on clinical texts.

A. PROBLEM DEFINITION
Given the MedNLI dataset D, an example of the dataset can
be represented as a (p, h, y) triplet consisting of premise p,
hypothesis h, and ground truth label y. Specially, the premise
is represented as p = {ai}Mi=1 and the hypothesis is h =
{bj}Nj=1, where M and N are the lengths of the sentences.
y ∈ {0, 1, 2} is the corresponding label of the given triple
which takes a value of 0 if the premise entails the hypothesis
(entailment), 1 if they contradict each other (contradiction),
and 2 if they are unrelated (neutral). Our goal is to learn a pre-
dictive distribution p(y|p, h; θ ) parameterized by θ from D.
That is, given a premise p and hypothesis h, we would like to
infer the probability that they will be classified as entailment,
contradiction, or neutral.

B. DOMAIN KNOWLEDGE
First, we collect the definitions of medical concepts from
Unified Medical Language System (UMLS) [18]. In UMLS,
for a medical concept, there would be multiple definitions
coming from different source vocabularies. To simplify the
model, we choose the shortest one as the only definition
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FIGURE 1. An overview of our model. Similar to the ESIM model, our model consists of three layers, i.e., input encoding layer, co-attention
matching layer, and inference composition layer. The difference is that we incorporate medical concept definitions in the first layer.
{ai }

M
i=1, {bj }

N
j=1, and {c·,t }Tt=1 are the inputs to the model, representing the premise sentence, hypothesis sentence, and the definitions of

extracted medical concepts from two sentence, respectively. y is the output. ⊕ means concatenation of vectors.

TABLE 2. Some examples of medical concepts and their definitions from UMLS.

of this medical concept. In the end, we collect a total
of 198,042 definitions that make up our domain knowledge
base, denoted as K.

Second, following the previous work [7], we use
Metamap [19] to extract medical concepts from premise and
hypothesis sentences, and map them to standard terminolo-
gies in the UMLS. For each extracted phrase, there may be
more than one related concepts, which are sorted byMetaMap
Indexing (MMI) score. The higher the score, the greater
the relevance of the medical concept to its extracted phrase.
In this paper, we only consider the concept with the highest
score for each word, and discard those with the lower scores.
As a result, everyword has zero or one correspondingmedical
concept. Through this way, we know exactly what concept
the medical term or abbreviation stands for, and different
written forms could be mapped to the same concept. Finally,
we associate words with concept definitions. For example,
if one word ai in the premise sentence extracts a medical
concept, then we search our domain knowledge base K for
its definition. We denote word ai associated definition as
{ci,t }Tt=1. Table 2 shows the extracted medical concepts of
some domain-specific words of Example #1 to #3, and their
definitions from UMLS.

C. MODEL OVERVIEW
We present here our model for natural language inference on
clinical texts. It consists of three layers: input encoding layer,
co-attention layer, and inference composition layer. Fig. 1
shows an overview of our model.

The model takes the premise sentence, the hypothesis
sentence, and the definitions of extracted medical concepts
from two sentences as inputs, and then first constructs respec-
tive word representations with pre-trained word embeddings.
These pre-trained word embeddings can be either publicly
available open domain word embeddings, or trained on a
domain-specific corpora. Then, each word in two sentences
are attended over their corresponding definition if it exists,
which is done by the Incorporating Medical Concept Defini-
tions module. Furthermore, the enhanced word embeddings
are fed into a siamese BiLSTM network to obtain a set
of contextualized representations of premise and hypothesis
sentences.

In the co-attention matching layer, we use soft-alignment
of contextualized word representations between the premise
and hypothesis to obtain aligned representation, followed by
a heuristic matching approach [20] to collect local infer-
ence vectors for each word. Finally, to determine the over-
all inference relationship between the premise and hypoth-
esis, another BiLSTM is utilized to compose the collected
local inference vectors, which is part of the inference com-
position layer. The output hidden vectors of the second
BiLSTM are converted to fixed-length vectors with max
and mean pooling operations and put into the final multi-
layer perceptron (MLP) classifier to determine the inference
class.

Details about each layer and the Incorporating Medical
Concept Definitions module are provided in the following
sections.

VOLUME 7, 2019 57625



M. Lu et al.: Incorporating Domain Knowledge into NLI on Clinical Text

D. INPUT ENCODING LAYER
Input encoding layer takes as inputs the premise {ai}Mi=1,
the hypothesis {bj}Nj=1, and associatedmedical concept defini-
tions {c·,t }Tt=1, where · can be replaced with i or j. Pre-trained
word embeddings E ∈ Rde×|V | are first used to converted
word inputs to vector sequences ae1, . . . , a

e
M ], [be1, . . . , b

e
M ],

and [ce
·,1, . . . , c

e
·,T ], where |V | is the vocabulary size and de

is the dimension of the word embedding. In the experiments,
we explore six different word embeddings, one publicly avail-
able open domain word embedding, two trained on domain-
specific corpus, and three initialized with open domain word
embeddings and further fine-tuned on one or two domain-
specific corpus:
• GloVe[CC]: GloVe embeddings [21], trained on Com-
mon Crawl.

• fastText[BioASQ]: fastText embeddings [22], trained on
PubMed abstracts from the BioASQ challenge [23].

• fastText[MIMIC-III]: fastText embeddings, trained on
patient clinical notes from the MIMIC-III database [24].

• GloVe[CC]→ fastText[BioASQ]: GloVe embeddings for
initialization and further fine-tuned on the BioASQ data.

• GloVe[CC]→ fastText[BioASQ]→ fastText[MIMIC-III]:
GloVe embeddings for initialization and further fine-
tuned on the BioASQ andMIMIC-III data in succession.

• fastText[Wiki]→,fastText[MIMIC-III]: fastTextWikipedia
embeddings for initialization and further fine-tuned on
the MIMIC-III data.

All of the domain-specific word embeddings are down-
loaded from the MedNLI dataset.1

1) INCORPORATING MEDICAL CONCEPT DEFINITIONS
Inspired by the work of [25] and [26], we incorporate medical
concept definitions into word embeddings, as shown in Fig. 2.

The bidirectional long short-term memory (BiLSTM) net-
work has been proven to be good at modeling dependencies
coming from both the past and the future in sequences. So we
employ it to encode definition embeddings in forward and
backward directions. Take Fig. 2 for example, cet is the input
to the BiLSTM at time step t . To simplify notation, we omit
the subscript i in this section. The hidden states in the forward
direction are updated as follows:

it = σ (W icet + U
i−→h t−1 + bi) (1)

f t = σ (W
f cet + U

f−→h t−1 + bf ) (2)

ot = σ (Wocet + U
o−→h t−1 + bo) (3)

qt = tanh(Wqcet + U
q−→h t−1 + bq) (4)

pt = f i,t ◦ pi,t−1 + it ◦ qt (5)
−→
h t = ot ◦ tanh(pt ) (6)

where it , f t , ot are the input gate, forget gate and output
gate of LSTM, respectively. σ is the sigmoid function, and
pt is the cell state. Accordingly, in the forward direction,

1https://jgc128.github.io/mednli/

FIGURE 2. An illustration of incorporating medical concept definition
embeddings {cei,t }

T
t=1 into the vanilla word embedding ae

i of one medical
term or abbreviation in the premise. From the output, we will get the
enhanced word representation âe

i .

the hidden state
−→
h t at time step t depends on input word and

the preceding hidden state
−→
h t−1. Similarly, in the backward

direction, the hidden state
←−
h t is updated based on current

input and the hidden state from the next time step. At the
t-th time step, the output of BiLSTM is usually obtained
by concatenation of the hidden states from both directions,
formally, ht = [

−→
h t ;
←−
h t ]. Especially, the above process can

be simplified as a BiLSTM function:

h1, . . . ,hT = BiLSTM(ce1, . . . , c
e
T ) (7)

To obtain definition enhancedword embeddings, we utilize
a multi-layer perceptron attention [15] mechanism to aggre-
gate the outputs of BiLSTM and then add them to the vanilla
word embeddings. In particular, attention first computes the
alignment score between ht and ae by a function f (ht , ae):

f (ht , ae) = vTσ (Whht +W eae) (8)

where Wh, W e are weight matrices and v is a weight vector.
This alignment score measures the attention of ae to ht . Sub-
sequently, a softmax function normalizes alignment scores to
form a vector z ∈ RT :

zt =
exp(f (ht , ae))∑T
t ′=1 exp(f (ht ′ , ae))

(9)

Here, zt is an indicator of the importance of ht to ae. So,
the output of attention is a weighted sum of {ht }Tt=1, where
the weights are given by z.

By adding the output of attention and the vanilla word
embedding, we obtain definition enhanced word embedding
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in the premise:

âe =
T∑
t=1

ztht + ae (10)

The above approach of incorporating medical concept defini-
tions also applies to the hypothesis.

2) SENTENCE ENCODING
To represent words in their context, the enhanced word
embeddings of premise and hypothesis are fed into a parame-
ters shared BiLSTM to obtain contextualized representations
as and bs:

as1, . . . , a
s
M = BiLSTM1(â

e
1, . . . , â

e
M ) (11)

bs1, . . . , b
s
N = BiLSTM1(b̂

e
1, . . . , b̂

e
N ) (12)

E. CO-ATTENTION MATCHING LAYER
Modeling the interactions is the critical component for
deciding the inference relationship between the premise and
hypothesis. In this layer, a co-attention matrix is computed
using dot-product to produce aligned word representations,
and then by comparing with contextualized representations,
we collect matching information at the word level.

First, the co-attention score between each representation
tuple (asi , b

s
j ) is calculated as follows:

eij = (asi )
T bsj (13)

Then for the i-th word in the premise, its relevant represen-
tation carried by the hypothesis is identified and composed
using eij as

αij =
exp(eij)∑N
j′=1 exp(eij′ )

(14)

aci =
N∑
j=1

αijbsj (15)

where α ∈ RM×N is the normalized co-attention matrix w.r.t.
the column-axis, and aci is a weighted sumof {bsj }

N
j=1, meaning

the contents related to asi are selected to form aci . The same
calculation is performed for each word in the hypothesis as

βij =
exp(eij)∑M
i′=1 exp(ei′j)

(16)

bcj =
M∑
i=1

βijasi (17)

where β ∈ RM×N is the normalized co-attention matrix
w.r.t. the row-axis. We denote aci and bcj as aligned word
representations.

To further enhance inference information, followed the
heuristic matching approach proposed by Mou et al. [20],
we concatenate contextualized and aligned word representa-
tions with the differences and element-wise products between

each other, resulting local inference vectors. Formally, local
inference vectors ami and bmj are calculated as follows:

ami = G([asi ; a
c
i ; a

s
i − a

c
i ; a

s
i ◦ a

c
i ]) (18)

bmj = G([bsj ; b
c
j ; b

s
j − b

c
j ; b

s
j ◦ b

c
j ]) (19)

where G is one-layer feed-forward neural network with the
ReLU [27] activation function to reduce dimensionality.

F. INFERENCE COMPOSITION LAYER
In this layer, a parameters shared BiLSTM followed by max
and mean pooling operations is typically employed as the
aggregation method to compose the local inference vectors
collected above:

av1, . . . , a
v
M = BiLSTM2(am1 , . . . , a

m
M ) (20)

bv1, . . . , b
v
N = BiLSTM2(am1 , . . . , b

m
N ) (21)

avmax = max
16i6M

avi (22)

avmean = mean
16i6M

avi (23)

bvmax = max
16j6N

bvj (24)

bvmean = mean
16j6N

bvj (25)

Again we use BiLSTM here, but the role is completely
different from that presented in Section III-D.2. The BiLSTM
here learns to discriminate critical local inference vectors
for obtaining the overall sentence-level inference relationship
between the premise and hypothesis. The pooling vectors
are concatenated together and fed into the final multi-layer
perceptron (MLP) classifier which has one hidden layer with
tanh activation and softmax output layer:

y = MLP([avmax; a
v
mean; b

v
max; b

v
mean]) (26)

where y ∈ R3, and each entry is the probability distribution
p(y|p, h) over class y.

G. OPTIMIZATION OBJECTIVE
The entire model is trained in an end-to-end manner via min-
imizing the multi-class cross-entropy loss. The loss function
is defined as:

J (θ ) = −
1
|D|

∑
i

log(p(ŷi|pi, hi)) (27)

where θ denotes all trainable parameters, |D| is the num-
ber of training examples, and ŷi is the ground truth for the
i-th example.

IV. EXPERIMENTS
In this section, we first briefly introduce the MedNLI dataset,
a newly released dataset for natural language inference on
clinical texts, followed by detailed training settings.

A. MEDNLI DATASET
We evaluated our model on the MedNLI dataset [7], which
contains 13k expert annotated sentence pairs. The premise
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TABLE 3. Accuracies of our model (ESIM w/ Knowledge) compared to baselines using different word embeddings on MedNLI. Baseline results are
directly copied from Romanov and Shivade [7].

sentences were drawn from clinical notes contained in the
MIMIC-III v1.3 database [24], and the hypothesis sen-
tences were generated by four clinicians. The resulting
dataset consists of 14,049 pairs of premises and hypotheses.
Among them, there are 11,232 pairs for training, 1,395 pairs
for development, and 1,422 pairs for testing. The average
sentence lengths of premises and hypotheses are 20 and
5.8 respectively. Meanwhile, the maximum sentence lengths
of premises and hypotheses are 202 and 20 respectively.
We use the same data split as provided in Romanov and
Shivade [7] and classification accuracy as our evaluation
metric.

B. TRAINING DETAILS
Following all baselines’ settings on the MedNLI dataset,
we chose the dimension of word embeddings and hidden
states of BiLSTMs of 300, except for the BiLSTM in the
Incorporating Medical Concept Definitions module, which
was 150. We restricted the lengths of the premise and hypoth-
esis sentences by amaximumof 50words, and that of medical
concept definitions by 200. All word embeddings were fixed
during training. Adam [28] was used for optimization with an
initial learning rate of 0.001. The mini-batch size was set to
64. We set a dropout rate of 0.5 for input and output of hidden
layer of the final MLP classifier. We also used variational
dropout [29] for input of BiLSTMs, which was also set to
0.5. We trained our model for a maximum of 20 epochs.
The training was stopped when the development loss did not
decrease after 5 subsequent epochs.

All hyper-parameters were strictly selected on the devel-
opment set, and then tested on the corresponding test set.
We used PyTorch2 and AllenNLP3 to implement our model.

V. RESULTS
In this section, we will analyze the performance of our
model from three aspects. First, we will compare our model
with baseline models for different word embeddings. Then,
ablation study and case study are conducted to inspect how
domain knowledge contributes to the model.

A. COMPARISON AGAINST BASELINES
We compare our model, referred to as ESIM w/ Knowl-
edge, against InferSent and ESIM baseline models tested
by Romanov and Shivade [7] for six different word

2https://pytorch.org/
3https://allennlp.org/

FIGURE 3. Confusion matrix without normalization: (a) InferSent baseline
using fastText[Wiki] → fastText[MIMIC-III] embedding4; (b) ESIM w/
Knowledge using fastText[MIMIC-III] embedding.

FIGURE 4. Loss and accuracy curve of the development and test set using
fastText[MIMIC-III] embedding.

embeddings stated in Section III-D. The results are reported
in Table 3. Our model outperforms all baseline models and
achieves the state-of-the-art performance, indicating that
incorporating medical concept definitions can significantly
improve the performance. Compared to the best baseline (i.e.,
InferSent using fastText[Wiki]→ fastText[MIMIC-III] embed-
ding), we observed an absolute gain of 0.012 corresponding
to 1.6% relative gain in the model using fastText[MIMIC-III]
embedding. Actually, a total of three results for different
word embeddings (others are GloVe[CC]→ fastText[BioASQ]
→ fastText[MIMIC-III] embedding and fastText[Wiki]→

fastText[MIMIC-III] embedding) exceed the best baseline.
In baseline models, all results except one of InferSent

are better than those of ESIM. However, for each word
embedding, our result goes beyond all two baselines, prov-
ing the effectiveness of ESIM integrated with domain
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FIGURE 5. Normalized Co-attention matrix of Example #1 to #3.
(a) Example #1 with normalization over row-axis. (b) Example #2 with
normalization over row-axis. (c) Example #3 with normalization over
column-axis.

knowledge. The greatest gain of our model is for
GloVe[CC]→ fastText[BioASQ] embedding (0.765 compared
to 0.745), where we obtain an absolute gain of 0.02 and a
relative gain of 2.7%.

Besides comparing the overall performance, we also draw
the confusion matrix to visualize the classification results
of three classes (entailment, contradiction and neutral).
As shown in Fig. 3, there are two confusion matrices without
normalization, the left belongs to best baseline4 and the right

4Results were predicted by model parameters released by Romanov and
Shivade [7], which only obtained an accuracy of 0.759, different from the
accuracy of 0.766 stated in the paper.

FIGURE 6. Co-attention matrix of Example #4 with normalization over
column-axis.

FIGURE 7. Co-attention matrix of Example #5 with normalization over
column-axis.

FIGURE 8. Co-attention matrix of Example #6 with normalization over
column-axis.

belongs to the best result of our model. By comparing these
two confusion matrices, the following conclusions can be
drawn:

(1) Our model improves the performance in entailment and
neutral classes, of which it contributes a lot to entailment
class, and the misclassifications to contradiction and neural
classes are reduced by 12 and 14 respectively. We think this
is because the incorporated domain knowledge enhances the
word representations of medical terms and abbreviations and
bridges the semantic gap between different written forms
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FIGURE 9. Co-attention matrix of Example #7 with normalization over
column-axis.

FIGURE 10. Co-attention matrix of Example #8 with normalization over
row-axis.

FIGURE 11. Co-attention matrix of Example #9 with normalization over
column-axis.

of the same medical concept. The incorporated knowledge
also reduces the possibility of neural class being mistakenly
classified as contradiction class.

(2) Ourmodel beats the performance in contradiction class.
After reviewing the misclassified examples, we found that
the errors mainly occurred in those requiring numerical rea-
soning, e.g., a premise as ‘‘In the ED, initial VS revealed T
98.9, HR 73, BP 121/90, RR 15, O2 sat 98% on RA.’’ Our
model tends to mistake such numerical reasoning examples
for entailment class. This is also true in neural class. We think
ensemble methods using InferSent and ESIM w/ Knowledge
will take advantages of each model and obtain better predic-
tive performance.

TABLE 4. Ablation study using fastText[MIMIC-III] embedding. For each
entry in the table, accuracies of the development and test set are divided
by a slash, and the number in parentheses is the best training epoch.

TABLE 5. More Examples from the MedNLI dataset. P, H, and L stand for
premise, hypothesis and label, respectively. Key words for inference are
in italics.

B. ABLATION STUDY
The main difference between our model and the vanilla
ESIM is the newly added Incorporating Medical Concept
Definitions module: it uses a bidirectional LSTM to encode
the definitions of medical concepts, and another attention
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FIGURE 12. Co-attention matrix of Example #10 with normalization over column-axis.

FIGURE 13. Co-attention matrix of Example #11 with normalization over
column-axis.

mechanism to enhance vanilla word embeddings. To ana-
lyze the contributions of these two components to the over-
all performance, we conducted an ablation study using
fastText[MIMIC-III] embedding. Three model variants were
studied: one that removed only the attention mechanism,
another that changed the bidirectional LSTM to unidirec-
tional, and the last that did both. The results of the study
are presented in Table 4. The values of model variant w/o
attention are amended, because this variant stopped so early
compared to others. It was only iterated for 6 epochs, hasn’t
been fully trained, and did not have good generalization
performance in both development set and test set, as shown
in Fig. 4. Based on the loss and accuracy curve, we found
the 9th epoch was the optimal iteration stop, whose loss
was second minimum and best generalization performance.

From Table 4, we can conclude that models w/ attention
are better than those w/o attention and bidirectional LSTM is
better than unidirectional LSTM. All of these findings reflect
the importance of the Incorporating Medical Concept Defi-
nitions module, and domain-specific knowledge contributes
to natural language inference on clinical texts.

C. CASE STUDY
Finally, we qualitatively inspect examples listed in Table 1
and visualize their normalized co-attention matrix, as in (13).

FIGURE 14. Co-attention matrix of Example #12 with normalization over
column-axis.

For more examples with attention visualizations, see Supple-
mental material.

The key words of Example #1 for inference are ‘‘diaphore-
sis’’ and ‘‘sweats’’. By enhancing word embeddings with
knowledge, our model learns to focus on these two medical
terms and knows that they have the same meaning. As shown
in Fig. 5 (a), in premise, ‘‘diaphoresis’’ has the highest weight
to ‘‘sweats’’. In Fig. 5 (b) (corresponding to Example #2),
for the abbreviation ‘‘LP’’, our model pays attention to it’s
full name of ‘‘lumbar puncture’’. In Fig. 5 (c) (corresponding
to Example #3), our model learns to make inference based
on the relationship between ‘‘STEMI’’ and ‘‘coronary artery
bypass grafting’’. Because the definition of ‘‘STEMI’’ (i.e.,
ST segment elevation myocardial infarction) is incorporated,
our model learns they are unrelated, and the prediction is
neutral class.

VI. CONCLUSION
We have present a novel model for natural language infer-
ence on clinical texts by incorporating medical concept
definitions into vanilla word embeddings. Our experiment
results demonstrated that themodel outperforms all baselines,
achieving the state-of-the-art performance in accuracy, due to
the contributions of domain knowledge.

Further improvement might be made by expanding med-
ical concept definitions dictionary, to cover more medical
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terms and abbreviations. For simplicity, we only employed
the shortness definition for each concept. However, a concept
might have a number of definitions. Therefore, we will study
how to encode multiple definitions in the future.
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