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ABSTRACT Automated recognition of human activities or actions has great significance as it incorporates
wide-ranging applications, including surveillance, robotics, and personal health monitoring. Over the past
few years, many computer vision-based methods have been developed for recognizing human actions
from RGB and depth camera videos. These methods include space–time trajectory, motion encoding, key
poses extraction, space–time occupancy patterns, depth motion maps, and skeleton joints. However, these
camera-based approaches are affected by background clutter and illumination changes and applicable to a
limited field of view only. Wearable inertial sensors provide a viable solution to these challenges but are
subject to several limitations such as location and orientation sensitivity. Due to the complementary trait
of the data obtained from the camera and inertial sensors, the utilization of multiple sensing modalities
for accurate recognition of human actions is gradually increasing. This paper presents a viable multimodal
feature-level fusion approach for robust human action recognition, which utilizes data frommultiple sensors,
including RGB camera, depth sensor, and wearable inertial sensors. We extracted the computationally
efficient features from the data obtained from RGB-D video camera and inertial body sensors. These
features include densely extracted histogram of oriented gradient (HOG) features from RGB/depth videos
and statistical signal attributes from wearable sensors data. The proposed human action recognition (HAR)
framework is tested on a publicly available multimodal human action dataset UTD-MHAD consisting
of 27 different human actions. K-nearest neighbor and support vector machine classifiers are used for training
and testing the proposed fusion model for HAR. The experimental results indicate that the proposed scheme
achieves better recognition results as compared to the state of the art. The feature-level fusion of RGB
and inertial sensors provides the overall best performance for the proposed system, with an accuracy rate
of 97.6%.

INDEX TERMS Dense HOG, depth sensor, feature-level fusion, human action recognition, inertial sensor,
RGB camera.

I. INTRODUCTION
Human action recognition (HAR) or activity recognition
is an imperious area of research in signal and image
processing. HAR mainly involves automatic detection,

The associate editor coordinating the review of this manuscript and
approving it for publication was Zhaoxiang Zhang.

localization, recognition, and analysis of human actions from
the data obtained from different types of sensors, including
RGB camera, depth sensor, range sensor, or inertial sensor.
Action detection involves determining the presence of the
action of interest in a continuous data stream, whereas action
localization estimates when and where an action of interest
appears. The goal of action recognition or classification is
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to determine which action appears in the data. In the past
few years, the research on HAR has gained significant pop-
ularity and is becoming increasingly vital in a variety of
disciplines. Detecting and recognizing human activities is
the core of many human-computer interaction (HCI) appli-
cations, including visual surveillance, video analytics, assis-
tive living, intelligent driving, robotics, telemedicine, sports
annotation, and health monitoring [1]–[6]. Various sensor
modalities have been utilized to monitor human beings and
their activities. HAR approaches can generally be classi-
fied into two main categories depending upon the type of
sensors used. These include vision-based HAR and inertial
sensor-based HAR.

Earlier vision-based action recognition studies involved
the use of RGB video sequences captured by conventional
RGB cameras to recognize a human activity [7], [8]. These
studies are mostly based on template-based or model-based
approaches [9]–[11], space-time trajectory [12], motion
encoding [13], and key poses extraction [14]. Numerous
feature extraction methods have been proposed for HAR
using RGB video data, which achieved successful recogni-
tion results. Particularly, these methods include 3D gradient-
based spatiotemporal descriptor [15], spatiotemporal interest
point (STIP) detector [16], motion-energy images (MEIs)
and motion history images (MHIs) [17], [18]. The evolu-
tion of deep learning schemes, i.e., deep learning based
convolutional neural networks (CNN) and Long Short-Term
Memory (LSTM) networks, has motivated the researchers
to explore its application for action recognition from RGB
videos [19]–[22]. The increasing popularity of HAR using
RGB camera has also been heavily investigated in recent
years [23]–[26]. These papers have provided a comprehen-
sive discussion on different features and algorithms used in
the literature for efficient HAR. With all their benefits, there
exist some limitations in utilizing RGB cameras for monitor-
ing human activities. For example, conventional RGB images
lack 3D action data, which ultimately affects the recognition
performance.

The advancement in image acquisition technology has
made it possible to capture 3D action data using depth sen-
sors. The depth images obtained for these sensors are insen-
sitive to changes in illumination compared to conventional
RGB images. Moreover, these depth images also provide
a way to obtain 3D information of a person’s skeleton to
recognize human actions in a better way. Therefore, many
researchers have put their efforts in recognizing human
actions based on depth imagery [27]–[31]. Several feature
extraction, description, and representation techniques have
been developed for depth sensor-based HAR. These include
depth motion maps (DMMs) [32], bag of 3D points [33], pro-
jected depth maps [34], space-time occupancy patterns [35],
spatiotemporal depth cuboid [36], surface normal [37], and
skeleton joints [38]. Recently, a few research studies pro-
posed deep learning based methods for HAR using depth
camera and skeleton joints [39]–[42]. In [43], the authors
utilized CNN and LSTM for skeleton-based activity

recognition. The authors in [44] proposed a deep bilinear
learning method for RGB-D action recognition. A compre-
hensive study about RGB-D based humanmotion recognition
using deep learning approaches is presented in [45]. Although
vision-based HAR is continuously progressing, it is exposed
to many hindrances such as camera position, a limited
angle of view, subject disparities in carrying out different
actions, occlusion, and background clutter. Furthermore,
camera-based HAR systems require an extensive amount of
hardware resources to run computationally complex com-
puter vision algorithms. These limitations are addressed by
low-cost, computationally efficient, and miniaturized inertial
sensors.

Wearable inertial sensors enable dealing with a much
broader field of view and changing illumination conditions
as compared to RGB and depth sensors. They are attached
directly on the human body or entrenched into outfits, smart-
phones, footwear, andwrist watches to track human activities.
They generate 3D acceleration and rotation signals conform-
ing to human action. Hence, like depth sensors, the inertial
sensors also track 3D action data entailing 3-axis acceleration
in case of an accelerometer and 3-axis angular velocity in
case of a gyroscope. Many researchers utilized smartphones,
smart watches, and wearable inertial sensors, incorporating
an accelerometer and gyroscope, for human activity recog-
nition [46]–[48]. In [49], [50], the authors detected complex
human activities by utilizing the built-in inertial sensors of
the smartphone along-with wrist-worn motion sensors. With
the growth of deep learning applications in vision-based
action recognition systems, we witnessed the utilization of
deep learning for sensor-based activity recognition. In [51],
the authors used deep learning for smartphone-sensor based
activity recognition, whereas the authors in [52] used body
sensor data for recognizing human activities. These stud-
ies achieved successful results in detecting and recognizing
human activities. However, with the continuous evolvement
in pulling down the power consumption of wearable sensors,
deep learning based approaches are becoming futile for unob-
trusive human activity monitoring. Moreover, sensor-based
activity recognition approaches have certain other limitations
as well. For instance, sensor readings are sensitive to their
orientation and location on the body. Also, wearing or placing
these sensors on the bodies creates inconvenience for the
users to carry out their tasks in a natural way. Table 1 provides
the pros and cons regarding the use of different sensing
modalities (i.e., RGB camera, depth camera, and inertial
sensors) for HAR.

A conventional HAR system typically makes use of a
single sensor modality, i.e., either a vision-based sensing
modality or a wearable inertial sensor. However, under real-
istic operational settings, no sensor modality alone can han-
dle varying conditions that may take place in real time.
The RGB and depth images from an RGB-D camera and
3D inertial signals from a wearable sensor offer comple-
mentary information. For instance, vision-based sensors pro-
vide global motion features whereas inertial signals give 3D
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TABLE 1. Pros and Cons of different sensing modalities for HAR.

information about local body movement. Hence, by fusing
data from two complementary sensing modalities, the perfor-
mance of HAR systems can be improved. Few existing stud-
ies [53]–[56] utilized the fusion of depth and inertial sensors,
aiming to increase the accuracy of action recognition and
their results revealed significant improvement in recognition.
Some authors also worked on using deep learning formultiple
sensing modalities for robust action recognition [57]–[59].
In [60], the authors utilized deep learning based decision-
level fusion for action recognition using depth camera and
wearable inertial sensors. For depth cameras, CNN based fea-
tures are extracted, whereas, for the inertial sensors, CNN and
LSTM networks are used. Recently, in [61], the authors used
skeleton-based LSTM and spatial CNN models to extract
temporal and spatial features respectively for action recog-
nition. The results of this study revealed that the fusion
of multiple sensing modalities achieved a significant per-
formance improvement compared to single modality based
action recognition. Therefore, in this research work, we pro-
posed a multimodal HAR framework that utilizes the combi-
nation of multiple sensing modalities (e.g., wearable inertial
sensor, RGB camera sensor, and depth camera sensor) for
action classification.

The fusion of multiple sensors can be performed at base-
level (descriptor-level), feature-level (representation-level),
or decision-level (score-level) [12]. Each fusion type has its
own merits and demerits, and the selection of the fusion
method is generally dependent on the type of features and
descriptors. Existing studies for multimodal HAR mostly
focus on the decision-level fusion due to its independence
on the type, length, and numerical scale of different fea-
tures extracted from multiple sensing modalities. Moreover,
decision-level fusion does not require any post-processing
of the extracted features and reduces the dimensions of the
final feature vector for classification. The major drawback
of the decision-level fusion is independent and stand-alone

classification decisions relating to each sensing modality,
which are then combined using some soft rule to make the
final decision. Hence, for n different sensing modalities,
the decision-level fusion requires n classifiers to be trained
and tested independently on each sensing modality. For any
multimodal HAR system, the acquisition of concurrent data
from multiple sources is necessary to collect a sufficient
amount of information for making improved decisions about
human actions. However, with the decision-level fusion, it is
not possible to combine multimodal data at an earlier stage to
produce adequate information for recognizing human actions.
In contrast, the feature-level fusion helps to collect concurrent
features from multiple sensors and integrate them to generate
sufficient information for making a strong decision. More-
over, it provides the best results in the case when the features
extracted from different sensing modalities have the same
dimensions and numerical scale. Therefore, in this study,
we focused on the feature-level fusion of multiple sensing
modalities for robust HAR. We extracted time domain fea-
tures for inertial sensor data, whereas, to obtain the best
results for feature-level fusion, we used densely extracted
Histogram of Oriented Gradients (HOG) [62] as features for
both RGB and depth video data. The features extracted from
multiple sensors are then fused and used to train the machine
learning algorithm for action classification.

The key contributions of this research work are as follows:
• A robust scheme is presented for HAR, which empha-
sized the feature-level fusion of RGB, depth, and iner-
tial sensors to improve the accuracy of human action
classification. Moreover, a detailed analysis is provided
regarding the individual performance of these sens-
ing modalities as well as their combination in HAR,
using two common machine learning classifiers, i.e.,
K-Nearest Neighbor and Support Vector Machine.

• The existing approaches for RGB and depth sensor-
based HAR use different types of features for both RGB
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FIGURE 1. Block diagram of the proposed HAR method.

and depth videos, which becomes infeasible for the
feature-level fusion. The proposed HARmethod address
this issue using RGB-D features based on densely
extracted Histogram of Oriented Gradients (HOG). The
obtained features are finally normalized to achieve the
best recognition performance.

• The proposed HAR method is evaluated on pub-
lically available benchmark dataset University of
Texas at Dallas Multimodal Human Action Dataset
(UTD-MHAD) [53], which covers a wide-ranging set
of 27 different human actions. The results achieved
for the proposed scheme are better than state-of-the-
art results. For demonstrating the effectiveness of
the proposed feature-level fusion over decision-level
fusion, the obtained results are also compared with the
decision-level fusion results on UTD-MHAD.

The remaining part of the paper is organized as follows.
Section II provides an in-depth discussion of the proposed
method. Section III provides a discussion on the results of
different experiments designed to measure the performance
of the proposed HAR method. Also, we compared the per-
formance of our method against different machine learning
algorithms for HAR. Finally, Section IV concludes the out-
comes of this research work and provide recommendations
for future work.

II. METHODOLOGY OF RESEARCH
The proposed methodology for HAR is shown in Fig. 1,
which consists of three main steps: feature extraction and
description, feature fusion, and action classification. These
steps are explained in detail in the following sub-sections.

A. FEATURE EXTRACTION AND DESCRIPTION
As this research work focuses on the feature-level fusion
of multiple sensor modalities for robust HAR, hence we
extracted different sets of features for inertial sensor data and
RGB/depth videos. It is done because these features provide
the best recognition rate when used for HAR with individual
modality data. The following sections provide the detail of

the feature extraction process for inertial sensor data and
RGB/depth video sequences.

1) FEATURE EXTRACTION FOR INERTIAL SENSOR
The raw data obtained from wearable inertial sensors is
orientation sensitive and often degraded by unwanted noise
produced by either the instrument or unanticipated move-
ment of the participant. Hence, it is crucial to preprocess the
raw data obtained from wearable inertial sensors before any
further processing. For this purpose, the magnitude smag of
both acceleration and rotation signal is calculated, which is
concatenated with existing three-dimensional data to make
the form

(
sx , sy, sz, smag

)
, where sx , sy, and sz represent the

signal values along x, y, and z-axes respectively. The value of
smag is calculated as : smag =

√
s2x + s2y + s2z .

For de-noising of the acquired signals, an average smooth-
ing filter of size 1×3 is applied to the acquired data based on
two nearest neighbors approach. After that, three time domain
features are extracted from both acceleration and gyroscope
signals obtained corresponding to each action trial. These
features are presented in Eq. (1) to Eq. (3).

µ =
1
N

∑
s (n) (1)

µ∇ =
1
N

∑
|s (n)− s(n− 1)| (2)

µ1 =
1
N

∑
|s (n+ 1)− 2s (n)+ s(n− 1)| (3)

where, µ represents the mean of the signal s(n), µ∇ is
the mean of absolute values of the first difference of the
signal s(n), µ1 is the mean of absolute values of the sec-
ond difference of the signal s(n), and N represents the
count of total samples in the signal s(n) at a sampling rate
of 50 Hz. These features are extracted for all four channels,
i.e., (sx , sy, sz, smag), of the accelerometer and gyroscope and
then concatenated for each sensor to form the resultant feature
vector. Hence, for each data sequence, we obtained a feature
vector of size [1 × (3 (# of features) × 4 (# of dimensions
per sensor)] = [1×12] per sensor. As there are 861 data
sequences in total, hence we get 861 different feature vectors
per sensor with each feature vector having a length equal
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to 12. These feature vectors are later used in the classification
stage for HAR.

2) FEATURE EXTRACTION FOR RGB/DEPTH SENSOR
For RGB and depth video data, we employed the general
Bag-of-Words (BoWs) pipeline for HAR, which is visualized
in Fig. 2. The BoWs method [63] has been successfully
adapted from static images to the motion clips and videos
through local space-time descriptors. It has many successful
applications in HAR [15], [64], [65]. For human action clips,
BoWs may be specified as a bag of action patches that occur
in the action frames for many times. We used the BoWs
approach to transform locally extracted feature descriptors
from an action clip into a fixed-sized vector needed for
classification.

The proposed BoWs-based approach for HAR consists of
the following steps:

1) Local Feature Description: For extracting features
from RGB and depth videos, we utilized the dense
sampling of local visual descriptors, since densely sam-
pled descriptors are more accurate than keypoint-based
sampling [66], [67]. As a type of local visual descrip-
tors, we paid attention to densely extracted 3D vol-
umes of HOG [68]. For calculating dense HOG, firstly
the gradient magnitude response is computed in both
horizontal and vertical directions, which resulted in a
2D vector field per frame. Haar features are used to
calculate gradient magnitude response as these features
are faster and obtain better results for HOG [62]. Next,
we divided the input video into dense blocks of size
15 × 15 pixels × 20 frames. For every single block,
the magnitude is quantized inO orientation bins (where
O = 8), which is done by dividing each response
magnitude linearly over two neighboring orientation
bins. After that, we concatenated the responses of mul-
tiple adjacent blocks in both spatial and temporal direc-
tions. For this purpose, we concatenated the descriptors
of 33 blocks in the spatial domain and two blocks in
the temporal domain, resulting in a 144-dimensional
HOG descriptor. The size of each HOG descriptor is
then reduced to half using Principal Component Anal-
ysis (PCA), which lead to a 72-dimensional descriptor.
Finally, L1-normalization is performed followed by the
square root to obtain final descriptor representation.

2) Visual Codebook Construction: The number of sig-
nificant interest points and densely extracted HOG
features may change for different videos, which results
in feature vectors having different size. However,
to train a classifier, a fixed size feature vector is
required for all data sequences. For this purpose,
we clustered the features extracted from all training
videos into ‘’ clusters using k-means clustering. The
center of each cluster is considered as a visual word.
A group of these visual words together make a visual
vocabulary or codebook.

FIGURE 2. General pipeline for BoWs representation of dense HOG
features extracted from RGB and depth video sequences.

3) Histogram ofWords Generation:After constructing the
visual vocabulary/codebook from the training videos,
the next step is to quantize the HOG descriptors from
each training/testing video into a fixed-sized vector
known as a histogram of words. Histogram of words
shows the frequency of each visual word that is present
in a video sequence. So, for a given video, each of HOG
descriptor is compared with all visual words and voting
is performed for the best matching visual word, which
resulted in a histogram of the visual words for that
video. In this manner, all training and testing videos
are quantized into k-dimensional vectors referred to as
Bag-of-Words. After computing BoWs for training and
testing video data, classifiers are applied for learning
and recognition of human actions.

B. FEATURE FUSION
After extracting features from inertial sensors and RGB/depth
videos, we performed their fusion for HAR. For this pur-
pose, we independently computed feature vector for the data
obtained from each sensing modality (i.e., RGB/depth sensor
and inertial sensor) and concatenated the individual feature
vectors obtained from the multimodal data related to the same
action at the same time, which resulted in a new high dimen-
sional feature vector. This resultant feature vector possessed
more feature information to better recognize human actions
compared to the feature vector obtained for single sensing
modality.

For the feature-level fusion, it is necessary to balance
different feature sets obtained corresponding to the data from
different sensing modalities. Balancing different feature sets
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means that the concatenated features must have the same
numerical scale and similar length. Hence, we applied the
min-max normalization technique [69] on the feature sets
obtained for RGB/depth and inertial sensors before concate-
nating them to produce a single resultant vector. The purpose
of employing feature normalization is to modify the numer-
ical ranges and scaling parameters of the individual feature
sets to transform these values into a new feature domain,
having a similar numerical scale. Themin-max normalization
scheme preserves the original score distribution and maps the
values into a standard range [0, 1] according to the formula
given in Eq. (4).

x ′ =
x − min (Fx)

max(Fx)− min (Fx)
(4)

where, x is the value to be normalized and x ′ is the nor-
malized value, Fx represents the function that produces
x, min(Fx) and max(Fx) donates the minimum and max-
imum values of Fx respectively for all possible values
of x.

The size of the feature vector obtained in the case of inertial
sensor data is fixed for each data sequence, i.e., [1×12].
On the other hand, the feature vector extracted for RGB/depth
video sequences is of size [1×k], where k is the number of
visual words in BoWs representation of densely extracted
HOG features. The variable k is introduced to balance the
length of the fused feature vectors for RGB/depth and inertial
sensor data, and to find out the effect of varying feature
lengths on the feature-level fusion. The feature sets obtained
are firstly normalized and then concatenated together for
fusion. So, after feature-level fusion of a single inertial sensor
and RGB/depth sensor, we obtained a final feature vector of
size [1× (12+ k)]. When performing the feature-level fusion
of both accelerometer and gyroscope with RGB/depth sensor,
we got a final feature vector of size [1× (12× 2+ k)].

C. ACTION RECOGNITION
After feature extraction and fusion from multiple sensor
modalities, the next process is choosing a suitable classi-
fier for training the proposed framework for HAR and to
test it. Two popular classifiers, i.e., K-Nearest Neighbors
(K-NN) and Support VectorMachine (SVM), are used for this
purpose because of their efficient recognition performance
in existing state-of-the-art studies [8], [70]–[72]. Moreover,
we anticipated comparing their recognition performance
when the fusion of different sensing modalities is used for
HAR.

III. EXPERIMENTAL RESULTS
In this section, we first briefly describe the dataset used
for experimentation along with experimental design and
evaluation metrics. We then provide information regarding
the implementation of our proposed framework. After that,
we compare our algorithm with existing state-of-the-art HAR
methods. Finally, we discuss the qualitative results to provide
essential intuitions of the proposed method.

A. DATASET AND IMPLEMENTATION DETAILS
We evaluated the proposed method on a publicly accessi-
ble multimodal HAR dataset UTD-MHAD, which entails
27 human actions carried out by eight subjects (four females
and four males). Fig. 3 provides a list of these actions with
example images. Each subject repeated every action four
times. Hence, there were overall 864 trimmed data sequences
(8 (no. of subjects) × 4 (no. of trials per action per subject)
× 27 (no. of action)). During data recording, three data
sequences were corrupted; hence after removing the cor-
rupted sequences, 861 data sequences were left in the dataset.
Four sensing modalities including RGB, depth, skeleton joint
positions, and the inertial sensors (3-axis acceleration and
3-axis rotation signals) were used for data recording pur-
pose. The dataset was collected using a Microsoft Kinect
sensor (at a rate of 30 frames per second) and a wearable
inertial sensor (at a sampling rate of 50 Hz) in an indoor
setting. A Bluetooth enabled hardware module was used
as a wearable inertial sensor to record triaxial acceleration
(using an accelerometer) and triaxial angular velocity (using
a gyroscope). This sensing module was worn on the subject’s
right wrist for actions 1 to 21, whereas for actions 22 to
27, the sensor was placed on the subject’s right thigh. For
synchronizing data from different sensing modality, times-
tamp value was recorded for each data sample. The dataset
is comprised of four data files for each segmented action
trial, which correspond to four sensing modalities. A more
detailed explanation regarding the dataset can be found
in [53].

For implementing the proposed HAR method, K-NN and
SVM classifiers are trained and tested on UTD-MHAD. For
K-NN classifier, the parameter ‘K’ is set to 1, and an equal
weight Euclidean distance metric is used for similarity mea-
sure. The Nearest neighbor parameter ‘K’ is different from
‘k’ as ‘k’ is the number of visual words in BoWs repre-
sentation of RGB/depth video features. On the other hand,
a quadratic kernel is applied for SVM classifier with a one-
vs-one approach for multi-class classification. For ensuring
any impartiality in results, an 8-fold stratified cross-validation
method is used to assess the performance of these classifiers
in action recognition. As a result, all action instances in the
dataset are split randomly into eight sets and one set is used
for testing while the remaining sets are used for training.
This process is repeated eight times such that each set of
instances participated in training and testing of the classifiers
in different iterations. For all eight iterations, the classifiers
are evaluated, and the average results of these iterations are
computed, which are presented in this section. The perfor-
mance metrics used for evaluating the classifier performance
for the proposed HAR scheme are accuracy, precision, recall,
and f-measure.

B. ACTION RECOGNITION RESULTS AND ANALYSIS
For feature-level fusion, we concatenated the individual
feature sets extracted from inertial sensor data and the
corresponding RGB and/or depth video sequence after
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FIGURE 3. Set of 27 human actions in UTD-MHAD with sample image.

TABLE 2. HAR results obtained using inertial sensors (accelerometer (Acc.), gyroscope (Gyro.), and their feature-level fusion).

min-max normalization. Although feature-level fusion seems
to be simple and straightforward, it suffers from some sev-
eral deficiencies. First, the increase in the dimensionality
of the fused feature vector raises the computational com-
plexity of classification. Second, the dimensionality of the
RGB/depth features is typically much higher than the features
extracted for inertial sensor data, which ultimately degrades
the fusion purpose. We address these issues using a variable
length feature vector for RGB and depth data sequences.
The size of the feature vector obtained from inertial sensor
data is equal to 1×12. On the other hand, the length of
each feature vector extracted for RGB/depth video sequence
is equal to the number of clusters k in BoWs represen-
tation of dense HOG features. We evaluated HAR results
for varying values of k (starting from 10 to 30) to analyze
the effect of varying feature vector length on recognition
performance. Choosing k higher than 30 increases the dif-
ference between the lengths of the fused feature vectors
obtained from RGB/depth and inertial sensor data. Hence,
the feature sets become imbalanced and as a result, the

feature-level fusion becomes ineffective. Also, higher values
of k mean a higher number of clusters in BoWs feature repre-
sentation and smaller distance between the cluster centroids
or visual words. So, the chance of visual words misclas-
sification enhances, which eventually decreases the recog-
nition performance. The detailed results of HAR obtained
using different sensor modalities individually as well as their
combination are presented and discussed in the following
sections.

1) PERFORMANCE ANALYSIS OF INERTIAL SENSOR-BASED
HAR
This section discusses the results of HAR obtained using only
the inertial sensors for recognition. Table 2 summarizes these
results for the different combination of sensors. The results of
HAR are provided individually for each inertial sensor as well
as their feature-level fusion. It can be observed that K-NN
classifier provides better performance than SVM classifier in
recognizing human actions based on a single inertial sensor
or their combination. The accuracy rate achieved for K-NN
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TABLE 3. HAR results obtained using depth sensor, RGB sensor, and their feature-level fusion.

classifier in recognizing human actions using accelerometer
and gyroscope individually is 78.5% and 76.6% respectively.
These accuracy rates are 1.9% and 3.8% better than the
accuracy values achieved for SVM classifier when using
these sensors individually. The overall performance of an
accelerometer in recognizing human actions is better than
the gyroscope. Moreover, it can be observed that the fusion
of these inertial sensors improves the overall recognition
accuracy to 91.6% and 90.5% when classified using K-NN
and SVM classifiers individually. Overall, K-NN classifier
provides better results as compared to SVM classifier in
classifying human actions based on the feature-level fusion
of inertial sensors.

2) PERFORMANCE ANALYSIS OF RGB AND DEPTH
SENSOR-BASED HAR
This section provides the detailed results obtained for HAR
using depth and RGB sensors individually as well as their
combination. These results are computed for different values
of k , where k is the number of visual words in BoWs rep-
resentation of dense HOG features extracted for each depth
and RGB video sequence. This parameter k represents the
length of the final feature vector obtained for depth and RGB
video sequence. Varying the value of k affects the recognition

results as depicted in Table 3. The lower value of k indicates
less number of visual words in BoWs representation of dense
HOG features, which provides lower action recognition per-
formance. As we keep on increasing the value of k , the results
become saturated. Hence, using a very high value of k might
result in only a little performance improvement, but at the
expense of increased computational cost. Hence, a moderate
value of k leads to better recognition rate and lesser compu-
tational cost as well.

It can be observed from Table 3 that K-NN classifier
achieves maximum accuracy rate for HAR using depth and
RGB sensor individually, which is 81.5% and 85.2% respec-
tively for k = 25. Also, the difference between the accuracy
rate achieved for k = 5 and k = 10 is very high, which
reduces as the value of k is increased. In the case of SVMclas-
sifier, the maximum accuracy rate achieved using depth and
RGB sensor individually is 72% and 77.6% when k reaches
30. These results indicate that the individual performance of
the RGB sensor in recognizing human actions, based on dense
HOG features, is better than the performance of the depth
sensor. It is because of the reason that RGB video provides
rich texture information as compared to depth video, which is
very useful for extracting dense HOG features. Moreover, the
feature-level fusion of RGB and depth sensor improves HAR
performance to 89.3% and 85.4% using K-NN and SVM
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classifier respectively. However, it also increases the dimen-
sionality of the fused feature vector, which raises the compu-
tational complexity of the classification process. Moreover,
it might also degrade the overall recognition performance if
the value of k is set too high.

3) PERFORMANCE ANALYSIS OF HAR BASED ON
FEATURE-LEVEL FUSION OF RGB, DEPTH AND INERTIAL
SENSORS
This section analyzes the performance of HAR when the
feature-level fusion of RGB/depth and inertial sensors is per-
formed. The statistical features computed from inertial sensor
data are different from dense HOG-based features extracted
for RGB/depth video data and have different dimensions.
Feature-level fusion is practically possible when the dimen-
sions of the fused feature vectors are notmuch different. In the
case of inertial sensor data, the feature vector size is 1×12.
Hence, the length of RGB/depth feature vector is kept from
k = 10 to k = 30 for efficient recognition performance.

Table 4 presents the detailed results of HAR based on the
feature-level fusion of RGB/depth and inertial sensors. It can
be observed that K-NN classifier provides better results as
compared to SVM classifier. When using only the accelerom-
eter with a depth sensor, the maximum accuracy rate achieved
for HAR using K-NN classifier is 94.8% (for k = 25).
Whereas, SVM classifier provides a maximum accuracy rate
of 90.6% (for k = 25) for the same combination of sensors.
Adding gyroscope with a depth sensor for feature-level fusion
achieves a maximum accuracy rate of 93.7% and 89.7% using
K-NN and SVMclassifier respectivelywhen k = 25. It shows
that adding accelerometer with a depth sensor provides better
results for HAR as compared to the gyroscope. Adding both
accelerometer and gyroscope with a depth sensor improves
the recognition accuracy to 97% (for k = 30) using K-NN
classifier. In the case of SVM classifier, the accuracy rate
also improves to 95.1% when k = 25. These results indicate
that KNN classifier performs better than SVM classifier in
recognizing human actions.

The recognition results for the feature-level fusion of RGB
and inertial sensors are also presented in Table 4. When
adding accelerometer and gyroscope individually with RGB
sensor, the maximum accuracy rate achieved for HAR using
K-NN classifier is 96.1% (for k = 25) and 95.4% (for k =
25) respectively. In the case of SVM classifier, the addition
of accelerometer with RGB sensor provides a maximum
accuracy rate of 91.3% (for k = 25). Whereas, fusing
gyroscope with RGB sensor gives a maximum accuracy of
90.1% (for k = 30). The best accuracy rate achieved for
the proposed HAR framework is 97.6% (for k = 25) using
K-NN classifier, which is achieved by the fusion of RGB
and inertial sensors (both accelerometer and gyroscope). For
the same combination of sensors, SVM classifier provides
maximum accuracy of 95.5%when k = 25, which is lower as
compared to the accuracy rate obtained for K-NN classifier.
Adding depth sensor with RGB and inertial sensors provides
an accuracy improvement of 0.7% (accuracy =98.3% for

k = 25) and 0.6% (accuracy =96.1% for k = 20) when
evaluated using K-NN and SVM classifier respectively as
shown in Table 5. Hence, K-NN classifier provides the best
accuracy rate of 98.3% for the proposed HAR system using
the feature-level fusion of all four sensors (RGB, depth,
accelerometer, and gyroscope). In general, for any combina-
tion of sensing modalities, the recognition rate achieved for
the proposed HAR method using K-NN classifier is higher
than the accuracy rate obtained for SVM classifier. Further-
more, K-NN classifier also provides lower computational
complexity compared to SVM classifier. Therefore, K-NN
classifier is concluded as the optimal choice for the proposed
action recognition framework.

4) ANALYSIS OF FEATURE-LEVEL FUSION RESULTS FOR HAR
USING K-NN CLASSIFIER
This section compares the best performance achieved for the
proposed HAR method using K-NN classifier when different
sensingmodalities are used. Table 6 provides a comparison of
the average accuracy attained using different sensors along
with the final feature vector length and average process-
ing time. It can be observed that the feature-level fusion
of different sensors increases the length of the final feature
vector, which in return increases the average computational
time. The processing time for the proposed HAR method
is computed using MATLAB on a laptop with a 2.3 GHz
Intel Core-i5 CPU with 8 GB RAM. For each sensor or set
of sensors, the average time taken for feature extraction and
classification can be added to compute the overall average
computational time. For RGB/depth sensor, the average time
is calculated per frame, whereas, for inertial sensors, it is
computed per sample.

From Table 6, it can be seen that the accuracy rate
achieved for HAR with the accelerometer sensor only is
78.5%, whereas, for the gyroscope sensor, it is 76.6%. The
fusion of accelerometer and gyroscope provides an accuracy
of 91.6% at the expense of around 46% (53 microseconds
(µs)) increase in average processing time per sample. The
maximum accuracy rate achieved for HAR using depth and
RGB sensor alone is 81.5% and 85.2% respectively with the
feature vector length of 25. The fusion of depth and RGB
features improved the recognition accuracy to 89.3%, which
is 7.8% and 4.1% better than the individual accuracy rate
achieved using depth and RGB sensor respectively. However,
the fusion increased the average time for feature extraction to
7.34 milliseconds (ms) per frame, which is about 2.6 times
(160%) and 1.6 times (60%) more than the average time
taken for extracting depth and RGB features separately. The
average classification time of the fused feature vector, in this
case, is increased by 9.6% per frame. The fusion of inertial
sensors (both accelerometer and gyroscope) with depth and
RGB sensor separately achieved the maximum accuracy of
97% and 97.6% respectively. This accuracy rate is 12.4% and
15.5% more than the accuracy rate achieved for depth and
RGB sensor individually, with an increase of 8.6% in average
processing time.

60744 VOLUME 7, 2019



M. Ehatisham-ul-Haq et al.: Robust Human Activity Recognition Using Multimodal Feature-Level Fusion

TABLE 4. HAR results obtained using feature-level fusion of depth and inertial sensors (accelerometer (Acc.) and gyroscope (Gyro.)).
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TABLE 5. HAR results obtained using feature-level fusion of RGB, depth, and inertial sensors (accelerometer (Acc.) and gyroscope (Gyro.)).

FIGURE 4. Confusion matrix for HAR results obtained for the feature-level fusion of RGB and inertial sensors (for
k = 25).
∗ Each entry in the confusion matrix represents predicted/total elements for the given class (rows represent ground
truth and columns represent predicted class).

The best accuracy rate obtained for the proposed HAR
approach is 98.3%, which is achieved as a result of the
feature-level fusion of four different sensors including RGB,
depth, accelerometer, and gyroscope sensor. However, in this
case, the average time for classification is increased by 13.5%
when compared with the average classification time taken for
the fusion of inertial sensors with RGB or depth sensor. The
average time required for feature extraction is also increased
with a maximum factor of approximately 2.6, which can be
observed from Table 6. On the other hand, adding inertial
sensors with RGB or depth sensor only results in a slight
increase in the average processing time and provides an
accuracy rate comparable to the maximum accuracy rate. The
accuracy rate achieved by the fusion of RGB and inertial
sensors is 97.6%, which is 8.3% more than that obtained by
feature-level fusion of RGB and depth sensor using K-NN
classifier. Hence, it is evident that the overall performance
of the proposed HAR method (considering the accuracy rate
and the computational time as a trade-off) is better for the

feature level fusion of inertial sensors with only RGB or depth
sensor. In particular, as the RGB sensor provides rich texture
information and inertial sensor tracks 3Dmotion information,
it is concluded that their feature-level fusion provides the
overall best performance for the proposed HAR framework.

Fig. 4 provides the confusion matrix of the best overall
results achieved for the feature-level fusion (using RGB and
inertial sensors) to demonstrate per class recognition accu-
racy of all 27 actions inUTD-MHAD. It can be observed from
the figure that most of the actions are recognized with a very
high individual accuracy. The lowest individual recognition
accuracy achieved is 87.5% for action 20, i.e., right-hand
catch an object.

5) COMPARISON OF FEATURE-LEVEL FUSION AND
DECISION-LEVEL FUSION RESULTS FOR PROPOSED HAR
METHOD
Our proposed method for HAR relies on the feature-level
fusion of multiple sensors for robust action recognition.
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TABLE 6. Comparison of HAR results obtained for the proposed scheme using K-NN classifier with single and multiple sensing modalities.

However, most of the existing studies for multimodal action
recognition [53], [54] focused on decision-level fusion to
achieve effective recognition results as the features being
extracted from different sensors are independent. Instead, the
feature-level fusion requires the numerical scale and dimen-
sions of the fused feature vectors to be similar, which is not
possible with the type of features extracted for RGB and depth
video sequences in the existing studies. Also, the dimensions
of the RGB and depth features are often quite higher as
compared to the inertial sensor features, which is infeasi-
ble for the feature-level fusion. Consequently, the results
obtained for the feature-level fusion are not much consistent
and accurate as compared to the decision-level fusion results
in the literature. In our proposed study, we first balanced
the dimensions and numerical scale of the RGB-D features
(densely extracted HOG) and the statistical signal attributes
computed from the inertial sensors. After that, we performed
multimodal feature-level fusion to achieve the desired HAR
results.

To validate the effectiveness of our feature-level fusion
approach, we also computed the decision-level fusion results
for the proposed scheme and compared both results. For
the decision-level fusion, we followed the same approach as
proposed by the authors in [53], [54]. For the fusion of n
different sensors, we trained n K-NN classifiers separately
by passing the corresponding set of features as an input to
each classifier. During testing, we merged the decision of
each classifier using a logarithmic opinion pool (LOGP) [73]
at the posterior-probability level. For calculating the posterior
probability of each classifier, we used Euclidean distance to
compute the error vector. The final class label for each testing
instance is assigned to the action class with the smallest error.
Fig. 5 shows the comparison of the accuracy rate achieved
for the proposed HAR with the feature-level and decision-
level fusion. For any set of sensing modalities, the percentage

FIGURE 5. Comparison of the maximum accuracy rate achieved for the
proposed HAR framework with the feature-level and decision-level fusion
of different sensors using K-NN classifier. For any combination of sensors,
the feature-level fusion outperforms the decision-level fusion.
∗ Here, ‘A’ represents the accelerometer sensor, ‘G’ represents the
gyroscope, ‘D’ is the depth sensor, and ‘RGB’ represents the RGB sensor.

accuracy achieved for the multimodal feature-level fusion is
higher than that obtained for the decision-level fusion. The
proposed HAR framework with the feature-level fusion of
RGB and inertial sensors provides a 19.3% increase in the
accuracy rate as compared to the decision-level fusion of
the same set of sensors. It substantiates the efficacy of the
proposed feature-level fusion over the decision-level fusion.
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TABLE 7. Comparison of proposed HAR method results with existing studies.

6) PERFORMANCE COMPARISON OF PROPOSED HAR
SCHEME WITH STATE-OF-THE-ARTS
This section provides a performance comparison of the pro-
posed scheme for HAR with the existing techniques. The
proposed HAR scheme, based on the feature-level fusion
of RGB and inertial sensors, provides superior recognition
performance on UTD-MHAD compared to existing methods
as shown in Table 7. Chen et al. [53] presented UTD-MHAD
in their study and utilized the decision-level fusion of depth
and inertial sensors (accelerometer and gyroscope) for HAR.
They computed three statistical features for inertial sensor
data and extracted DMMs for depth video sequences. The
authors partitioned the dataset into two equal splits for train-
ing and testing. The data corresponding to four different users
was utilized for training whereas the data from the rest of
the users was used for testing, which resulted in an average
accuracy rate of 79.1%. The authors modified their existing
methodology in [54] to incorporate real-time HAR, which
achieved recognition accuracy of 91.5% using an 8-fold
cross-validation scheme for subject-generic experiments. The
authors also conducted experiments using subject-specific
training and testing, which achieved an average accuracy
rate of 97.2%. Ben Mahjoub and Atri [8] proposed an RGB
sensor-based scheme that utilized the STIP for detecting
significant changes in an action clip. Moreover, they used
the HOG and Histogram of Optical Flow (HOF) as feature
descriptors and achieved an accuracy rate of 70.37% using
SVM classifier. Wang et al. [40] used CNN for HAR and
utilized the skeleton information from the Kinect sensor to
achieve an overall recognition accuracy of 88.1% on UTD-
MHAD. Kamel et al. [41] applied deep CNN for HAR
using depth maps and skeleton information and achieved an
accuracy rate of 87.9% onUTD-MHAD dataset. The research
work in [39] proposed the skeleton optical spectra (SOS)
method based on CNNs to recognize human actions.

The authors encoded the skeleton sequence information into
color texture images for HAR and achieved an accuracy
rate of 86.9% on UTD-MHAD. The authors in [60] utilized
the decision-level fusion for HAR using depth camera and
wearable inertial sensors. They extracted CNN based features
for depth sensor and used CNN and LSTM networks for
inertial sensors. Their study achieved an accuracy of 89.2%
on UTD-MHAD. Recently, Cui et al. [61] used the skeletal
data to extract the temporal and spatial features for action
recognition using LSTM and spatial CNN models respec-
tively. They achieved a maximum accuracy rate of 87.0% on
UTD-MHAD.

Our proposed scheme combines the color and rich texture
information from the RGB sensor with 3D motion informa-
tion obtained from inertial sensors for robust HAR. The pro-
posed scheme for HAR, based on the feature-level fusion of
RGB and inertial sensors, obtained the maximum recognition
accuracy of 97.6% using 8-fold cross-validation, which is
better than the reported results of existing techniques. Fur-
thermore, the proposed scheme is computationally efficient
as the overall length of the fused feature vector is very small,
i.e., 49 (25 + 2 × 12), for the case when performance is
achieved for K-NN classifier using the fusion of RGB and
inertial sensors. On the other hand, in existing techniques,
generally, the dimensions of the feature vector obtained
for RGB/depth video sequence are very high, which makes
the HAR system computationally expensive. Moreover, the
application of CNN for HAR also increases the computa-
tional cost of the system. Moreover, in the case of RGB and
depth sensor fusion, the computational complexity and the
dimensions of the fused feature vector increases significantly.
However, in our proposed method, we quantized the dense
HOG features computed on RGB or depth video sequences to
have a maximum length of 30. Then, we concatenated these
features with those obtained from inertial sensor data for the
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feature-level fusion. In this way, we increased the accuracy
of HAR without making the proposed framework computa-
tionally expensive. Finally, to have a fair comparison with
the results reported for subject-specific experiments in [54],
we also evaluated the proposed HAR scheme using the same
protocols. Using the feature-level fusion of RGB and inertial
sensors, the subject-specific experiments for our proposed
scheme obtained an accuracy rate of 98.2%, which is better
than previously reported results in [54]. Hence, it is concluded
that the proposed scheme provides better recognition results
than state-of-the-art.

IV. CONCLUSION
In this paper, a feature-level fusionmethod has been proposed
for human action recognition, which utilizes data from two
differing sensing modalities: vision and inertial. The pro-
posed system merges the features extracted from individual
sensing modalities to recognize an action using a supervised
machine learning approach. The detailed experimental results
indicate the robustness of our proposed method regard-
ing classifying human actions as compared to the settings
where each sensor modality is used individually. Also, the
feature-level fusion of time domain features computed from
inertial sensors and densely extracted HOG features from
depth/RGB videos reduces the computational complexity and
improves the recognition accuracy of the system as compared
to state-of-the-art deep CNN methods. Regarding classifier
performance, K-NN classifier provides better results for the
proposed HAR system as compared to SVM classifier.

The proposed HAR methods also have some limitations.
For example, it works with pre-segmented actions, which do
not exist in practice. Moreover, it does not incorporate multi-
view HAR, and the orientation of the person whose action
is being recognized remains the same with respect to the
camera. In the future, we plan to extend the proposed HAR
method to address these limitations. Furthermore, we aim to
investigate the specific applications of the proposed fusion
framework using RGB-D camera and wearable inertial sen-
sors.
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