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ABSTRACT This paper proposes a novel gyro drift estimation method for the inertial navigation sys-
tem (INS), which introduces the particle swarm optimization (PSO) algorithm into the error estimation
problem. PSO-based estimation model is established. The position error and velocity error of INS are
considered as the performance criterions of the PSOfitness function. Comparedwith the traditional gyro drift
estimation methods, the advantages or contributions of the proposed method can be summarized as follows:
1) the proposed method does not require any prior information about inertial sensor error or observation
noise; 2) particular motion for the carrier of INS is not needed, and; 3) the external information provided by
other navigation systems could be discontinuous. The simulation experiments and field tests are performed,
which validate the efficacy of the proposed method.

INDEX TERMS Inertial navigation system, particle swarm optimization, gyro drift estimation.

I. INTRODUCTION
An inertial navigation system utilizes the inertial properties of
sensors mounted aboard the vehicle to execute the navigation
function [1]–[6]. The system accomplishes this task through
appropriate processing of the data obtained from force and
inertial angular velocity measurements. Thus, an appropriate
initialized inertial navigation system is capable of continuous
determination of vehicle position and vehicle without the
use of external radiation or optical information. Thus, iner-
tial navigation systems have obvious advantages for military
applications.

Short-term navigation accuracy of INS is relatively high.
However the navigation error accumulates with time [7]–[9].
The main cause for the decrease of navigation accuracy is
the gyro error of the inertial navigation system [10]–[12],
which could usually be divided into constant error and ran-
dom error. Depending on the calibration experiment in the
calibration experiment, the constant error could be measured
and compensated. The random error is caused by uncertain
random disturbance, which could be further subdivided into
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random constant drift, random slope, random walk, etc [13].
Among them, the random constant drift, also known as gyro
drift or gyro bias instability, affect the precision of inertial
navigation system most.

The usual navigation errors of INS are longitude and lat-
itude errors, east and north velocity errors, and the three
attitude errors [14], [15]. Under the influence of gyro error,
the longitude error diverges over time and the other six navi-
gation errors oscillate regularly, the amplitudes of which will
increase slowly. For the inertial navigation system that needs
to work continuously for a long time, such as shipboard INS,
the divergent errors are not acceptable. Therefore, estimation
and compensation for the gyro error, especially gyro drift, are
of great significance for the improvement of inertial naviga-
tion precision.

Traditionally, estimation for the gyro drift is mainly real-
ized by Kalman Filter [16]–[20]. In [16], a modified adaptive
Kalman gain correction algorithm is proposed to denoise
IFOG signal. The Kalman gain is adaptively updated using
the covariance matrix of innovation sequence. In [17], the
Fiber Optic Gyroscope drift is modeled using an auto-
regressive-moving-average time serials model. And the gyro
drift is subsequently reduced using the proposed adaptive
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unscented Kalman filter algorithm. Reference [18] proposes
an improved double-factor adaptive Kalman filter called
AMA-RWE-DFAKF to denoise fiber optic gyroscope (FOG)
drift signal. In ideal conditions, Kalman Filter based esti-
mation methods can effectively obtain the gyro drifts of
inertial navigation system. However, these methods have lim-
its: (1) Prior information of characteristics of inertial sensor
errors are required; (2) Data of the integrated system should
be continuous during the error estimation process; (3) In order
to improve the observability of gyro drifts, some particular
motion for the vehicle is required.

In view of the problems in traditional gyro drift estima-
tion methods, a particle swarm optimization based gyro drift
estimation method (PSOBE for short) for inertial naviga-
tion system is proposed in this paper. As we know, parti-
cle swarm optimization is a kind of intelligent algorithm,
which is mainly used to search for the optimal solution to
some complex optimization problem [21]–[23]. In this paper,
the gyro drift of inertial navigation system is considered as the
searched object for the particle swarm optimization. By this
way, the gyro drift estimation problem is heuristically estab-
lished as an optimal search problem. During the execution of
the particle swarm optimization, a fitness function is needed
to judge a particle or solution is good or not [24], [25]. For
an inertial navigation system, in pure inertial state, larger
gyro drifts lead to greater navigation errors. Meanwhile, all
other things being equal, the smaller the navigation errors,
the smaller the gyro drifts. From this point of view, nav-
igation errors of INS can be used to establish the fitness
function of the PSO algorithmwhen searching for the optimal
gyro drifts. Per this line of thinking, the PSOBE method
is proposed, the main idea of which can be presented as
follows: Use PSO algorithm to search the gyro drifts of an
INS. During the searching process, every particle contains
a set of gyro drifts that needs to be evaluated. Compensate
the raw gyro data of the INS with the gyro drifts in each
particle to create corrected gyro data. The accuracy of pure
inertial navigation by the corrected gyro data will be con-
sidered as the evaluation criteria for the performance of each
particle.

Compared with the traditional Kalman filter based gyro
drift estimation methods, the advantages of the proposed
PSOBE method can be summarized as follows: (1) Prior
information of inertial sensor errors is not needed; (2) Lim-
itation for vehicle moving state is not required; (3) The
data of the added navigation system, if needed, could be
discontinuous.

The rest of this paper is organized as follows. Error charac-
teristics of INS are analyzed in Section 2. In section 3, the fun-
damental principle of PSO is introduced and the PSOBE
method is proposed. Simulation experiments and field tests
are carried out in Section 4. Finally, conclusions are drawn in
Section 5.

II. PROBLEM STATEMENT
Denote by n the local level navigation frame, an orthogonal
reference frame aligned with east–north–up (ENU) geodetic
axes; by b the SINS body frame, an orthogonal reference
frame aligned within the IMU axes; by e the Earth frame,
an Earth-centered Earth-fixed (ECEF) orthogonal reference
frame; by i the chosen inertial frame.

The attitude, velocity and position rate equations in
n-frame are, respectively, given by
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where, Cn
b denotes the attitude matrix from the body frame

to the navigation frame; ωbib the body angular rate measured
by gyroscopes in the body frame; ωnin the rotation rate of
the navigation frame with respect to the inertial frame; ωnie
the Earth rotation rate with respect to the inertial frame;
Vn
= [VE ,VN ,VU ] the velocity relative to the Earth; [L, λ]

the latitude and longitude; f b the specific force measured by
accelerometers in the body frame; R the radius of the Earth.

Error equations of INS can be deduced based on Equa-
tions (1)-(3), which are given by [5]
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where, εn = [εE , εN , εU ] = Cn
b[εx , εy, εz] denotes the

gyro drift in n-frame; [εx , εy, εz] denotes the gyro drift in
b-frame. ∇n = [∇E ,∇N ,∇U ] = Cn

b[∇x ,∇y,∇z] denotes
the accelerometer drift in n-frame; [∇x ,∇y,∇z] denotes the
accelerometer drift in b-frame. φ = [φx , φy, φz] denotes the
misalignment attitude; δVn

= [δVE , δVN , δVU ] the velocity
error; [δL, δλ] the position errors.



δV̇E
δV̇N
δL̇
φ̇x
φ̇y
φ̇z

 =


0 2ωie sinL 0 0 −g 0
−2ωie sinL 0 0 g 0 0

0 1
R 0 0 0 0

0 −
1
R 0 0 ωie sinL −ωie cosL

1
R 0 −ωie sinL −ωie sinL 0 0

tanL
R 0 ωie cosL ωie cosL 0 0

×

δVE
δVN
δL
φx
φy
φz

+

∇E
∇N
0
εE
εN
εU

 (8)

VOLUME 7, 2019 55789



H. He et al.: PSO-Based Gyro Drift Estimation Method for INS

According to Equations (4)-(7), the error characteristics of
INS on a stationary base can be represented in matrix form as
in (8), shown at the bottom of the previous page.

Thus, the time-domain expressions of the navigation errors
can be given as:
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According to Equations (9)-(15), the navigation errors
caused by gyro drift fall into three classes: (1) oscillation
error; (2) constant error; (3) accumulation error. The latter
one is the key factor that undermines the system performance
of INS. If the gyro drift could be accurately estimated and
compensated, the navigation accuracy of INS is expected to
be improved effectively.

III. PARTICLE SWARM OPTIMIZATION BASED GYRO
DRIFT ESTIMATION METHOD
A. FUNDAMENTAL PRINCIPLE OF PARTICLE SWARM
OPTIMIZATION
Particle swarm optimization (PSO) is a population based
stochastic optimization technique developed by Dr. Eberhart
and Dr. Kennedy in 1995, inspired by social behavior of bird
flocking or fish schooling. In PSO, the potential solutions,
called particles, fly through the problem space by following
the current optimum particles. In this paper, a particle is a set
of gyro drifts of INS.

The system is initialized with a population of random solu-
tions and searches for optima by updating generations. The
fitness function is established to evaluate the performance of
each solution. Each particle keeps track of its coordinates
in the problem space which are associated with the best
solution, or fitness, it has achieved so far. This value is called
personal best value, denoted by pbest . Another ‘‘best’’ value
that is tracked by the particle swarm optimizer is the best
value, obtained so far by any particle of all generations. This
location is called global best value, denoted by gbest .

The particle swarm optimization concept consists of,
at each time step, changing the velocity of each particle
toward its pbest and gbest locations. Acceleration is weighted
by a random term, with separate random numbers being
generated for acceleration toward pbest and gbest locations.
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The velocity and coordinate updating algorithm of the particle
can be presented as follows:

vm+1id = ωvmid + c1r1(p
m
best − x

m
id )+c2r2(g

m
best−x

m
id ) (16)

xm+1id = xmid + v
m+1
id (17)

where, v and x are the velocity and coordinate of a parti-
cle. m is the generation number of the current population.
d = 1, 2, . . . ,N is the dimension of searching space. i =
1, 2, . . . ,N is the population size. r1 and r2 are two ran-
dom number between [0, 1]. c1 and c2 are learning factors
which respectively represent the learning ability from the
particle itself and other particles. Generally, c1 and c2 lie
between [0, 2]. ω is the inertia weight coefficient, which
is used to regulate the diversity of the particles. pmbest and
gmbest are the personal best value and global best value of the
current population. In order to improve the search efficiency,
the value of v is usually limited between [vmin, vmax]. When
the result of Equation (16) is out of the range, v should take
the boundary value.

B. PROCEDURE OF THE PROPOSED ALGORITHM
As mentioned in section 2, accurate estimation for the gyro
drift of INS is of great significance. Traditionally, the esti-
mation is realized by Kalman filter based estimation meth-
ods, which have some inevitable constraints. In this paper,
the estimation problem is creatively transferred to an optimal
search problem, which is quite suited for PSO. Therefore,
in this section, a particle swarm optimization based gyro drift
estimation method is proposed. The structure of the proposed
algorithm can be shown in Figure 1.

As shown in Figure 1, the procedure of the particle swarm
optimization based gyro drift estimation method can be sum-
marized as follows:
Step 1: The potential values of gyro drifts of INS are

encoded in decimal numbers as the initial particles.
Step 2:Compensate the output of gyros with the gyro drifts

in each particle to generate corrected gyro data. The corrected
data is then used for navigation calculation based on inertial
navigation differential equations.
Step 3: Based on the position error and velocity error

of the INS with corrected gyro data, a fitness function is
established to evaluate the performance of each particle. The
detailed construction procedures of the fitness function will
be illustrated latter in section C.
Step 4: Refresh the personal best value pbest and the global

best value gbest .
Step 5: Refresh the velocity and coordinate of each particle

in the problem space.
Step 6: If the terminating condition is not satisfied,

the newly created population will be evaluated again and the
process repeats.
Step 7: After 50 generations, the searching process ends.

Execute inertial navigation calculation with the corrected
gyro data by the optimum particle.

FIGURE 1. Structure of the proposed algorithm.

The expectation is that the fitness of the population will
increase each round, and so by repeating this process for
50 rounds, very good solutions to this problem can be dis-
covered.

C. ESTABLISH OF THE FITNESS FUNCTION
According to the analysis in section 2, gyro drift will affect
the navigation precision of INS. As the position and velocity
of the vehicle are relatively easy to be obtained by external
information sources, the position error and velocity error of
INS are considered as performance criterions in the particle
swarm optimization fitness function to evaluate the perfor-
mance of each particle during the gyro drift estimation pro-
cess. According to the above analysis, the fitness function can
be defined as follow:

J = ρ1
∑te

t0

∣∣eVE (t)∣∣+ ρ2∑te

t0

∣∣eVN (t)∣∣+ ρ3∑te

t0
|eLat (t)|

+ ρ4
∑te

t0
|eLon(t)| (18)

where, t0 denotes the start time of gyro drift estimation; te the
end time of estimation; eVE (t) the east velocity error; eVN (t)
the north velocity error; eLat (t) the latitude error; eLon(t) the
longitude error; ρ1, ρ2, ρ3, ρ4 are weighted values.

IV. PERFORMANCE EVALUATION
A. SIMULATION EXPERIMENT
For the purposes of verifying the validity of the proposed
PSOBEmethod, simulation experiments are carried out. Sim-
ulation conditions are given as:
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FIGURE 2. Gyro drifts searched out by the proposed PSOBE method for
50 simulation experiments. (a) Estimation results of εx . (b) Estimation
results of εy . (c) Estimation results of εz .

Gyro drift: εx = −0.01◦/h, εy = 0.01◦/h, εz = 0.01◦/h.
The mean of gyro random walk is 0. And the standard devia-
tion of gyro random walk is 0.001◦/

√
h. Accelerometer drift:

∇x = 0.001m/s2, ∇y = 0.001m/s2, ∇z = 0.001m/s2.
The vehicle is assumed to be stationary and located on

the surface of the earth at a latitude of 30.58◦. Experiments
are carried out in pure inertial state for 240 hours, in which
the first 3 hours data is used for gyro drift estimation. The
number of particles for one generation is 30. Parameters of
PSO can be empirically assigned as follows: c1 = 1, c2 = 1,
r1 = 1, r2 = 1, ω = 1, vmin = −0.1/100, vmax = 0.1/100.
The value ranges of gyro drifts are εi ∈ [−0.03, 0.03](◦/h),

TABLE 1. Statistics characteristics of gyro drifts.

FIGURE 3. Optimization process of the fitness value f for the 1st test.

i = x, y, z. Parameters of fitness function in Equation (18)
are: ρ1 = 1.0, ρ2 = 1.0, ρ3 = 1.0, ρ4 = 10. The searching
process finishes after 50 generations.

In order to verify the validity and repeatability of the esti-
mation algorithm, 50 independent tests are carried out using
the same simulation data. The results are shown in Figure 2
and their statistics are listed in Table 1. Taking the first test as
an example, the varying processes of the fitness value f can
be presented in Figure 3.

From Figure 2 and Table 1, it is clear that the difference
among the error estimation results of the 50 independent tests
is quite small, which shows that the proposed method has
good repeatability and stability.

Define the estimation accuracy as:

Ac = (1−

∣∣∣∣ηe − ηiηi

∣∣∣∣)× 100o/o (19)

where ηe is the estimation value, ηi is the ideal value.
According to Table 1, the estimation accuracies of the three

gyros for the 50 tests are all better than 90%. The average
estimation accuracies of εx , εy and εz are respectively 96.2%,
92.7% and 95.4%. The results show that the proposed method
has high estimation accuracy.

In order to illustrate the influence of the proposed PSOBE
method to the precision of inertial navigation, navigation
experiments are carried out, using the 240h simulation data.
Two navigation schemes are compared:
Scheme 1: Traditional inertial navigation without

compensation.
Scheme 2: Estimate the gyro drifts by the proposed PSOBE

method. Compensate the output of gyros with the esti-
mated gyro drifts. In this experiment, the gyro drifts used
for compensation are the mean values in Table 1, that are
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FIGURE 4. Navigation results by different schemes. (a) Pitch errors. (b) Roll errors. (c) Yaw errors. (d) East velocity errors.
(e) North velocity errors. (f) Longitude errors. (g) Latitude errors.

[εx , εy, εz] = [−0.01038, 0.01073, 0.01046](◦/h). The com-
pensated data was then used for inertial navigation.

The experimental results are shown in Figure 4.
As shown in Figure 4, the blue lines denote the results of

scheme 1, where the gyro drifts of INSwere not estimated and

compensated. The red lines denote the results of scheme 2,
where the gyro drifts of INS were estimated by the proposed
PSOBE method, which were then be compensated during
the calculation of INS. The results show that the proposed
method can effectively restrain the navigation errors of INS,
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FIGURE 5. FOG SINS on the turntable.

TABLE 2. performance of the FOGs and accelerometers.

which also demonstrates from another point of view that the
proposed PSOBE method can accurately estimate the gyro
drifts of INS.

B. FIELD TEST
In this section, the performance of the proposed PSOBE
method is evaluated using field test data. The used field
test data was collected from navigation-grade strapdown
inertial navigation system (SINS) which is equipped with a
triad of fiber optic gyroscopes and accelerometers. The fiber
optic gyroscope (FOG) SINS is installed on the double-axis
turntable as shown in Figure 5 with a latitude of 30.58◦ and
a longitude of 114.2429◦. The specifications of the inertial
sensors of are listed in Table 2. The SINS provides raw IMU
measurements at 100 Hz.

Parameters of PSO can be empirically assigned as follows:
c1 = 1, c2 = 1, r1 = 1, r2 = 1, ω = 1, vmin = −0.1/100,
vmax = 0.1/100. Parameters of fitness function in Equa-
tion (18) are: ρ1 = 1.0, ρ2 = 1.0, ρ3 = 1.0, ρ4 = 10. The
value ranges of gyro drifts are εi ∈ [−0.03, 0.03](◦/h), i =
x, y, z. The population size is 30. The evolutional generation
is 50. The first 3 hours data is used for gyro drift estimation.

In order to verify the validity and repeatability of the esti-
mation algorithm, 50 independent tests are carried out using
the same field test data. The results are shown in Figure 6 and
their statistics are listed in Table 3.

As shown in Figure 6 and Table 3, the consistency of
the estimation results by the field test data is very good.
Therefore, it can be concluded that the proposed PSOBE
method is with good repeatability and stability. The estima-
tion accuracy could be verified by the following navigation

FIGURE 6. Gyro drifts searched out by the proposed PSOBE method for
50 field tests. (a) Estimation results of εx . (b) Estimation results of εy .
(c) Estimation results of εz .

TABLE 3. Statistics characteristics of gyro drifts.

experiments. And the results are shown in Figure 7, in which
two navigation schemes are compared:
Scheme 1: Traditional inertial navigation without compen-

sation.
Scheme 2: Estimate the gyro drifts by proposed PSOBE

method. Compensate the output of gyros with the estimated
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FIGURE 7. Navigation results by different schemes. (a) Pitch errors. (b) Roll errors. (c) Yaw errors. (d) East velocity errors.
(e) North velocity errors. (f) Longitude errors. (g) Latitude errors.

gyro drifts. In this experiment, the gyro drifts used for
compensation are the mean values in Table 3, that are
[εx , εy, εz] = [0.009763, 0.01569, 0.02176](◦/h). The com-
pensated data was then used for inertial navigation.

In Figure 7, blue lines denote the navigation errors by
Scheme 1, where the gyro drifts were not compensated; red
lines denote the navigation errors by Scheme 2. It is clear
that, by compensating the output of gyros with the estimated
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gyro drifts, the navigation accuracy of the inertial navigation
system in pure inertial state is significantly improved. The
oscillation errors and accumulation errors of the inertial nav-
igation system are dramatically decreased. As the navigation
error of INS is closely related to the gyro errors, of which the
greatest impact on long-term navigation precision is the gyro
drift, it can be concluded that the proposed PSOBE method
can effectively estimate the gyro drift of inertial navigation
system. On this basis, the pure inertial navigation accuracy
could be dramatically improved.

V. CONCLUSION
Estimation for gyro drift with high accuracy is of great
significance for the improvement of navigation precision
of INS in pure inertial state. Traditional error estimation
methods require continuous external information, prior infor-
mation of errors and some particular motion. When any of
the above conditions are not met, the performance of the
traditional error estimation methods cannot be guaranteed.
In view of the problems in traditional methods, a particle
swarm optimization based gyro drift estimation method for
inertial navigation system is proposed in this paper. The
particle swarm optimization method is introduced to solve
the gyro drift estimation problem. The position error and
velocity error of INS are considered as performance criterions
in the particle swarm optimization fitness function. The error
estimation problem is then transferred to an optimal search
problem. Consequently, some problems existing in traditional
methods could be resolved. In order to verify the validity of
the proposed method, simulation experiments and field tests
were carried out. Experiment results show that the proposed
method can effectively estimate the gyro drift of the inertial
navigation system without any prior information about the
inertial sensor error and observation noise. Particular motion
for the vehicle is not needed. And as the navigation error
parameters in Equation (18) do not have to be continuous,
the proposed method can also achieve a high precision esti-
mation, even when the external added information is inter-
mittently unavailable. In conclusion, the proposed PSOBE
method can make up for the deficiencies in traditional error
estimation methods and can be used simultaneously with the
traditional methods to improve the reliability and stability of
the gyro drift estimation. As a consequence, the navigation
precision of INS can be improved accordingly.
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