
Received March 31, 2019, accepted April 22, 2019, date of publication April 26, 2019, date of current version May 3, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2913591

Practical and Secure Outsourcing Algorithms
of Matrix Operations Based on a Novel
Matrix Encryption Method
SHENGXIA ZHANG1, CHENGLIANG TIAN 1,2,3, HANLIN ZHANG1,2,
JIA YU 1,3, AND FENGJUN LI4
1College of Computer Science and Technology, Qingdao University, Qingdao 266071, China
2Business School, Qingdao University, Qingdao 266071, China
3State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, China
4Department of Electrical Engineering and Computer Science, The University of Kansas, Lawrence, KS 66045, USA

Corresponding author: Chengliang Tian (tcl0815@gmail.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 61702294 and Grant 61572267, in part
by the Natural Science Foundation of Shandong Province under Grant ZR2016FQ02, in part by the National Development Foundation of
Cryptography under Grant MMJJ20170126 and Grant MMJJ20170118, in part by the State Key Laboratory of Information Security,
Institute of Information Engineering, Chinese Academy of Sciences, through the Open Research Project under Grant 2016-MS-23 and
Grant 2017-MS-21, and in part by the Applied Basic Research Project of Qingdao City under Grant 17-1-1-10-jch.

ABSTRACT With the recent growth and commercialization of cloud computing, outsourcing computation
has become one of the most important cloud services, which allows the resource-constrained clients to
efficiently perform large-scale computation in a pay-per-use manner. Meanwhile, outsourcing large scale
computing problems and computationally intensive applications to the cloud has become prevalent in the
science and engineering computing community. As important fundamental operations, large-scale matrix
multiplication computation (MMC), matrix inversion computation (MIC), and matrix determinant compu-
tation (MDC) have been frequently used. In this paper, we present three new algorithms to enable secure,
verifiable, and efficient outsourcing of MMC, MIC, and MDC operations to a cloud that may be potentially
malicious. The main idea behind our algorithms is a novel matrix encryption/decryption method utilizing
consecutive and sparse unimodular matrix transformations. Compared to previous works, this versatile
technique can be applied to many matrix operations while achieving a good balance between security and
efficiency. First, the proposed algorithms provide robust confidentiality by concealing the local information
of the entries in the input matrices. Besides, they also protect the statistic information of the original
matrix. Moreover, these algorithms are highly efficient. Our theoretical analysis indicates that the proposed
algorithms reduce the time overhead on the client side from O(n2.3728639) to O(n2). Finally, the extensive
experimental evaluations demonstrate the practical efficiency and effectiveness of our algorithms.

INDEX TERMS Cloud computing, outsourcing computation, matrix operations, privacy, efficiency.

I. INTRODUCTION
As one of the most important applications of cloud com-
puting, outsourcing computation has attracted researchers’
more and more attention and become a popular research
topic recently [12]–[15], [42], [44]. This unprecedented and
promising computing model allows clients with limited com-
puting capability to delegate their heavy computation tasks to
resource-abundant cloud servers in a pay-on-demandmanner.

The associate editor coordinating the review of this manuscript and
approving it for publication was Ramakrishnan Srinivasan.

However, outsourcing computation also raises several
security issues. First, clients’ outsourced data may contain
sensitive information such as business financial records, pri-
vate healthcare data, or proprietary asset data, etc. that need
to be carefully protected, while the cloud servers may not be
fully trusted. Due to various financial incentives, the cloud
server may be lazy, curious, or even malicious. As a result,
it may return a random or an artificial result to the client,
steal or even deliberately leak the client’s private informa-
tion. Moreover, the client may receive wrong computational
results due to unpredictable software and hardware faults or

VOLUME 7, 2019
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

53823

https://orcid.org/0000-0002-2474-910X
https://orcid.org/0000-0002-0574-7803

S. Zhang et al.: Practical and Secure Outsourcing Algorithms of Matrix Operations

external attacks. Therefore, an ideal secure outsourcing
algorithm is expected to meet the following requirements:
(1) Correctness. With an honest cloud server, the algorithm
should allow the client to obtain the actual results correctly.
(2) Input/Output privacy. The algorithm should guarantee
that the actual input and output of the computation task
are appropriately hidden from the cloud sever, no matter
it is honest or malicious. (3) Verifiability. The algorithm
can ensure that the client can verify the correctness of the
results returned from the cloud server with a nonnegligible
probability. (4) Efficiency. The algorithm has to reduce the
computation overhead of the client to an amount substantially
smaller than that of executing the original computation task
on his own.

Matrix, as a fundamental mathematical object, is widely
used in many scientific and engineering computing fields.
Many different problems can be phrased as matrix com-
putation problems. In every branch of physics, including
classical mechanics, electromagnetism, quantum mechanics,
and quantum electrodynamics, matrices are used to study
physical phenomena, such as the motion of rigid bodies [37].
In computer graphics, they are used to manipulate 3D models
and project them onto a 2-dimensional screen. In proba-
bility theory and statistics, stochastic matrices are used to
describe sets of probabilities, e.g., the PageRank algorithm
denotes link relationships using matrices to rank the pages in
a Google search [9]. Matrices are also used in economics to
describe systems of economic relationships [45]. Moreover,
in coding theory and cryptography, matrices over finite fields
are used to represent codes [38] and encryption/decryption
keys [1], [30]. Therefore, the algorithms with fundamental
matrix operations, such as matrix multiplication computation
(MMC), matrix inversion computation (MIC) and matrix
determinant computation (MDC), have become an important
component of modern scientific computing.

From the complexity perspective, the MMC, MIC and
MDC operations have a same time complexity of O(n3)
(for n by n square matrices) for the basic algorithm and
O(n2.3728639) for the asymptotically fastest known algo-
rithms [26], [36]. However, with the exponential growth in
the quantity of data generated in the era of big data, the matri-
ces to be processed in real-world problems are often very
large, typically with hundreds of thousands of entries [4],
[10], [22]. On the other hand, the proliferation of Internet
of Things (IoT) devices, such as wearable devices, smart
appliances, and smart vehicles, raise increasing needs to pro-
cess and analyze local, realtime data. With limited comput-
ing resources, it is difficult for IoT devices to accomplish
such large-scale matrix operations. Consequently, designing
secure, verifiable, and efficient outsourcing protocols for
matrix operations becomes an imperative requirement for
resource-constrained clients, especially in the IoT era.

A. THE PROBLEM AND RELATED WORK
In the past few years, motivated by the extensive applications
of large-scale matrices in various fields, many scholars have

proposed numerous protocols to outsource different matrix
operations [3], [24], [39], [40], [50].

As one of the most fundamental matrix operations,
matrix multiplication computation (MMC) outsourcing was
first investigated by Atallah et al. in [3]. They initial-
ized the study on outsourcing various matrix operations
using the random permutation matrix disguise techniques.
Benjamin and Atallah further proposed algorithms for secure
MMC outsourcing based on an overly strong security
assumption of two non-colluding servers [5]. Moreover,
their protocols required performing expensive homomorphic
encryption operations on the client side. Subsequently, by uti-
lizing Shamir’s secret sharing technique, Atallah and Frikken
improved the aforementioned schemes and constructed an
outsourcing protocol of MMC under the single malicious
cloud server assumption [2]. However, in the encryption and
decryption stages of their protocol, the client-side time cost
isO(t2n2). Meanwhile, the cloud server is required to conduct
at least 4t+2 matrix multiplications, where t is the threshold
in Shamir’s secret sharing scheme. Moreover, to achieve
high verifiability, additional matrix multiplications on noise
matrices are needed. All thesemake their protocol suffer from
poor efficiency.

To efficiently delegate the heavy computation task to
the cloud server, Mohassel [32] initialized the design of
secure outsourcing algorithm for matrix multiplication using
several existing homomorphic encryption schemes, such as
Paillier [35], BGN encryption [8], and the GHV scheme [23].
In theory, Mohassel’s algorithm reduces the complexity of
client-side time cost to O(n2), but it cannot achieve such
efficiency in practice due to the time-consuming homo-
morphic encryption process. Recently, Lei et al. presented
an efficient outsourcing algorithm of MMC with a con-
cise encryption/decryption method and Monte Carlo verifi-
cation [27]. The main idea is to encrypt/decrypt the matrix
by multiplying a special sparse matrices (i.e. random permu-
tation matrices). While the simplicity of permutation matri-
ces yields a high efficiency, their algorithm suffers from
some security issues, e.g. leaking the statistic information of
zeros in the original matrix. Motivated by this observation,
Fu et al. designed an improved algorithm to securely
outsource MMC by introducing a new matrix encryp-
tion technique based on a matrix addition operation [21].
In particular, they disguised the original matrix by adding
a random secret matrix. However, this technique requires
carrying out small-scale matrix multiplication on the local-
client side, which makes the algorithm less efficient.
Furthermore, it can not be generalized to outsource other
common matrix operations such as MIC and MDC. It is wor-
thy noting that another thrust in MMC outsourcing research
is designing publicly verifiable protocols [18], [19], [43],
[46]–[49] to allow any third party to verify the correctness of
the calculation results returned from the cloud server. While
it is an important issue in matrix outsourcing, it is out of the
scope of our study as we focus on the two-party model in this
paper.

53824 VOLUME 7, 2019

S. Zhang et al.: Practical and Secure Outsourcing Algorithms of Matrix Operations

Matrix inversion computation (MIC) is another widely
applicable algebraic operation. Mohassel first investigated
the secure outsourcing of MIC and proposed a secure out-
sourcing algorithm [32]. The algorithm encrypts the original
matrix through a random matrix transformation technique
(i.e. multiplying the original matrix by a random secret
matrix) and invokes the outsourcing algorithm of MMC as a
subroutine. As mentioned earlier, the outsourcing algorithm
of MMC is based on expensive homomorphic encryption
(HE) schemes. Therefore, their algorithm is subject to the low
efficiency and fails to be practical in applications. In order to
avoid the time-consuming HE operations, Lei et al. further
put forward a new protocol [29] by directly using a similar
random permutation matrix transformation technique as used
in [27]. However, the algorithm also suffers from the same
security problem of exposing the information of the number
of zeros in the original matrix.

Similarly, secure outsourcing matrix determinant com-
putation (MDC) has been studied recently. Following their
work on securely outsourcing MMC and MIC [27], [29],
Lei et al. designed a secure outsourcing algorithm
of MDC [28]. To protect the statistic information of zeros in
the original matrix, they designed a two-step encryption algo-
rithm. The first step is to embed the n-dimensional original
matrix into an (n+m)-dimensional matrix obtained by adding
an n-by-m zeromatrix, anm-dimensional diagonal matrix and
an m-by-n random matrix B, which is the key ingredient to
hide the number of zeros. In the second step, it encrypts the
(n+m)-dimensional matrix via random permutations. Finally,
the client delegates the lower-upper (LU) decomposition task
to the cloud server. In other words, by skillfully converting
the MDC operation into a high-dimensional matrix decom-
position, the algorithm achieves the input/output privacy and
verifiability. However, although the number of zeros in the
original matrix is protected, the cloud server needs to perform
a high-dimensional matrix decomposition, which increases
the client’s cost. Also, this technique is not feasible for
outsourcing MMC and MIC.

B. OUR CONTRIBUTIONS
To better balance the efficiency and privacy of the outsourc-
ing algorithm, e.g. to protect the statistic information of
entries in original matrices without reducing the theoretical
efficiency, this paper further explores the essence of sparse
matrix transformation, and presents new secure outsourcing
algorithms for MMC,MIC andMDC based on a novel matrix
encryption/decryption method. This novel technique realizes
the input/output privacy by encrypting a matrix in virtue
of consecutive and sparse unimodular matrix transforma-
tions. The denseness of the product matrix of these sparse
unimodular matrices ensures the security of the proposed
algorithms. In other words, compared with previous works,
this nice property guarantees that our algorithms not only
conceal the location information of the entries in the original
matrices, but also protect the statistical information of certain
element, e.g. the number of zero in the original matrices.

Meanwhile, the associativity of matrix multiplication makes
our algorithms efficient. Besides, our algorithms also achieve
the following properties:

1) The proposed algorithms are designed under the sin-
gle untrusted program model. Our algorithms only
require one cloud server and one round interaction
between the client and the cloud server, which avoids
the overly strong security assumption of two or more
non-colluding cloud servers and achieves the optimal
communication overhead.

2) The proposed algorithms have robust cheating resis-
tance. Following the Monte Carlo verification algo-
rithm in prior work, our algorithms allow the client to
verify the correctness of the results returned from the
cloud server with a probability approximated to 1.

3) Our algorithms achieve decent computational savings
on the local client side. In term of complexity, the
proposed algorithms reduce the local-client’s computa-
tional overhead fromO(n2.3728639) toO(n2) field multi-
plications. Our experimental results are consistent with
the theoretical analysis results.

4) The proposed matrix encryption/decryption technique
can be applied in a broad range of applications.
We believe that the consecutive and sparse unimodu-
lar matrix transformation technique is of independent
interest. Besides the MMC, MIC and MDC operations
discussed in this paper, it can be applied to outsource
many other matrix operations.

C. ROAD MAP
The rest of this paper is organized as follows: we present
the system model and the associated security definitions in
section II, and the preliminaries in section III. Our main
secure outsourcing algorithms are proposed in Section IV.
In section V, we prove the correctness of the proposed algo-
rithms and analyze their security, followed by the practical
efficiency analysis and performance evaluation in section VI.
Finally, we conclude our paper in Section VII.

II. SYSTEM MODEL AND SECURITY DEFINITIONS
A. SYSTEM MODEL
As shown in Fig.1, a secure outsourcing computation model
generally involves two entities: a resource-constrained client
and a cloud server with sufficient computational resource.
The client aims to conduct some large-scalematrix operations
with the assistance of the cloud server. To protect the privacy
of the input data, the client first encrypts the original matrix
into a large-scale ciphertext matrix using its secret key, and
then sends it to the cloud server. The cloud server performs
the corresponding matrix operation over the ciphertext matrix
and returns the result to the client. Finally, the client verifies
the correctness of the received result. If the received result is
correct, the client decrypts it using the secret key to obtain the
actual computational result. Otherwise, the client rejects the
received result.

VOLUME 7, 2019 53825

S. Zhang et al.: Practical and Secure Outsourcing Algorithms of Matrix Operations

FIGURE 1. The system model.

Formally, given a computation task F , the general frame-
work of a secure outsourcing algorithm SOAF = (SKGen,
ClientEnc, CloudCom,ClientDec&Ver) consists of the fol-
lowing four sub-algorithms.

1) SKGen(F , 1κ) → {SK }: With the input of a
computation task F and a security parameter κ ,
the secret key generating algorithm SKGen outputs a
secret key SK , which should be kept private by the
client.

2) ClientEnc(F ,X, SK) → {X′}: Given a computa-
tion task F and the corresponding input matrix X,
the encryption algorithm ClientEnc uses the secret
key SK to encrypt X into a ciphertext matrix X′, and
sends (F ,X′) to the cloud server.

3) ClientCom(F ,X′) → {Z′}: Receiving the computa-
tion taskF and the encrypted matrixX′ from the client,
the cloud computation algorithm CloudCom outputs
Z′ = F(X′) and returns it to the client.

4) ClientDec&Ver(F ,Z′, SK) → {Z,⊥}: Utilizing the
secret key SK and according to different computation
tasks, the algorithm ClientDec&Ver first decrypts the
returned result Z′ into Z and then verifies the cor-
rectness of Z, or the algorithm ClientDec&Ver first
verifies the correctness of the returned result Z′ and
then decrypts it into Z if Z′ is correct. No matter in
which case, if the verification succeeds, the algorithm
outputs Z, or ⊥ otherwise.

B. THREAT MODELS
According to the behaviors of the cloud, the security threats in
the outsourcing computation system can be categorized into
twomodels: the semi-honest single-server (SS)model and the
malicious single-server (MS) model.

1) SEMI-HONEST SINGLE-SERVER (SS)
The SSmodel, also known as the ‘‘honest but curious’’ single-
server model, assumes the cloud server faithfully executes
the delegated computation task and returns the actual result
to the client. However, the cloud may be curious about the
intermediate data and try to learn or infer the protected
information.

2) MALICIOUS SINGLE-SERVER (MS)
In the MS model, the cloud server can arbitrarily deviate
from the prescribed protocol, and attempt to learn sensitive
information asmuch as it can.Worse still, it may intentionally
return a random or forged result to the client.
Obviously, if an outsourcing algorithm is secure under

the MS model, it is still secure under the SS model. As a
consequence, for some given computation tasks, designing
an outsoucing algorithm under the MS model, in terms of
security, is more significative than that of under the SSmodel.

C. SYSTEM REQUIREMENTS AND SECURITY DEFINITIONS
As introduced in Section I, a well-designed secure out-
sourcing algorithm should at least satisfy four requirements.
We reformulate their definitions as follows.
Definition 1 Correctness: Given some computation taskF ,

a secure outsourcing algorithm SOAF (·) is correct if
the secret key generating algorithm produces SK ←

SKGen(F , 1κ) such that, for any valid input matrix X,
if X′ ← ClientEnc(F ,X, SK), Z′ ← CloudCom(F ,X′)
and Z′ = F(X′), then output of algorithm ClientDec&
Ver(F ,Z′, SK) is Z = F(X).
Definition 2 Input/Output privacy: Given some computa-

tion task F , a secure outsourcing algorithm SOAF (·) satis-
fies the input (resp. output) privacy if the secret key gener-
ating algorithm produces SK ← SKGen(F , 1κ) such that,
for any valid input matrix X, the probability that the cloud
server or the adversary can recover X (resp. Z = F(X))
is negligible even if the cloud or the adversary knows the
computation task F and X′← ClientEnc(F ,X, SK).
Definition 3 (1− p)-Verifiable: Given some computation

task F , a secure outsourcing algorithm SOAF (·) is (1 −
p)-verifiable if the secret key generating algorithm pro-
duces SK ← SKGen(F , 1κ) such that, for any valid input
matrix X, if X′ ← ClientEnc(F ,X, SK), and Z′ ←
CloudCom(F ,X′), then the probability of ClientDec&
Ver(F ,Z′, SK) outputting Z satisfies

Pr[Z← ClientDec&Ver(F ,Z′, SK) | Z′ is true] = 1,

Pr[Z← ClientDec&Ver(F ,Z′, SK) | Z′ is false] ≤ p.
Definition 4 α-Efficient: Given some computation task F ,

a secure outsourcing algorithm SOAF (·) is α-efficient if,
suppose the client’s time overhead of performing the task
on its own is to, and the local-client’s time overhead of
performing the task by employing the outsourcing algorithm
SOAF (·) is tc,

to
tc
≥ α.

III. PRELIMINARIES
In this section, we introduce the notations and mathematical
concepts used in this work.

A. NOTATIONS AND TERMINOLOGIES
We use bold upper (resp. lower) case letters to denote
matrices (resp. column vectors). M−1, MT and det(M)
denote the inversion, the transpose and the determinant of
the matrix M, respectively. For convenience, some terms

53826 VOLUME 7, 2019

S. Zhang et al.: Practical and Secure Outsourcing Algorithms of Matrix Operations

frequently used in this paper, such as ‘‘matrix multiplication
computation’’ , ‘‘matrix inversion computation’’ and ‘‘matrix
determinant computation’’, are denoted by their abbreviations
‘‘MMC’’,‘‘MIC’’ and ‘‘MDC’’, respectively.

B. FINITE FIELD
Definition 5 Finite Field [31]: In mathematics, a finite

field (i.e. Galois field) < Fq, ◦, ?,> is a triple consisting
of a finite set Fq with q elements, two binary operation ‘‘◦’’
(addition) and ‘‘?’’ (multiplication) over Fq such that
1) < Fq, ◦ > is a Abelian group with addition

identity 0Fq .
2) < F∗q, ? > is a Abelian group with multiplication

identity 1Fq , where F∗q = Fq \ {0Fq}.
3) Distribution law. That is, for any x, y, z ∈ Fq, x ? (y ◦

z) = (x ? y) ◦ (x ? z) and (y ◦ z) ? x = (y ? x) ◦ (z ? x),
where q is called the order of the finite field.
A well-known property is that a finite field of order q exists
if and only if the order q = pk , where p is a prime number
and k is a positive integer.
Example 1: Take Fq = F7 as the finite set {0, 1, 2, 3,

4, 5, 6}, and for any x, y ∈ F7, define x ◦ y = (x+ y) mod 7,
x ? y = (xy) mod 7. Then, < F7, ◦, ? > is a finite field of
order 7.

1) < F7, ◦ > is a Abelian group with addition identity 0.
The additive inverses are listed as: −0 = 0,−1 =
6,−2 = 5,−3 = 4,−4 = 3,−5 = 2,−6 = 1.

2) < F∗7, ? > is a Abelian group with multiplication
identity 1, where F∗7 = F7 \{0} = {1, 2, 3, 4, 5, 6}. The
multiplicative inverses are listed as: 1−1 = 1, 2−1 =
4, 3−1 = 5, 4−1 = 2, 5−1 = 3, 6−1 = 6.

3) The multiplication is distributive over the addition.

C. PERMUTATION MAPPING AND PERMUTATION MATRIX
Other concepts used in this work are ‘‘permutation mapping’’
and the associated ‘‘permutation matrix’’. Both are widely
used in group theory, combinatorics, coding theory and cryp-
tography. So, we present their formal definitions and illustrate
them with examples.
Definition 6 Permutation Mapping [7]: For any given

finite set S = {1, 2, · · · , n}, a permutation mapping defined
on S is a bijection function π : S → S, which is usually
denoted as:

π =

(
1 2 3 · · · n
π (1) π (2) π (3) · · · π (n)

)
,

where π (1), · · · , π(n) is some arrangement of 1, · · · , n.
Two formalized representations of a permutation mapping

are Cycle Notation and Transposition Notation. According
to the parity of the number of transpositions (two-element
exchanges) contained in their representations, all the per-
mutations can be classified as even or odd. A permutation
mapping is even (resp. odd) if its representation consists
of an even (resp. odd) number of transpositions. For any

permutation π , the sign of π is defined as:

sgn(π) =

{
1 if π is even
−1 if π is odd.

Example 2: Let n = 3, then

π =

(
1 2 3
2 3 1

)
=
(
1 2 3

)
(Cycle Notation)

=
(
1 2

) (
1 3

)
(Transposition Notation)

is an even permutation mapping defined on the set {1, 2, 3}.
Definition 7 Permutation Matrix [6]: For any given finite

set S = {1, 2, · · · , n} and a permutation mapping
π : S → S, the permutation matrix Pπ induced by π is an
n×n matrix with Pπ (i, j) = δπ (i),j for any 1 ≤ i, j ≤ n, where
δx,y is the Kronecker delta function defined as

δx,y =

{
1, x = y
0, x 6= y

.

It is easy to verify that the determinant ofPπ equals sgn(π).
Namely, det (Pπ) = sgn(π).
Example 3: Take the permutation mapping π as shown in

example 2, the corresponding permutation matrix is

Pπ =

0 1 0
0 0 1
1 0 0


Since π is an even permutation, det(Pπ) = 1.

D. PLU FACTORIZATION
Definition 8 PLU Factorization [16]: Let A be a square

matrix over a (finite) field. The PLU factorization of A refers
to decomposing A into three factors − a permutation
matrix P, a lower triangular matrix L and an upper trian-
gular matrix U, that is A = PLU.
Any n-by-n matrix A can be factorized in ‘‘PLU’’ form [34].
For example, for the matrix

A =

1 2 4
1 4 5
2 6 5

 ∈ F3×3
7 ,

its PLU factorization is

A =

1 0 0
0 1 0
0 0 1

1 0 0
1 1 0
2 1 1

1 2 4
0 2 1
0 0 3

 .
E. UNIMODULAR MATRIX
Definition 9 Unimodular Matrix [41]: A matrix U ∈

Fn×nq is unimodular if and only if its determinant
det(U) = 1Fq .
A simple property of unimodular matrix is that the inverse

of a unimodular matrix is also unimodular. We list it as a
lemma and omit its proof.
Lemma 1 [33]: If U ∈ Fn×nq is unimodular, then there

exists a unique matrix V ∈ Fn×nq s.t. det(V) = 1Fq and

VOLUME 7, 2019 53827

S. Zhang et al.: Practical and Secure Outsourcing Algorithms of Matrix Operations

UV = In×n, where In×n denotes the identity matrix over Fq.
Particularly, if

U =
(
u11 u12
u21 u22

)
∈ F2×2

q ,

then

V =
(
u22 −u12
−u21 u11

)
∈ F2×2

q .

Example 4: Take U =
(
2 6
3 6

)
∈ F2×2

7 . Clearly, its

determinant det(U) = 2 × 6 − 3 × 6 = 1F7 and then U is

unimodular. The inverse of U is V =
(
6 1
4 2

)
∈ F2×2

7 which

is obviously unimodular.
Now, we prove another result about the number of uni-

modular matrices over Fq, which will be used in the security
analysis of our proposed algorithms in Section V-B.
Lemma 2: Given some finite field Fq and assume that the

set

L =
{
U | U =

(
u11 u12
u21 u22

)
∈ F2×2

q and det(U) = 1Fq

}
,

then the size of L is

#L = q(q− 1)(q+ 1).
Proof: Since det(U) = 1Fq , u11u22 − u21u12 = 1Fq .

There exist two cases.
(1) If u11 6= 0Fq , then for any u21, u12 ∈ Fq, u22 =

u−111 (1Fq + u21u12) is unique determined. Hence, the number
of U in this case is (q− 1)q2.
(2) If u11 = 0Fq , then u12u21 = 1Fq and u22 ∈ Fq could be

arbitrary. Hence, the number of U in this case is (q− 1)q.
In summary, the total number of unimodular matrices over

Fq with order 2 is (q − 1)q2 + (q − 1)q = q(q − 1)
(q+ 1). �

IV. OUTSOURCING ALGORITHMS OF MATRIX
OPERATIONS
A. COMPUTATION TASK DESCRIPTION AND BASIC IDEA
For any given finite field Fq and two large-scale dense matri-
ces X ∈ Fn×lq , Y ∈ Fl×mq , where q = pk for some prime p
and integer k ≥ 1, the client intends to compute the product
Z = XY, the inverse matrix X−1 (when X is an invertible
square matrix) and the determinant det(X) (when X is a
squarematrix) by delegating the computation tasks to a public
cloud server.

To protect the privacy of the input/ouput matrices,
we should figure out an efficientmatrix encryption/decryption
method. A concise and nature way to encrypt X is multiply-
ing X by two matrices Ml and Mr on both the left and right
sides simultaneously. i.e. Enc(X) = MlXMr . Obviously,
to reduce the computational cost on the local client side,
the matrices should be as sparse as possible. Based on this
observation, Chen et al. proposed a sparse matrix encryption
method that Ml and Mr are sparse and row diagonally dom-
inant matrices [11]. However, just as the paper mentioned,
this efficient encryption algorithm couldn’t provide strong

enough privacy. Clearly, to achieve high security, Ml and
Mr should be as dense as possible. Therefore, the key is to
designing appropriate matrices to make a tradeoff between
the efficiency and security.

Noting that the matrix multiplication operation is asso-
ciativity, these nice properties inspire us to construct the
matrices Ml and Mr by the product of a series of consecu-
tive sparse matrices. Without loss of generality, we assume
Ml = U1 · · ·Uf (n) and Mr = V1 · · ·Vg(l), where Ui,Vj are
sparse matrices for 1 ≤ i ≤ f (n), 1 ≤ j ≤ g(l) and f (n)
(resp. g(l)) is some linear function of n (resp. l). Then the
ciphertext of X can be efficiently computed by associativity
Enc(X) = U1 · · ·Uf (n)XV1 · · ·Vg(l).
Now, the only problem left is to generate appropriate sparse

matrices Ui and Vj. Clearly, an ‘‘ideal’’ sparse matrix should
at least satisfy the following two requirements. On one hand,
it should not be too sparse. In fact, the permutation matrix
is not a good choice because the product of permutation
matrices is also a permutation matrix and thereby sparse.
As mentioned before, it cannot protect the number of zeros
in the matrix X and thus cannot provide strong security.
On the other hand, the inverse of the sparse matrix should be
efficiently computed. During the decryption and verification
stages, we need to frequently compute the inverse of the
sparse matrix.

Based on these considerations, we decide to use the uni-
modular matrix with order 2. Its inverse is also unimodular,
which can be easily computed. This enlightens us to construct
a high-dimensional sparsematrix by substituting certain diag-
onal elements of the identity matrix with some unimodular
matrix of order 2. The form is shown in equation (3). In sum-
mary, we encrypt the input matrices by multiplying a series of
consecutive, sparse and unimodular matrices. The decryption
algorithm is the inversion procedure of encryption, which is
in virtue of the same transformation.

B. OUTSOURCING ALGORITHM OF MMC
Given some finite field Fq with q = pk for some prime p and
integer k ≥ 1 and two large-scale dense matrices X ∈ Fn×lq ,
Y ∈ Fl×m, the client C wants to compute the matrix Z = XY
with the assistance of the cloud server S. Our proposed secure
outsourcing algorithm SOAMMC (X,Y) consists of four sub-
algorithms as follows:

1) SKGen: The algorithm generates three random permu-
tation mappings π1 : {1, 2, · · · , n} → {1, 2, · · · , n},
π2 : {1, 2, · · · , l} → {1, 2, · · · , l} and π3 :

{1, 2, · · · ,m} → {1, 2, · · · ,m}, and denotes their cor-
responding permutation matrices as P1 ∈ {0, 1}n×n,
P2 ∈ {0, 1}l×l and P3 ∈ {0, 1}m×m. Meanwhile,
it randomly chooses (n − 1) + (l − 1) + (m − 1)
unimodular matrices over Fq with order 2. That is,

U(i)
=

(
u(i)11 u(i)12
u(i)21 u(i)22

)
, V(j)

=

(
v(j)11 v(j)12
v(j)21 v(j)22

)

53828 VOLUME 7, 2019

S. Zhang et al.: Practical and Secure Outsourcing Algorithms of Matrix Operations

and

W(k)
=

(
w(k)
11 w(k)

12
w(k)
21 w(k)

22

)
∈ F2×2

q

for i = 1, · · · , n − 1, j = 1, 2, · · · , l − 1, k =
1, · · · ,m − 1. All the permutation matrices and uni-
modular matrices should be kept secretly by the client.

2) ClientEnc: This algorithm contains two steps. Input
matrices X ∈ Fn×lq and Y ∈ Fl×m, Step 1 permutates
the input matrices by using the secret matrices P1,

P2, P3. Namely, it computes X′ = P1XP−12 and
Y′ = P2YP−13 . Step 2 further substitutes X′ by consec-
utive unimodular matrix transformations. Concretely,
it computes

X′′ = U1(· · · (Un−1(X′V−1l−1 · · ·V
−1
1)) · · ·), (1)

Y′′ = V1(· · · (Vl−1(Y′W−1m−1 · · ·W
−1
1)) · · ·), (2)

where

Ui =



1 · · · 0 0 · · · 0
...

. . .
...

...
...

...

0 · · · u(i)11 u(i)12 · · · 0
0 · · · u(i)21 u(i)22 · · · 0
...

...
...

...
. . .

...

0 · · · 0 0 · · · 1


∈ Fn×nq

(3)

is the matrix generated by replacing the entries located
in (i, i), (i, i+ 1), (i+ 1, i) and (i+ 1, i+ 1) positions
of the identity matrix In×n with U(i). Similarly, Vj ∈

Fl×lq and Wk ∈ Fm×mq are induced by V(j) and W(k)

respectively by using the same constructions. Then the
client C sends X′′ and Y′′ to the cloud server.

3) CloudCom: After receiving the encrypted matricesX′′

and Y′′, the cloud server S computes Z′′ = X′′Y′′, and
then returns Z′′ to C .

4) ClientDec&Ver: After receiving the Z′′ from S,
the client C first computes

Z′ = U−1n−1(· · · (U
−1
1 (Z′′W1 · · ·Wm−1)) · · ·),

and

Z = P−11 Z′P3.

Then, for a given constant λ and i = 1 to λ, the client
randomly generates a column vector ri ∈ {0, 1}m and
computes ei = X × (Y × ri) − Z × ri. If each vector
ei = 0, the algorithm output Z. Else, the algorithm
returns ⊥.

Tomake our algorithmmore transparent, we explain it with
a toy instance.
Example 5: Take the finite field F7 = {0, 1, 2, 3, 4, 5, 6}

and suppose that

X =
(
2 0 4
1 0 0

)
,Y =

1 0 4 1
4 2 0 3
2 0 1 2

 .

The proposed algorithm SOAMMC (X,Y) works as
follows: (1) The client first randomly generates three permu-
tation mappings,

π1 =

(
1 2
2 1

)
, π2 =

(
1 2 3
1 3 2

)
,

π3 =

(
1 2 3 4
2 1 4 3

)
with the corresponding permutation matrices and their
inverses as:

P1 =

(
0 1
1 0

)
, P−11 =

(
0 1
1 0

)
,

P2 =

1 0 0
0 0 1
0 1 0

 , P−12 =

1 0 0
0 0 1
0 1 0

 ,
P3 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 , P−13 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 .
Moreover, the client produces 6 random 2-by-2 unimodular

matrices with their inverses:

U(1)
=

(
3 2
1 1

)
, (U(1))−1 =

(
1 5
6 3

)
,

V(1)
=

(
3 1
5 2

)
, (V(1))−1 =

(
2 6
2 3

)
,

V(2)
=

(
4 1
3 1

)
, (V(2))−1 =

(
1 6
4 4

)
,

W(1)
=

(
1 1
1 2

)
, (W(1))−1 =

(
2 6
6 1

)
,

W(2)
=

(
2 1
1 1

)
, (W(2))−1 =

(
1 6
6 2

)
,

W(3)
=

(
1 0
2 1

)
, (W(3))−1 =

(
1 0
5 1

)
.

(2) The client encrypts matricesX andY. First, it computes

X′ = P1XP−12 =

(
1 0 0
2 4 0

)
,

Y′ = P2YP−13 =

0 1 1 4
0 2 2 1
2 4 3 0

 .
Clearly, this step only confuses the local information of the
entries inX′ (resp.Y′), which results in the exposure of statis-
tic information of certain sensitive entries. Therefore, in order
to blind the value information of each entry, the client further
encrypts X′ and Y′ as follows:

X′′ = U1X′V−12 V−11 =

(
2 3 6
0 2 3

)
,

Y′′ = V1V2Y′W−13 W−12 W−11 =

 6 3 5 2
6 5 4 0
4 5 3 3

 ,
VOLUME 7, 2019 53829

S. Zhang et al.: Practical and Secure Outsourcing Algorithms of Matrix Operations

out of which U1,V1,V2,W1,W2, and W3 are induced by
U(1),V(1),V(2),W(1),W(2), and W(3) by using the construc-
tion method shown in equation (3), respectively. That is,

U1 =

(
3 2
1 1

)
, V1 =

3 1 0
5 2 0
0 0 1

 ,
V2 =

1 0 0
0 4 1
0 3 1

 , W1 =


1 1 0 0
1 2 0 0
0 0 1 0
0 0 0 1

 ,

W2 =


1 0 0 0
0 2 1 0
0 1 1 0
0 0 0 1

 , W3 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 2 1

 .
(3) The cloud server computes

Z′′ = X′′Y′′ =
(
5 2 5 1
3 4 3 2

)
and returns it back to the client.
(4) The client decrypts it by computing

Z′ = U−11 Z′′W1W2W3 =

(
0 1 1 4
0 3 3 5

)

and Z = P−11 Z′P3 =

(
3 0 5 3
1 0 4 1

)
. At last, it verifies the

correctness of Z.

C. OUTSOURCING ALGORITHM OF MIC
For any given finite field Fq with q = pk for some prime p
and integer k ≥ 1, the client C wants to compute the matrix
Z = X−1 for any non-singular matrix X ∈ Fn×nq . Our
proposed secure outsourcing algorithm SOAMIC (X) of MIC
consists of the following four sub-algorithms:

1) SKGen: The algorithm generates two random permu-
tation mappings πk : {1, 2, · · · , n} → {1, 2, · · · , n}
and denotes their corresponding permutation matrices
as Pk ∈ {0, 1}n×n for k = 1, 2. Meanwhile, it randomly
chooses 2(n − 1) unimodular matrices over Fq with
order 2. Let

U(i)
=

(
u(i)11 u(i)12
u(i)21 u(i)22

)
, V(j)

=

(
v(j)11 v(j)12
v(j)21 v(j)22

)
for i, j = 1, · · · , n − 1. All the permutation matrices
and unimodular matrices should be kept secretly by the
client.

2) ClientEnc: Input an invertible matrix X ∈ Fn×nq , this
algorithm first permutates the input matrix by using the
secret matrices Pk for k = 1, 2. Namely, it computes
X′ = P1XP2. And then it encrypts X′ by consec-
utive unimodular matrix transformations. Concretely,
the ultimate ciphertext matrix is

X′′ = U1
(
· · ·
(
Un−1X′Vn−1

)
· · ·
)
V1

where Ui, and Vj ∈ Fn×nq are the matrices induced by
U(i) and V(j) respectively by using the same construc-
tions as shown in the equation (3). Finally, the client C
sends X′′ to the cloud server.

3) CloudCom: After receiving the ciphertext matrix X′′,
the cloud server S computes Z′′ = (X′′)−1, and returns
it to C .

4) ClientDec&Ver: The client C decrypts Z′′ returned
from S by computing

Z′ = Vn−1
(
· · ·
(
V1Z′′U1

)
· · ·
)
Un−1,

and

Z = P2Z′P1,

Then, input a certain constant λ, and for i = 1 to λ,
the client randomly generates a column vector ri ∈
{0, 1}n and computes ei = X × (Z × ri) − I × ri.
If each vector ei = 0, the algorithm output Z. Else,
the algorithm returns ⊥.

Also, let’s illustrate the above algorithm with a simple
example.
Example 6: Take the finite field F7 = {0, 1, 2, 3, 4, 5, 6}

and suppose that X =
(
1 2
0 1

)
∈ F2×2

7 . Then, the proposed

algorithm SOAMIC (X) goes as follows: (1) The client first
generates two secret random permutation mappings

π1 =

(
1 2
2 1

)
, π2 =

(
1 2
1 2

)
.

Clearly, their associated permutation matrices are

P1 =

(
0 1
1 0

)
, P2 =

(
1 0
0 1

)
.

Next, the client produces another two secret random unimod-
ular matrices

U(1)
=

(
1 0
6 1

)
, V(1)

=

(
0 6
1 2

)
.

(2) Using the permutation matrices P1 and P2, the client
first encrypts X as

X′ = P1XP2 =

(
0 1
1 2

)
.

Then, the client further encrypts X′ by using unimodular
matrix transformation and obtains the final ciphertext matrix

X′′ = U1X′V1 =

(
1 2
1 1

)
.

(3) The cloud computes

Z′′ = (X′′)−1 =
(
6 2
1 6

)
and returns it back to the client.
(4) The client decrypts it by computing

Z′ = V1Z′′U1 =

(
5 1
1 0

)
53830 VOLUME 7, 2019

S. Zhang et al.: Practical and Secure Outsourcing Algorithms of Matrix Operations

and

Z = P2Z′P1 =

(
1 5
0 1

)
.

It can be easily verified that Z = X−1.

D. OUTSOURCING ALGORITHM OF MDC
For any dense square matrix X ∈ Fn×nq , the client C intends
to securely outsource the computation of det(X) to a cloud
server S, where Fq with q = pk for some prime p and
integer k ≥ 1 is any given finite field. The proposed secure
outsourcing algorithm SOAMDC (X) is as follows:
1) SKGen: The algorithm generates two randompermuta-

tion mappings πk : {1, 2, · · · , n} → {1, 2, · · · , n} for
k = 1, 2 and 2n random non-zero elements αi, βi ∈ Fq
for i = 1, · · · , n. Define P1(i, j) = αiδπ1(i),j, P2(i, j) =
βiδπ2(i),j, for 1 ≤ i, j ≤ n. Meanwhile, It randomly
chooses 2(n − 1) unimodular matrices over Fq with
order 2.

U(i)
=

(
u(i)11 u(i)12
u(i)21 u(i)22

)
, V(i)

=

(
v(i)11 v(i)12
v(i)21 v(i)22

)
,

for i = 1, · · · , n − 1. All the permutation matrices
and unimodular matrices should be kept secret by the
client C .

2) ClientEnc: The client C first encrypts the matrix X by
the following two steps:

X′ = P1XP2 (4)

X′′ = U1
(
· · ·
(
Un−1X′Vn−1

)
· · ·
)
V1 (5)

where Ui,Vi ∈ Fn×nq are induced by U(i), V(i) respec-
tively by using the same construction as shown in the
equation (3), and then sends X′′ to S.

3) CloudCom: After receiving the encryptedmatricesX′′,
the cloud server S performsPLU factorization such that
X′′ = PLU, and returns P, L and U back to C .

4) ClientDec&Ver: Once receiving the matrices P, L
and U, the client C first checks whether P, L and U
are a permutation matrix, a lower triangular matrix
and an upper triangular matrix respectively. If they do,
the client C inputs a certain constant λ, and, for i = 1
to λ, randomly generates a column vector ri ∈ {0, 1}n

to compute ei = P× (L× (U× ri))− X× ri. If each
vector ei = 0, the algorithm outputs

det(X) =
det(P)(

∏n
i=1 `iiuii)

sgn(π1)
∏n

i=1 αi × sgn(π2)
∏n

i=1 βi
,

where `ii (resp. uii) denotes the elements in the diagonal
of the matrix L (resp.U). Else, the algorithm returns⊥.

Example 7: Take the finite field F7 = {0, 1, 2, 3, 4, 5, 6} and
suppose that

X =

 2 1 3
1 1 0
1 0 4

 ∈ F3×3
7 .

Then, the proposed algorithm SOAMDC (X) works as fol-
lows: (1) The client generates 4 secret random permutation
mappings

π1 =

(
1 2 3
2 1 3

)
, π2 =

(
1 2 3
1 3 2

)
,

and 12 random numbers α1 = 2, α2 = 3, α3 = 1,
β1 = 1, β2 = 2, β3 = 1. Then

P1 =

 0 2 0
3 0 0
0 0 1

 , P2 =

 1 0 0
0 0 2
0 1 0

 .
Next, the client produces 4 secret 2-by-2 unimodular matrices

U(1)
=

(
1 0
2 1

)
, U(2)

=

(
1 6
1 0

)
,

V(1)
=

(
1 6
0 1

)
, V(2)

=

(
1 0
1 1

)
,

(2) The client encrypts X by computing

X′′ = (U1(U2(P1XP2)V2)V1) =

 2 2 4
2 3 0
6 2 6

 .
and sends it to the cloud server.
(3) The cloud server performs PLU factorization on X′′ and
obtains

X′′ = PLU

=

 1 0 0
0 1 0
0 0 1

 2 2 4
0 1 3
0 0 6

 1 0 0
1 1 0
3 3 1

 .
Then, it returns them back to the client.
(4) The client checks the correctness of P,L and U, and
decrypts the results by computing

det(X) =
det(P)(

∏n
i=1 `iiuii)

sgn(π1)
∏n

i=1 αi × sgn(π2)
∏n

i=1 βi

=
12

(−6)× (−2)
= 1.

V. CORRECTNESS AND SECURITY ANALYSIS
In this section, we first give strictly proofs on the correctness
of the proposed algorithms, and then analyze their security
according to the definitions modeled in section II-C.

A. CORRECTNESS
Informally, the correctness means that the outsourcing algo-
rithms can make the client obtain the actual results correctly
if the cloud server perform the delegated computation task
honestly. The strict theoretical proof is given in the following
theorem.
Theorem 1: Given some fixed finite field Fq, for any valid

(large-scale and dense) input matrix X ∈ Fn×lq , Y ∈ Fl×mq ,
the proposed algorithms SOAMMC (X,Y), SOAMIC (X) and
SOAMDC (X) are correct according to Definition 1.

Proof: (1) The algorithm SOAMMC (X,Y) is cor-
rect. If the cloud server performs the protocol honestly,

VOLUME 7, 2019 53831

S. Zhang et al.: Practical and Secure Outsourcing Algorithms of Matrix Operations

Z′′ = X′′Y′′. Substituting X′′ and Y′′ with equations (1)
and (2) respectively, we have

Z′′ = X′′Y′′

=

(
U1 · · ·Un−1X′V−1l−1 · · ·V

−1
1

)
·

(
V1 · · ·Vl−1Y′W−1m−1 · · ·W

−1
1

)
= U1 · · ·Un−1X′Y′W−1m−1 · · ·W

−1
1

= U1 · · ·Un−1(P1XP−12)(P2YP−13)W−1m−1 · · ·W
−1
1

= U1 · · ·Un−1P1XYP−13 W−1m−1 · · ·W
−1
1

Thus, in the sub-algorithm ClientDec&Ver,

Z′ = U−1n−1 · · ·U
−1
1 Z′′W1 · · · · ·Wm−1 = P1XYP−13

and Z = P−11 Z′P3 = XY.
Consequently, for any ri ∈ {0, 1}m, ei = X×(Y×ri)−Z×

ri = 0, and thereby the algorithm SOAMMC (X,Y) returns
the correct result Z.
(2) The algorithm SOAMIC (X) is correct. Similarly, if the
cloud server performs the protocol honestly,

Z′′ = (X′′)−1 = V−11 · · ·V
−1
n−1(X

′)−1U−1n−1 · · ·U
−1
1

= V−11 · · ·V
−1
n−1P

−1
2 X−1P−11 U−1n−1 · · ·U

−1
1 .

Thus, in the sub-algorithm ClientDec&Ver,

Z′ = Vn−1 · · ·V1Z′′U1 · · · · · Un−1 = P−12 X−1P−11

and Z = P2Z′P1 = X−1. Consequently, for any ri ∈ {0, 1}n,
ei = X × (Z × ri) − I × ri = 0, and thereby the algorithm
SOAMIC (X,Y) returns the correct result Z.
(3) The algorithm SOAMDC (X) is correct. If the cloud server
performs the protocol honestly,

X′′ = PLU.

This indicates that, (i) for any ri ∈ {0, 1}n, ei = P × (L ×
(U× ri))− X× ri = 0 and (ii)

det(X′′) = det(P) det(L) det(U). (6)

Meanwhile, X′′ = U1 · · ·Un−1P1XP2Vn−1 · · ·V1 implies

det
(
X′′
)
= det (U1 · · ·Un−1P1XP2Vn−1 · · ·V1)

= det (U1) · · · det (Un−1) det (P1) ·

· det (X) det (P2) det (Vn−1) · · · det(V1)

= det (P1) det (X) det (P2) . (7)

Combining equation (6) with equation (7), we have

det(X) =
det(X′′)

det (P1) det (P2)
=

det(P) det(L) det(U)
det (P1) det (P2)

=
det(P)× (

∏n
i=1 `iiuii)

sgn(π1)
∏n

i=1 αi × sgn(π2)
∏n

i=1 βi
.

which is exactly the output of the sub-algorithmClientDec&Ver.
Consequently, the algorithm SOAMDC (X, Y) is correct. �

B. INPUT/OUTPUT PRIVACY
In this section, we will prove that the probability that a
malicious cloud server can learn the actual input and output
is negligible. Formally,
Theorem 2: Given some fixed finite field Fq, for any valid

(large-scale and dense) input matrix X ∈ Fn×lq , Y ∈ Fl×mq ,
the proposed algorithms SOAMMC (X,Y), SOAMIC (X)
and SOAMDC (X) fulfill input/output privacy according
to Definition 2.

Proof: (1) The algorithm SOAMMC (X,Y) fulfills
input/output privacy. In terms of the input privacy, we need
to prove the probability that an adversary can acquire the
knowledge of X and Y is negligible even if the adversary
obtains the ciphertext matrices X′′ and Y′′ and knows the
encryptions algorithm ClientEnc. In fact, by the encryption
step, we know

X′′ = U1 · · ·Un−1P1XP−12 V−1l−1 · · ·V
−1
1 ,

Y′′ = V1 · · ·Vl−1P2YP−13 Y′W−1m−1 · · ·W
−1
1 .

By the key generation step, P1 is randomly chosen from a set
with size n!, P2 is randomly chosen from a set with size l!,
P3 is randomly chosen from a set with size m!, and Ui, Vj,
Wk are randomly chosen from a set with size q(q− 1)(q+ 1)
(see Lemma 2), where 1 ≤ i ≤ n − 1, 1 ≤ j ≤ l − 1,
1 ≤ k ≤ m − 1. Therefore, the probability that an adversary
can recover X (resp. Y) is

1
(q(q− 1)(q+ 1))n+l−2n!l!

(resp.
1

(q(q− 1)(q+ 1))l+m−2m!l!

)
,

which is a negligible function of n (resp. m).
In terms of the output privacy, we need to prove the

probability that an adversary can acquire the knowledge of
Z = XY is negligible even if the adversary obtains the cipher-
text matrices X′′ and Y′′. In order to recover Z, the adversary
has two possible ways. One is to recover X and Y, and then
compute Z = XY. In this way, the probability is

1
(q(q− 1)(q+ 1))n+l−2n!l!

×
1

(q(q− 1)(q+ 1))l+m−2m!l!

=
1

(q(q− 1)(q+ 1))m+n+2l−4n!m!(l!)2
,

which obviously is a negligible function of n (resp. m).
Another way is to recover Z from Z′′. Since

Z′′ = X′′Y′′ = U1 · · ·Un−1P1ZP−13 W−1m−1 · · ·W
−1
1 ,

and P1 is randomly chosen from a set with size n!, P3 is ran-
domly chosen from a set with size m!, Ui, Wk are randomly
chosen from a set with size q(q − 1)(q + 1) (see Lemma 2),
where 1 ≤ i ≤ n − 1, 1 ≤ k ≤ m − 1, it is easily to deduce
that, in this way, the probability is

1
(q(q− 1)(q+ 1))n+m−2n!m!

which is also a negligible function of n (resp. m).

53832 VOLUME 7, 2019

S. Zhang et al.: Practical and Secure Outsourcing Algorithms of Matrix Operations

(2) The algorithm SOAMIC (X) fulfills input/output pri-
vacy. Similar to the analysis of algorithm SOAMMC (X, Y),
we can prove the probability of an adversary can recover the
input matrix X ∈ Fn×nq is

1
(q(q− 1)(q+ 1))2n−2(n!)2

,

which is also the probability of an adversary can recover the
output matrixX−1. Obviously, it is a negligible function of n.
(3) The algorithm SOAMDC (X) fulfills input/output pri-

vacy. For any valid input (large-scale and dense) matrix
X ∈ Fn×nq , by the encryption algorithm ClientEnc,

X′′ = U1 · · ·Un−1P1XP2Vn−1 · · ·V1

Since π1 and π2 are randomly chosen from a set with size n!,
αi and βi are randomly chosen from Fq\{0Fq} for 1 ≤ i ≤ n
and Ui and Vi are randomly chosen from a set with size
q(q − 1)(q + 1) for 1 ≤ i ≤ n − 1 (see Lemma 2). It is easy
to see that the probability that an adversary can recover X
from X′′ is

1
(q(q− 1)(q+ 1))2n−2(n!)2(q− 1)2n

which is obviously a negligible function of n.
Since

det(X) =
det(X′′)

det (P1) det (P2)

=
det(X′′)

sgn(π1)
∏n

i=1 αi × sgn(π2)
∏n

i=1 βi
.

and det(X′′) is public, the adversary can recover det (X) is by
guessing the product det(P1) det(P2) and thereby the proba-
bility is (12)

2
(1
(q−1)n)

2
which is obviously a negligible function

of n. Also, the adversary can directly guess the value of
det (X) by the exhaustive attack, and therein the probability
is 1

q . �

C. VERIFIABILITY
Informally, we need to prove the probability that a malicious
server is able to fool the client with an incorrect result is
negligible. Precisely, the strict result is given as follows.
Theorem 3: Given some fixed finite field Fq, for any valid

(large-scale and dense) input matrix X ∈ Fn×lq , Y ∈ Fl×mq ,
the proposed algorithms SOAMMC (X,Y), SOAMIC (X)
and SOAMDC (X) are

(
1− 1

2λ

)
-verifiable according to

Definition 3.
Proof: We only prove the verifiability of algo-

rithm SOAMMC (X,Y). The proofs that the algorithms
SOAMIC (X) and SOAMDC (X) are

(
1− 1

2λ

)
-verifiable are

almost the same. For simplicity, we omit them.
According to Definition 3, we need to prove

Pr[Z ← ClientDec&Ver(F ,Z′′, SK) | Z′′ is true] = 1, (8)

Pr[Z ← ClientDec&Ver(F ,Z′′, SK) | Z′′ is false] ≤
1
2λ
.

(9)

Following the correctness proof in Theorem 1, we immedi-
ately obtain the equation (8).

Now we analyze the inequality (9). In the sub-algorithm
ClientDec&Ver(F ,Z′′, SK), for any 1 ≤ i ≤ λ, let D =
X × Y − Z, ri = (r (i)1 , · · · , r

(i)
m)T and ei = X × (Y × ri) −

Z× ri = D× ri = (e(i)1 , ..., e
(i)
n)T. If Z′′ is a false result, then

Z′′ 6= X′′Y′′ which further results inZ 6= XY. In other words,
D 6= 0. Hence, there exists at least one non-zero element in
D. Suppose that the element dst 6= 0 for some 1 ≤ s ≤ n and
1 ≤ t ≤ m, we obtain

e(i)s =
m∑
k=1

dskr
(i)
k = ds1r

(i)
1 + · · · + dstr

(i)
t + · · · + dsmr

(i)
m

= dstr
(i)
t + y (10)

where y =
∑m

k=1 dskr
(i)
k − dstr

(i)
t . According to the Total

Probability Formula,

Pr[e(i)s = 0] = Pr[e(i)s = 0|y = 0] Pr[y = 0]

+Pr[e(i)s = 0|y 6= 0] Pr[y 6= 0]. (11)

Note that, from equation (10), we have{
Pr[e(i)s = 0|y = 0] = Pr[r (i)t = 0] = 1/2,

Pr[e(i)s = 0|y 6= 0] ≤ Pr[r (i)t = 1] = 1/2.
(12)

Substituting (12) into (11), we have

Pr[e(i)s = 0] ≤
1
2
Pr[y = 0]+

1
2
Pr[y 6= 0] =

1
2
. (13)

Therefore,

Pr[ei = (0, · · · , 0)T] ≤ Pr[e(i)s = 0] ≤ 1/2.

Since the verification repeats λ times, we have

Pr[Z ← ClientDec&Ver(F ,Z′′, SK) | Z′′ is false]

≤ (Pr[ei = (0, · · · , 0)T])λ ≤
1
2λ
.

�

VI. EFFICIENCY ANALYSIS AND PERFORMANCE
EVALUATION
In this section, we provide an elaborate theoretical and
experimental analysis on the efficiency of the proposed
algorithms.

A. THEORETICAL ANALYSIS
Theorem 4: Given some fixed finite field Fq, for any valid

(large-scale and dense) input matrix X ∈ Fn×lq , Y ∈ Fl×mq ,
the proposed algorithm SOAMMC (X,Y) is O(mln

mn+nl+ml)-
efficient, and for square input matrices, all the proposed algo-
rithms SOAMMC (X,Y), SOAMIC (X) and SOAMDC (X) are
O(n0.3728639)-efficient according to Definition 4.

Proof: Without outsourcing, the client has to perform
the MMC, MIC and MDC on its own. For any n-by-n square
matrix, the most efficient known algorithm for these opera-
tions is introduced by François Le Gall with an asymptotic

VOLUME 7, 2019 53833

S. Zhang et al.: Practical and Secure Outsourcing Algorithms of Matrix Operations

complexity of O(n2.3728639) [26]. For general non-square
input matrices arising in MMC, the client can compute the
product of X ∈ Fn×lq and Y ∈ Fl×mq by the conventional
iterative algorithm with a complexity of O(nlm).
Now, we analyze the client-side time cost in our outsourc-

ing algorithms. In the sub-algorithm SKGen of the proposed
algorithms, we need to generate random permutations and
unimodular matrices. Utilizing the classic algorithm given
by Durstenfeld [17] (Knuth [25] attributes the algorithm to
Fisher and Yates [20]), it only requires at most n swap oper-
ations to generate a random permutation π : {1, · · · , n} ←
{1, · · · , n}. Also, the generation of 2-by-2 unimodular matri-
ces is independent of the input matrices, and thereby they
are can be efficiently preprocessed by using the well-known
extended Euclidean algorithm. Therefore, the principal term
of the client-side time overhead consists of the cost of sub-
algorithms ClientEnc and ClientDec&Ver. Let ‘‘M’’ denote
the multiplication operation in the finite field Fq and we omit
the cost of field additions since it is negligible compared with
that of field multiplications.

(1) Client-side cost of algorithm SOAMMC (X,Y).
• Cost of ClientEnc. For any valid input matrices
X ∈ Fn×lq and Y ∈ Fl×mq , since matrix multiplica-
tion operation satisfies associative law and computing
the product of a dense matrix and a sparse unimodular
matrix is efficient, computing X′ = P1XP−12 and

X′′ = U1(· · · (Un−1(X′V−1l−1 · · ·V
−1
1)) · · ·)

needs to perform at most (4n(l − 1)+ 4l(n − 1))M and
computing Y′ = P2YP−13 and

Y′′ = V1(· · · (Vl−1(Y′W−1m−1 · · ·W
−1
1)) · · ·)

needs to perform at most (4l(m − 1) + 4m(l − 1))M.
Hence, the total cost is O(nl + ml).

• Cost of ClientDec&Ver. Computing

Z = P−11

(
· · ·

(
U−11

(
Z′′W1 · · ·Wm−1

))
· · ·

)
P3

needs to perform at most (4n(m − 1) + 4m(n − 1))M,
and the verification process needs to perform at most
(λnl)M for some given constant λ. Hence, the total cost
isO(mn+nl). So, the overall time cost on the client side
is O(mn+ nl + ml).

(2) Client-side cost of algorithm SOAMIC (X).
• Cost of ClientEnc. For any valid input matrices
X ∈ Fn×nq , computing

X′′ = U1 (· · · (Un−1(P1XP2)Vn−1) · · ·)V1

needs to perform at most 8n(n− 1)M.
• Cost of ClientDec&Ver. Computing

Z = P2
(
Vn−1

(
· · ·
(
V1Z′′U1

)
· · ·
)
Un−1

)
P1

needs to perform atmost 8n(n−1)M, and the verification
process needs to perform at most λn2M for some given
constant λ. Hence, the total cost is O(n2). So, the overall
time cost on the client side is O(n2).

(3) Client-side cost of algorithm SOAMDC (X).
• Cost of ClientEnc. For any valid input matrices
X ∈ Fn×nq , computing

X′′ = U1 (· · · (Un−1(P1XP2)Vn−1) · · ·)V1

needs to perform at most (8n(n − 1) + 2n2)
M= O(n2)M.

• Cost of ClientDec&Ver. computing ei = P × (L ×
(U × ri)) − X × ri needs to perform at most n(n+1)2 M,
and thereby the verification process needs to perform at
most λ n(n+1)2 M for some given constant λ. In addition,
computing

det(X) =
det(P)(

∏n
i=1 `iiuii)

sgn(π1)
∏n

i=1 αi × sgn(π2)
∏n

i=1 βi

needs to perform at most 2(2n − 1)M. Hence, the total
cost is O(n2). So, the overall time cost on the client side
is O(n2).

In summary, we list our analysis results in Table 1, where
toriginal, tclient1 and tclient2 denote the client’s time cost of
accomplishing the original matrix operation on its own,
the client-side time cost of encrypting the input matrices
and the client-side time cost of decrypting and verifying the
returned results from the cloud, respectively, and tclient =
tclient1 + tclient2. �

B. EXPERIMENTAL ANALYSIS
Besides the theoretical analysis, we also provide the
experimental evaluation on the practical performance of our
proposed algorithms. Our experiments are carried out on
Ubuntumachine with 2.70 GHz Intel PentiumCPUG630 and
4 GB memory. We implement the proposed algorithms in
Matlab 2017a. Take the field Fq = F251 and denote toriginal,
tclient1, tclient2 and tclient as the same meanings shown in the
proof of Theorem 4.

Table 2, Table 3 and Table 4 present the experimen-
tal results on MMC, MIC and MDC respectively. Among
them, all the input matrices are square and the dimension
n varies from 100 to 3000, we choose l = 50 in the sub-
algorithm ClientDec&Ver to balance the cheating resistance
and the efficiency. To visualize our experimental results,
we further convert the data in tables into 2-dimensional
curves. That is, FIGURE2, FIGURE 3 and FIGURE 4 com-
pare the client-side time costs of the proposed outsourcing
algorithms (tclient) with those of the corresponding algo-
rithms without outsourcing (toriginal) respectively. To high-
light the slope of the curve corresponding to tclient, the
y-axis (vertical direction) in these figures is labeled with
non-uniform scale. Finally, FIGURE 5 shows the client-
side speedup (toriginal/tclient). It can be observed from the
tables and figures that our outsourcing algorithms achieve
remarkable computational savings on the client side and
are more effective as the dimension n of the input matrices
increasing.

53834 VOLUME 7, 2019

S. Zhang et al.: Practical and Secure Outsourcing Algorithms of Matrix Operations

TABLE 1. Time cost of the proposed algorithms.

FIGURE 2. Client-side cost comparison of experimental results between
SOAMMC (·) and algorithm without outsourcing.

TABLE 2. The experimental results of SOAMMC (·).

TABLE 3. The experimental results of SOAMIC (·).

VII. COMPREHENSIVE COMPARISONS WITH PRIOR
WORK
In this section, we compare our algorithms with the exist-
ing schemes introduced in Section I-A. Let R, Z denote
the set of reals and the set of integers respectively, and
let Zp denote the prime field that is the finite field with a
prime order p. Table 5 presents the comparison results of
different schemes, out of which the first column denotes the
outsourced matrix operations, the second column lists the

TABLE 4. The experimental results of SOAMDC (·).

FIGURE 3. Client-side cost comparison of experimental results between
SOAMIC (·) and algorithm without outsourcing.

FIGURE 4. Client-side cost comparison of experimental results between
SOAMDC (·) and algorithm without outsourcing.

existing schemes, the third column illustrates the type of input
matrices, the fourth column (tEnc) shows the client-side time
overhead in the encryption stage, the fifth column (tDec&Ver)

VOLUME 7, 2019 53835

S. Zhang et al.: Practical and Secure Outsourcing Algorithms of Matrix Operations

TABLE 5. Comprehensive comparisons of the existing schemes mentioned in Sec.I-A.

FIGURE 5. The speedup of client-side cost obtained by our proposed
algorithms SOAMMC (·), SOAMIC (·) and SOAMDC (·).

shows the client-side time overhead in the decryption and
verification stage, the sixth column (tCloud) shows the cloud-
side time overhead with basic algorithms for MMC, MIC and
MDC in ciphertext matrices, the seventh column elucidates
whether the number of zeros is protected in different schemes,
the eighth column indicates the number of cloud servers in
different schemes, and the last column clarifies whether the
expensive homomorphic encryption operations are needed in
different schemes.

VIII. CONCLUSION AND DISCUSSION
In this paper, we design three algorithms for outsourcing
MMC, MIC and MDC to a malicious cloud. Theoretical
analysis and experimental evaluation indicate that the pro-
posed algorithms achieve a better tradeoff between the pri-
vacy and the efficiency. The main technique involving in our
algorithm is a novel matrix encryption/decryption method
which encrypts/decrypts a matrix by consecutive and sparse
unimodular matrix transformations. A natural question is
whether the similar technique can be used for outsorucing

matrix operations over the field of reals R, the field of
rationals Q or the ring of integers Z. Our experimental tests
indicate that the answer is probably not. Since R, Q and
Z are unbounded, the blow-up of the size of entries in the
product matrix may be very fast, which results in the ele-
ments in the final ciphertext matrix are extremely large and
thereby the similar encryption algorithm become inefficient.
Another interesting problem is applying similar technique to
outsource other common matrix operations, such as matrix
rank computation, matrix factorization, matrix’s characteris-
tic polynomial and eigenvalues computation etc, which is left
for future work.

REFERENCES
[1] E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe, ‘‘Post-quantum key

exchange—A new hope.’’ in Proc. 25th USENIX Secur. Symp., Austin, TX,
USA, 2016, pp. 327–343.

[2] M. J. Atallah and K. B. Frikken, ‘‘Securely outsourcing linear algebra
computations,’’ in Proc. 5th ACM Symp. Inf., Comput. Commun. Secur.,
Apr. 2010, pp. 48–59.

[3] M. J. Atallah, K. N. Pantazopoulos, J. R. Rice, and E. E. Spafford,
‘‘Secure outsourcing of scientific computations,’’ Adv. Comput., vol. 54,
pp. 215–272, Jan. 2002.

[4] Z. Bai, G. Fahey, and G. Golub, ‘‘Some large-scale matrix computa-
tion problems,’’ J. Comput. Appl. Math., vol. 74, nos. 1–2, pp. 71–89,
Nov. 1996.

[5] D. Benjamin and M. J. Atallah, ‘‘Private and cheating-free outsourcing of
algebraic computations,’’ in Proc. 6th Annu. Conf. Privacy, Secur. Trust,
Oct. 2008, pp. 240–245.

[6] D. S. Bernstein, Matrix Mathematics: Theory, Facts, and Formulas with
Application to Linear Systems Theory. Princeton, NJ, USA: Princeton
Univ. Press, 2005.

[7] R. Chandra, Permutation and Combinations. Chapman and Hall: London,
U.K., 2016.

[8] D. Boneh, E.-J. Goh, and K. Nissim, ‘‘Evaluating 2-DNF formulas on
ciphertexts,’’ in Theory of Cryptography Conference, J. Kilian, Ed. Berlin,
Germany: Springer, 2005, pp. 325–341.

[9] K. Bryan and T. Leise, ‘‘The $25,000,000,000 eigenvector: The linear alge-
bra behind Google,’’ SIAM Rev., vol. 48, no. 3, pp. 569–581, Aug. 2006.

[10] B. Carpentieri, ‘‘Sparse preconditioners for dense linear systems from
electromagnetic applications,’’ Ph.D. dissertation, CERFACS, Toulouse,
France, 2002.

53836 VOLUME 7, 2019

S. Zhang et al.: Practical and Secure Outsourcing Algorithms of Matrix Operations

[11] X. Chen, X. Huang, J. Li, J. Ma,W. Lou, and D. S.Wong, ‘‘New algorithms
for secure outsourcing of large-scale systems of linear equations,’’ IEEE
Trans. Inf. Forensics Security, vol. 10, no. 1, pp. 69–78, Jan. 2015.

[12] X. Chen, J. Li, X. Huang, J. Li, Y. Xiang, and D. S. Wong, ‘‘Secure
outsourced attribute-based signatures,’’ IEEE Trans. Parallel Distrib. Syst.,
vol. 25, no. 12, pp. 3285–3294, Dec. 2014.

[13] X. Chen, J. Li, X. Huang, J. Ma, and W. Lou, ‘‘New publicly verifiable
databases with efficient updates,’’ IEEE Trans. Dependable Secure Com-
put., vol. 12, no. 5, pp. 546–556, Sep./Oct. 2015.

[14] X. Chen, J. Li, J. Ma, Q. Tang, and W. Lou, ‘‘New algorithms for secure
outsourcing of modular exponentiations,’’ IEEE Trans. Parallel Distrib.
Syst., vol. 25, no. 9, pp. 2386–2396, Sep. 2014.

[15] X. Chen, J. Li, J. Weng, J. Ma, and W. Lou, ‘‘Verifiable computation over
large database with incremental updates,’’ IEEE Trans. Comput., vol. 65,
no. 10, pp. 3184–3195, Oct. 2016.

[16] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms, 3rd ed. Cambridge, MA, USA: MIT Press, 2009.

[17] R. Durstenfeld, ‘‘Algorithm 235: Random permutation,’’ Commun. ACM,
vol. 7, no. 7, p. 420, Jul. 1964.

[18] K. Elkhiyaoui, M. Önen, M. Azraoui, and R. Molva, ‘‘Efficient techniques
for publicly verifiable delegation of computation,’’ in Proc. 11th ACM
Asia Conf. Comput. Commun. Secur., New York, NY, USA, Jun. 2016,
pp. 119–128.

[19] D. Fiore and R. Gennaro, ‘‘Publicly verifiable delegation of large polyno-
mials and matrix computations, with applications,’’ in Proc. ACM Conf.
Comput. Commun. Secur., Oct. 2012, pp. 501–512.

[20] R. Fisher and F. Yates, Statistical Tables for Biological, Agricultural and
Medical Research. Oliver and Boyd: Edinburgh, U.K., 1953.

[21] S. Fu, Y. Yu, and M. Xu, ‘‘A secure algorithm for outsourcing matrix
multiplication computation in the cloud,’’ in Proc. 5th ACM Int. Workshop
Secur. Cloud Comput., Apr. 2017, pp. 27–33.

[22] R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis, ‘‘Large-scale matrix
factorization with distributed stochastic gradient descent,’’ in Proc. 17th
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, Aug. 2011,
pp. 69–77.

[23] C. Gentry, S. Halevi, and V. Vaikuntanathan, ‘‘A simple BGN-type
Cryptosystem from LWE,’’ in Advances in Cryptology—EUROCRYPT,
H. Gilbert, Ed. Berlin, Germany: Springer, 2010, pp. 506–522.

[24] X. Hu and C. Tang, ‘‘Secure outsourced computation of the characteristic
polynomial and eigenvalues of matrix,’’ J. Cloud Comput., vol. 4, no. 1,
p. 7, Dec. 2015.

[25] D. E. Knuth, The Art of Computer Programming: Seminumerical Algo-
rithms, vol. 2, 3rd ed. Reading, MA, USA: Addison-Wesley, 1997.

[26] F. L. Gall, ‘‘Powers of tensors and fast matrix multiplication,’’ in Proc.
39th Int. Symp. Symbolic Algebr. Comput., New York, NY, USA, Jul. 2014,
pp. 296–303.

[27] X. Lei, X. Liao, T. Huang, and F. Heriniaina, ‘‘Achieving security,
robust cheating resistance, and high-efficiency for outsourcing largematrix
multiplication computation to a malicious cloud,’’ Inf. Sci., vol. 280,
pp. 205–217, Oct. 2014.

[28] X. Lei, X. Liao, T. Huang, and H. Li, ‘‘Cloud computing service: The case
of large matrix determinant computation,’’ IEEE Trans. Services Comput.,
vol. 8, no. 5, pp. 688–700, Sep./Oct. 2015.

[29] X. Lei, X. Liao, T. Huang, H. Li, and C. Hu, ‘‘Outsourcing large matrix
inversion computation to a public cloud,’’ IEEE Trans. Cloud Comput.,
vol. 1, no. 1, p. 1, Jan. 2013.

[30] R. J.McEliece, ‘‘A public-key cryptosystem based on algebraic coding the-
ory,’’ Deep Space Netw. Prog. Rep., vol. 44, pp. 114–116, Jan./Feb. 1978.

[31] R. J. McEliece, Finite Fields for Computer Scientists and Engineers.
Boston, MA, USA: Kluwer Academic Publishers, 1987.

[32] P. Mohassel, ‘‘Efficient and secure delegation of linear algebra,’’ in Proc.
IACR Cryptol. ePrint Arch., Jan. 2011, p. 605.

[33] M. Newman, Integral Matrices, New York, NY, USA: Academic, 1972.
[34] P. Okunev and C. R. Johnson. (Jan. 2005). ‘‘Necessary and sufficient

conditions for existence of the LU factorization of an arbitrary matrix.’’
[Online]. Available: https://arxiv.org/abs/math/0506382

[35] P. Paillier, ‘‘Public-key cryptosystems based on composite degree Residu-
osity classes,’’ in Advances in Cryptology—Eurocrypt, J. Stern, Ed. Berlin,
Germany: Springer, 1999, pp. 223–238.

[36] V. Pan and J. Reif, ‘‘Efficient parallel solution of linear systems,’’ in Proc.
17th Annu. ACM Symp. Theory Comput., May 1985, pp. 143–152.

[37] B. Paul and R. L. Huston, ‘‘Kinematics and dynamics of planar machin-
ery,’’ J. Appl. Mech., vol. 47, no. 2, p. 459, Jun. 1980.

[38] R. Roth, Introduction to Coding Theory. Cambridge, U.K.: Cambridge
Univ. Press, 2006.

[39] S. Salinas, X. Chen, J. Ji, and P. A. Li, ‘‘A tutorial on secure out-
sourcing of large-scale computations for big data,’’ IEEE Access, vol. 4,
pp. 1406–1416, 2016.

[40] S. Salinas, C. Luo, X. Chen, and P. Li, ‘‘Efficient secure outsourcing of
large-scale linear systems of equations,’’ in Proc. IEEE Conf. Comput.
Commun. (INFOCOM), Apr./May 2015, pp. 1035–1043.

[41] A. Schrijver, Theory of Linear and Integer Programming. Hoboken, NJ,
USA: Wiley, 1998.

[42] Z. Shan, K. Ren, M. Blanton, and C. Wang, ‘‘Practical secure computation
outsourcing: A survey,’’ Acm Comput. Surv., vol. 51, no. 2, Jun. 2018,
Art. no. 31.

[43] G. Sheng, C. Tang, W. Gao, and Y. Yin, ‘‘MD-VCMatrix : An efficient
scheme for publicly verifiable computation of outsourced matrix multi-
plication,’’ in Network and System Security, J. Chen, V. Piuri, C. Su, and
M. Yung, Ed. Cham, Switzerland: Springer, 2016, pp. 349–362.

[44] Q. Su, J. Yu, C. Tian, H. Zhang, and R. Hao ‘‘How to securely outsource
the inversion modulo a large composite number, J. Syst. Softw., vol. 129,
p. 26–34, Jul. 2017.

[45] J. P. Tiemstra, The Foundations of Positive and Normative Economics:
A Handbook, vol. 68, London, U.K.: Oxford Univ. Press, 2008, no. 3,
pp. 377–380.

[46] S. Zhang, H. Li, Y. Dai, J. Li, M. He, and R. Lu, ‘‘Verifiable outsourcing
computation for matrix multiplication with improved efficiency and appli-
cability,’’ IEEE Internet Things J., vol. 5, no. 6, pp. 5076–5088, Dec. 2018.

[47] S. Zhang, H. Li, K. Jia, Y. Dai, and L. Zhao, ‘‘Efficient secure outsourcing
computation of matrix multiplication in cloud computing,’’ in Proc. IEEE
Global Commun. Conf., Dec. 2016, pp. 1–6.

[48] X. Zhang, T. Jiang, K.-C. Li, A. Castiglione, and X. Chen, ‘‘New publicly
verifiable computation for batch matrix multiplication, Inf. Sci., vol. 479,
pp. 664–678, Apr. 2019.

[49] Y. Zhang and M. Blanton, ‘‘Efficient secure and verifiable outsourcing
of matrix multiplications,’’ in Proc. Int. Conf. Inf. Secur., Oct. 2014,
pp. 158–178.

[50] L. Zhou and C. Li ‘‘Outsourcing eigen-decomposition and singular value
decomposition of large matrix to a public cloud,’’ IEEE Access, vol. 4,
pp. 869–879, 2017.

SHENGXIA ZHANG received the B.E. degree
in computer science and technology from Hexi
University, in 2016. She is currently pursuing the
M.S. degree with the College of Computer Science
and Technology, Qingdao University. Her research
interests include cloud computing security, secure
outsourcing computation, and graph encryption.

CHENGLIANG TIAN received the B.S. and M.S.
degrees in mathematics from Northwest Univer-
sity, Xi’an, China, in 2006 and 2009, respec-
tively, and the Ph.D. degree in information security
from Shandong University, Jinan, China, in 2013.
He held a postdoctoral position at the State Key
Laboratory of Information Security, Institute of
Information Engineering, Chinese Academy of
Sciences, Beijing. He is currently an Assistant
Professor with the College of Computer Science

and Technology, Qingdao University, Qingdao, China. His research interests
include lattice-based cryptography and cloud computing security.

HANLIN ZHANG received the B.S. degree in
software engineering from Qingdao University,
in 2010, and the M.S. degree in applied infor-
mation technology and the Ph.D. degree in infor-
mation technology from Towson University, MD,
USA, in 2011 and 2016, respectively. He is cur-
rently an Assistant Professor with the College
of Computer Science and Technology, Qingdao
University. His research interests include cloud
computing security, blockchain technology, and
the IoT security.

VOLUME 7, 2019 53837

S. Zhang et al.: Practical and Secure Outsourcing Algorithms of Matrix Operations

JIA YU received the B.S. and M.S. degrees from
the School of Computer Science and Technology,
Shandong University, in 2003 and 2000, respec-
tively, and the Ph.D. degree from the Institute of
Network Security, Shandong University, in 2006.
He was a Visiting Professor with the Department
of Computer Science and Engineering, The State
University of New York at Buffalo, from 2013 to
2014. He is currently a Professor with the College
of Computer Science and Technology, Qingdao

University, Qingdao, China. His research interests include cloud computing
security, key evolving cryptography, digital signature, and network security.

FENGJUN LI received the B.E. degree (Hons.)
from the University of Science and Technology
of China, in 2001, the M.Phil. degree from The
Chinese University of Hong Kong, in 2004, and
the Ph.D. degree from the Pennsylvania State Uni-
versity, in 2010. She is currently an Associate
Professor with the Department of Electrical Engi-
neering and Computer Science, The University of
Kansas. Her research interests include the broad
areas of security and privacy for distributed infor-

mation systems, cyber-physical systems, and communication networks. She
received the Kansas NSF EPSCoR First Award, in 2014, and the Miller
Scholar Award from The University of Kansas, in 2016.

53838 VOLUME 7, 2019

	INTRODUCTION
	THE PROBLEM AND RELATED WORK
	OUR CONTRIBUTIONS
	ROAD MAP

	SYSTEM MODEL AND SECURITY DEFINITIONS
	SYSTEM MODEL
	THREAT MODELS
	SEMI-HONEST SINGLE-SERVER (SS)
	MALICIOUS SINGLE-SERVER (MS)

	SYSTEM REQUIREMENTS AND SECURITY DEFINITIONS

	PRELIMINARIES
	NOTATIONS AND TERMINOLOGIES
	FINITE FIELD
	PERMUTATION MAPPING AND PERMUTATION MATRIX
	PLU FACTORIZATION
	UNIMODULAR MATRIX

	OUTSOURCING ALGORITHMS OF MATRIX OPERATIONS
	COMPUTATION TASK DESCRIPTION AND BASIC IDEA
	OUTSOURCING ALGORITHM OF MMC
	OUTSOURCING ALGORITHM OF MIC
	OUTSOURCING ALGORITHM OF MDC

	CORRECTNESS AND SECURITY ANALYSIS
	CORRECTNESS
	INPUT/OUTPUT PRIVACY
	VERIFIABILITY

	EFFICIENCY ANALYSIS AND PERFORMANCE EVALUATION
	THEORETICAL ANALYSIS
	EXPERIMENTAL ANALYSIS

	COMPREHENSIVE COMPARISONS WITH PRIOR WORK
	CONCLUSION AND DISCUSSION
	REFERENCES
	Biographies
	SHENGXIA ZHANG
	CHENGLIANG TIAN
	HANLIN ZHANG
	JIA YU
	FENGJUN LI

