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ABSTRACT Survival analysis, in many areas such as healthcare and finance, mainly studies the probability
of time to the event of interest. Among various methods that build survival predictive models, a class of
methods combining with machine learning techniques make assumptions about hazard functions, while
another class of methods directly exploit complex neural networks to learn the latent representation of hazard
functions. For the traditional survival predictive models, the assumption about hazard functions restricts their
performance to some extends. Similarly, the advanced survival predictive models built by complex neural
networks also suffer from fairly poor interpretation in real applications. To solve these problems, in this
paper, a novel survival analysis method named HitBoost is proposed to predict the probability distribution of
the first hitting time (FHT). Instead of making any assumptions about the underlying stochastic process,
the proposed HitBoost adopts the multi-output gradient boosting decision tree to implicitly capture the
connections between the static covariate and the underlying stochastic process. Furthermore, in the process
of tree boosting, the relevant statistics can be utilized to effectively measure the feature importance. The
results of evaluations and case studies on benchmarks show that, in comparison to the classical methods,
the proposed HitBoost is superior in prediction performance and risk discrimination. Therefore, the HitBoost
can be utilized as an effective method to build survival predictive models or to find the important factors for
cause-specific failure.

INDEX TERMS Disease prognosis, first hitting time, gradient boosting decision tree, machine learning,
survival analysis.

I. INTRODUCTION
Survival analysis, as a method of studying the probability of
time to the event of interest (e.g., death, disease recurrence,
or failure of a machine), has a wide range of applications
in many fields, such as healthcare and finance. Unlike most
classification and regression problems, the target of survival
analysis is time to the event, or more than one outcome. In the
realm of medicine, the prognostic studies of cause-specific
diseases rely on survival predictive models and often com-
bine with relevant statistical methods to predict probabilities
that a patient may occur the specific disease at various time
points, or to find important disease-related prognostic factors.
Throughout this paper, we will mainly focus on the medical
setting. It also can be easily extended to other fields.

Traditional methods usually take individual hazard func-
tion as themain target, followed bymaking some assumptions
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about it to predict the probability of event occurrence at
various time points. The Cox proportional hazard model
(CoxPH) [1] is the most commonly used predictive model
for survival analysis. It assumes that the ratio of an individual
hazard function to the population’s baseline hazard function
is a time-independent constant, which is called the hazard
ratio and is also a predictor of the CoxPH model. The first
hitting time (FHT) model, as one of the predictive models
in survival analysis, is mainly to study the distribution of
the first hitting time. Unlike the Cox proportional hazard
model, the FHT model assumes that the individual hazard
function is a form-fixed stochastic process.More works about
the FHT model can be found in Lee and Whitmore [2].
In addition, Stikbakke [32] improved the FHT model by
applying the boosting method to estimate model parameters.
Both the Cox and FHT methods make strong assumptions
about the individual hazard function and deem a linear rela-
tionship between the model parameters and static covariates.
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In some special cases, once the individual hazard function
violates the assumptions of the model, the survival predictive
models built on the top of these methods will suffer from a
decreased prediction accuracy.

In recent years, many classical algorithms in machine
learning have been investigated and greatly improved in
many different fields, such as support vector machine [5],
random forest [6] and gradient boosting machine [3], [4].
These techniques also find their way to survival analysis.
For example, Random Survival Forest (RSF) [7], as a clas-
sical and popular method, no longer makes any assumptions
about the individual hazard function but utilizes statistical
methods to estimate the hazard function in the framework
of Random Forest [34]. However, this type of nonparametric
method without regularization technique is prone to over-
fitting. Among various survival analysis methods, a branch
of methods such as gradient boosting machine (GBM) [9]
and deep survival network (DeepSurv) [10] applies machine
learning techniques to enhance the capability of representing
a complex nonlinear relationship between logarithmic hazard
ratio and static covariates. Although those methods can pre-
dict the logarithmic hazard ratio as same as the Cox model,
but they still follow the hazard ratio assumption. Another
branch of methods, however, aims at predicting the distribu-
tion of the first hitting time instead of assuming individual
hazard function. Such as DeepHit [11] and DRSA [12], they
apply deep neural network and recurrent neural network to
capture the latent representation between static covariates
and the FHT probability distribution, respectively. However,
fitting deep learning models often requires a large number of
training samples, careful hyper-parameters tuning and iter-
ation training, which could be very time-consuming. More-
over, the complex neural network model is a black box with
very poor interpretability, making the algorithm incapable in
finding disease-related important prognostic factors which
is often required in clinical disease prognosis studies. For
example, in breast cancer research, whether a gene related to
breast cancer is a dangerous or protective factor can be found
in the work of Joseph a Sparano about the gene expressions
affecting the risk of breast cancer recurrence [27].

In order to overcome the constraint of assumptions about
the underlying stochastic process in traditional survival pre-
dictive models, and to solve the problem of poor factor inter-
pretation in complex survival predictivemodels, we propose a
novel survival analysis method, HitBoost, to predict the FHT
probability distribution. For method realization, we firstly
define the learning objective function and derive the gradi-
ent expressions of the learning objective function w.r.t. the
predicted value. Then we implement it with the XGBoost
framework [8], [13], which is a flexible and scalable GBDT
and GBM framework. Experimental results on benchmarks
show that the proposed HitBoost method has better predic-
tion performance than classical survival analysis methods,
which means that the HitBoost can be utilized as an effective
means to build survival predictive models or evaluate feature
importance.

In comparison to the previous methods for survival analy-
sis, the proposed HitBoost takes advantage in several aspects.
Firstly, no assumptions about the underlying stochastic pro-
cess are required. The HitBoost exploits the property of
Multi-Output Gradient Boosting Decision Tree (GBDT) to
directly predict the distribution of the first hitting time,
making it possible for the multi-output GBDT to implicitly
learn the latent representation between static covariates and
the underlying stochastic process. As a result, the model’s
prediction performance is effectively improved. The second
advantage is that the relevant statistics for boosting tree
node splitting can be utilized to effectively measure the fea-
ture importance, which facilitates the finding of important
disease-related factors in survival analysis.

The remainder of this paper is organized as follows.
The related work of survival analysis is first introduced in
Section II. The proposed method is detailed in Section III.
The experimental results, case studies and more are given
in Section IV. Finally, some concluding remarks are summa-
rized in Section V.

II. RELATED WORKS
A. SURVIVAL DATA
The survival data can be represented as {(xi,Ti, δi)|i = 1,
. . . , n} where
1) n denotes the number of samples in the survival data.
2) xi ∈ Rm, a vector with m-dimension, denotes the static

covariates of an individual i.
3) Ti ∈ R+, a variable with positive value, denotes the last

observed time (follow-up time) of an individual i.
4) δi ∈ {0, 1}, an indicator variable, denotes the observed

status of an individual i. δi = 1 indicates the occur-
rence of the event of interest (e.g. death, relapse,
machine malfunction). δi = 0 indicates that an indi-
vidual i is right-censored (i.e. without observed event
occurrence).

FIGURE 1. Depiction of cases in the survival data.

The depiction of survival data is shown in Fig. 1.We define
Te as the study endpoint for the event of interest, then the set
{i |Ti < Te, δi = 0} denotes the right-censored observations,
which is also referred to the lost follow-up in clinical studies.
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To analyze survival data, the most popular survival pre-
dictive model is the Cox Proportional Hazards (CoxPH)
model [1]. It assumes that the ratio of an individual haz-
ard function to the population’s baseline hazard function
(estimated by the statistical method) is a time-independent
constant as

ef (x) =
h (t | x)
h0(t)

(1)

where h0(t) denotes the population’s baseline hazard func-
tion, and f (x) = θT x denotes logarithmic hazard ratio,
θ ∈ Rm is the coefficient of covariates. CoxPH estimates the
coefficient θ for survival data without ties via maximizing the
partial likelihood function. Many methods based on CoxPH
have effectively improved the performance, such as decision
tree and deep neural network. All of them [9], [10] can rep-
resent nonlinear functions to predict the logarithmic hazard
ratio but the assumption of hazard ratio is still followed in
them.

B. FIRST HITTING TIME MODEL
Unlike the Cox proportional hazard model, the FHT model
assumes that the individual hazard function is a form-fixed
stochastic process.

The FHT model mainly studies the probability den-
sity function of the first hitting time, i.e., P(t = t∗, δ = 1 |
x = x∗), which denotes the true ex-ante probability that an
individual with static covariate x∗ will experience the event
at time t∗. See more examples in [2].

The FHT model takes the individual hazard function as
underlying stochastic process R (t)

R (t) ∼ W
(
t|s0, µ, σ 2

= 1
)
, t ≥ 0 (2)

As given in Equation (3), it assumes that R (t) is a Wiener
process with an initial state s0 and model parameters µ, σ .
As given by

µ = λT1 x

ln (s0) = λT2 x (3)

link functions are used to link the static covariate with the
model parameters. The parameters λ1, λ2 ∈ Rm are estimated
by maximizing the log-likelihood function as

In (L) =
n∑
i=1

[
I (δi = 1) ∗ ln

(
ŷiTi

)
+ I (δi = 0)

∗ ln
(
1−

∑
t≤Ti

ŷit
)]

(4)

where ŷit denotes the estimated probability that the first hitting
time of an individual i is t; and I(·) is an indictor function.
The fhtboost method [33] proposed by Stikbakke improves

the performance of the traditional FHT model. However,
it still follows the assumption of FHT model to exploit the
boosting method for parameter optimization. Some survival
predictive models combining with deep learning methods,

such as DeepHit [11] and DRSA [12], use complex neural
networks to predict the probability distribution of FHT.
Compared to CoxPH model, the FHT model assumes

that the hazard function is a stochastic process, which
means hazard ratio could be changed over time instead of a
time-independent constant. Moreover, the learning objective
function of the FHTmodel is a likelihood function linkedwith
survival function, which is very different from the optimiza-
tion term of CoxPH. The FHTmodel is the same with CoxPH
in assuming a linear function between model parameters and
covariates. As a result, both the CoxPH and FHTmodels have
good interpretability and widespread uses.

III. PROPOSED METHOD
Since the individual survival process is considered as an
unfixed and unknown expression, we have to directly learn
the function between static covariates and the underly-
ing stochastic process to break away from the constraints
imposed by the assumptions. Therefore, we propose a novel
survival analysis method that exploits the multi-output gra-
dient boosting decision tree to estimate the probability den-
sity function of the first hitting time. This method not only
improves the performance of survival prediction but also
ensures the interpretability of the model.

A. MODEL DESCRIPTION
The HitBoost is a multi-output gradient boosting deci-
sion tree (GBDT) model, as illustrated in Fig. 2. It learns
P (t = t∗, δ = 1 | x = x∗) and directly estimates the proba-
bility density function of the first hitting time. The HitBoost
takes static variates as input, and each output of it is provided
by a GBDT (or GBM). As a forward additive model, each
GBDT consists of many decision trees. The outputs of mul-
tiple GBDTs are transformed into the final predicted value ŷ
by the softmax layer.
The predicted value ŷ is a vector defined a

ŷ =
[
ŷ1, ŷ2, . . . , ŷTmax , ŷTmax+1

]
(5)

where Tmax denotes the longest observed time in the study of
interest. Given an individual with the covariate x, an output
ŷt of the model is an estimated probability P̂ (t, δ = 1 | x),
representing the probability that the event of interest occurs
to the individual at time t .
Since

ŷTmax+1 = 1−
∑Tmax

t=1
ŷt (6)

the estimated probability P̂ (Tmax + 1, δ = 1 | x) implies that
an individual with covariate x never experiences the event in
observations. Here, we define the (cause-specific) Cumula-
tive Incidence Function (CIF) [14] of the individual i as

F̂ (i, t) = P (τ ≤ t, δ = 1 | xi) =
∑

τ≤t
ŷiτ (7)

denoting the probability that the individual i experiences an
event of interest on or before time t .

VOLUME 7, 2019 56787



P. Liu et al.: HitBoost: Survival Analysis via a Multi-Output Gradient Boosting Decision Tree Method

FIGURE 2. Depiction of HitBoost model.

Given the survival data and a specific learning objective
function (will be described later), in a parallel way, multiple
GBDTs learn the latent relationship between static covari-
ates and hazard functions at each iteration via the gradient
boosting method. As a result, the fitted HitBoost model can
accurately estimate the probability density function of the
first hitting time.

The HitBoost method is able to learn a complex representa-
tion of hazard function beyond a proportional hazard or form-
fixed stochastic process. Moreover, unlike survival models
based on deep learning methods, the HitBoost is constructed
by Multi-output GBDTs. It can take advantages of the statis-
tics, e.g., the gradients to find the best feature in the process of
tree node splitting, to explore the important factor related to
the event of interest, which is also an advantage of HitBoost.

B. LEARNING OBJECTIVE FUNCTION
To train the HitBoost model, we must define the formula
of learning objective functions. Here the learning objective
functions that we need to optimize are as follows:

1) L1, the log-likelihood function in FHT models as given
by Equation (5);

2) L2, the C-index [15] approximated by convex function
as a part of learning objective functions for risk ranking.

Thus, take into account both L1 and L2, we need to minimize
the objective function L as

L = L1 + θ · L2 (8)

where θ ∈ R and 0 ≤ θ ≤ 1. θ is one of hyper-parameters
that should be tuned in the model.

As described in Part C of Section II, the formula of L1 is
given as

L1 = −
n∑
i=1

[
I (δi = 1) · ln

(
ŷ(i)Ti

)
+ I (δi = 0)

· ln
(
1−

∑
t≤Ti

ŷ(i)t
)]

(9)

For the individual i, the L1 term ensures that the estimated
probability of event occurrence at Ti is maximized if it actu-
ally experiences the event at Ti. The estimated probability
of event occurrence on or before Ti is minimized if it is
right-censored at Ti. More details of FHT models can be
found in [2].

For the objective function L2, the C-index is taken as
an optimization term. C-index is a commonly used metric
to evaluate model performance in survival analysis. Let us
define R̂i as the estimated risk of the individual i, and � as
a set of tuples, where � = {(i, j)|Ti < Tj, δi = 1}. Just as
shown in

C =

∑
(i,j)∈� I(R̂i > R̂j)

|�|
(10)

the C-index C compares two individuals and thinks that the
corresponding risk estimation should be higher for individu-
als who experience the event formerly.

Since we can’t directly optimize the non-convex func-
tion C , the indicator function needs to be approximated
via convex functions. Inspired by [16], instead of sigmoid
function that frequently appears in literature, we adopt
the convex function φ to approximate the indicator function,
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as given by

φ (x, y) =

{
[− (x − y− γ )]n , x − y < γ

0, x − y ≥ γ
(11)

In the convex function φ, 0 < γ ≤ 1 and n > 1 are the hyper-
parameters of the model. After finely tuning the formula of
the C-index by using F̂ (i,Ti) to represent the risk of the
individual i, the expression of L2 can be obtained as

L2 =

∑
(i,j)∈� wi,j · φ

(
F̂ (i,Ti) , F̂ (j,Ti)

)
∑
(i,j)∈� wi,j

(12)

In L2, the denominator is a normalization factor. w is the
weighted value of each tuple in �. It indicates the difference
between the risk of i and j, as given by

wi,j = −
(
F̂ (i,Ti)− F̂ (j,Ti)

)
(13)

For any tuple (i, j) in �, the L2 works as follows.
1) If the individual i experiences the event earlier than j,

i.e., the individual i is with the higher risk of failure,
minimizing L2 is equivalent to enlarge the difference
between the risk of i and j up to larger or equals than γ .

2) If the difference between the outputs of a tuple in � is
larger or equals than γ , this tuple of individuals will not
have any effects on the learning objective term L2.

This mechanism can effectively overcome overfitting during
training [17].

C. GRADIENT CALCULATION
With the help of the high-performance, flexible and scal-
able framework XGBoost [8], we implement the proposed
HitBoost method. Unlike the traditional GBM, the XGBoost
requires to derive the first- and second-order gradient of the
customized learning objective function w.r.t. the predicted
value ŷ, while the traditional GBM does not require the
derivation of second-order gradient. Here, we directly give
the result of gradient derivation in the manner of theorem.
Due to limited space, the proofs of the theorems are given in
the supplementary materials.

1) OBJECTIVE FUNCTION L1
The theorems for gradients of the objective function L1 are
given as follows.
Theorem 1: For the individual k with the observed indicator

variable δk and time variable Tk , the first-order gradient of L1
w.r.t. ŷkt is

∂L1
∂ ŷkt
=


I (t = T k) ·

−1

ŷkt
, δk = 1

I (t ≤ Tk) ·
1

1− F̂(k,T k )
, δk = 0

Theorem 2: For the individual k with the observed indicator
variable δk and time variable Tk , the second-order gradient of

L1 w.r.t. ŷkt is

∂2L1
∂ ŷkt
=


I (t = T k) ·

1

(ŷkt )
2 , δk = 1

I (t ≤ Tk) ·
1[

1− F̂(k,Tk )
]2 , δk = 0

2) OBJECTIVE FUNCTION L2
We first introduce some related symbolic conventions. Let us
define two disjoint subsets related to individual k as

�1 = {(k, i)|δk = 1,Tk < Ti}

and

�2 = {(i, k)|δi = 1,Ti < Tk}

which means that the risk with event occurrence of the indi-
vidual k is higher or lower than the individual i. Then we take
the denominator and numerator of L2 as α and β, respectively.

α =
∑

(i,j)∈�
wi,j

β =
∑

(i,j)∈�
wi,j · φ[F̂ (i,Ti) , F̂ (j,Ti)] (14)

Theorems for gradients of the denominator α and numerator
β in the objective function L2 can be obtained as follows.
Theorem 3: For the individual k with the observed indicator

variable δk and time variable Tk , the first-order gradient of α
w.r.t. ŷkt is

∂α

∂ ŷkt
=α

′

=


I (t ≤ Tk) ∗

∑
i:Ti>Tk

(−1)+
∑

i:δi=1,Ti<Tk

I(t ≤ Ti), δk=1∑
i:δi=1,Ti<Tk

I(t ≤ Ti), δk=0

and the first-order gradients of β w.r.t ŷkt is

∂β

∂ ŷkt
= β

′

=


∂β

∂ ŷk
|�1 +

∂β

∂ ŷk
|�2 , δk = 1

∂β

∂ ŷk
|�2 , δk = 0

where

∂β

∂ ŷkt
|�1 = I (t ≤ Tk)

·

∑
(k,i)∈�1

I
(
−wk,i<γ

)
· (wk,i + γ )

n−1

·
[
− (n+ 1) · wk,i − γ

]
∂β

∂ ŷkt
|�2 =

∑
(i,k)∈�2

I (t ≤ Ti) · I
(
−wi,k<γ

)
· (wi,k + γ )n−1

·
[
γ + (n+ 1) · wi,k

]
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Theorem 4: For the individual k with the observed indicator
variable δk and time variable Tk , the second-order gradient
of α w.r.t. ŷkt is

∂2α

∂ ŷkt
= α

′′

= 0

And the second-order gradient of β w.r.t ŷkt is

∂2β

∂ ŷkt
= β

′′

=


∂2β

∂ ŷk
|�1 +

∂2β

∂ ŷk
|�2 , δk = 1

∂2β

∂ ŷk
|�2 , δk = 0

where

∂2β

∂ ŷkt
|�1 = I (t ≤ Tk) ·

∑
(k,i)∈�1

I
(
−wk,i<γ

)
·

{
(n+ 1) ·

(
wk,i + γ

)n−1
− (n− 1)

·
(
wk,i + γ

)n−2
·
[
− (n+ 1) · wk,i − γ

]}
∂2β

∂ ŷkt
|�2 =

∑
(i,k)∈�2

I (t ≤ Ti) · I
(
−wi,k<γ

)
·

{
(n+ 1) ·

(
wi,k + γ

)n−1
+ (n− 1)

·
(
wi,k + γ

)n−2
·
[
γ + (n+ 1) · wi,k

]}
3) OBJECTIVE FUNCTION L
According to Theorems 1, 2, 3 and 4, given

L = L1 + θ · L2 = L1 + θ · β/α

we can easily get the gradient of objective function L w.r.t. ŷkt
using the chain rule as follows.

∂L

∂ ŷkt
=
∂L1
∂ ŷkt
+ θ · ω(α, β)

where ω (α, β) = β
′
·α−β·α

′

α2
, and

∂2L

∂ ŷkt
=
∂2L1
∂ ŷkt
+ θ · τ (α, β)

where τ (α, β) =

(
β
′′
·α−β·α

′′
)
·α−2α

′
·(β
′
·α−β·α

′
)

α3
.

We apply vectorization techniques in the implementation
of gradient computations, which significantly reduces the
running time. The source codes of HitBoost can refer to
https://github.com/liupei101/HitBoost.

IV. RESULTS
We compare the proposed method with classical survival
analysis methods using four public survival datasets and
apply the HitBoost model to evaluate the feature importance.
Furthermore, case studies are conducted to intuitively com-
pare the HitBoost with classical survival analysis methods in
the estimation of hazard functions.

A. DATASETS
Four real-world clinical datasets for experiments are
described in Table 1. Throughout the experiments, we take
30 days as 1 month as the basic time unit.

TABLE 1. Description of dataset statistics.

1) WHAS
The Worcester Heart Attack Study (WHAS) [18] studies
the survival of acute myocardial infraction (MI). It consists
of 1,638 samples and 5 features: age, gender, body-mass-
index (bmi), left heart failure complications (chf), and order
of MI (miord).

A total of 42.12% patients died during the study. The
minimum, median and maximum survival time of patients
is 1, 40 and 67 months, respectively.

2) SUPPORT
The Study to Understand Prognoses Preferences Outcomes
and Risks of Treatment (SUPPORT) [19] researches the sur-
vival of seriously ill hospitalized adults on a large scale.
It consists of 9,105 samples and 14 features: age, sex,
race, number of comorbidities (comorb), presence of dia-
betes (diabts), presence of dementia (dmt), presence of can-
cer (cancer), mean arterial blood pressure (m_abp), heart
rate (hrt), respiration rate (rsprt), temperature (temp), white
blood cell count (cntwbc), serum’s sodium (srmsd), and
serum’s creatinine (srmct).

After excluding patients with missing features, a total
of 8,873 samples with an event ratio of 68.03% are eligi-
ble. The minimum, median and maximum survival time of
patients is 1, 8 and 68 months, respectively.

3) METABRIC
The Molecular Taxonomy of Breast Cancer International
Consortium (METABRIC) [20] investigates the effect of gene
and protein expression profiles on breast cancer survival, and
help physicians design better treatment recommendations.
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After removing patients with incomplete information from a
total of 1,980 patients, the dataset consists of 1,903 patients
with an event ratio of 57.96%.

As done in the reference [10], we prepare the same
9 features: MKI67, EGFR, PGR, ERBB2, hormone treat-
ment (hormn), radiotherapy (radiot), chemotherapy (chemot),
ER-positive (ER), and age at diagnosis (age). The minimum,
median and maximum survival time of patients is 1, 115 and
356 months, respectively.

4) ROTT2
The Rotterdam Tumor Bank (ROTT2) [21] uses patients’
pathology and treatment information to study breast cancer.
It contains follow-up data of 2,982 women with breast cancer
who have gone through breast surgery, 42.66% of which
occurred death.

The clinical features in ROTT2 are: age, menopausal status
(meno), tumor size (size), tumor grade (grade), the number
of positive lymph nodes (nodes), pr, er, hormonal therapy
(hormon), chemotheraphy indicator (chemo). The minimum,
median and maximum survival time of patients is 2, 87 and
232 months, respectively.

To train and test models, we split each dataset into a
training set and a test set by 8:2. We apply statistical methods
to test significant difference of data distribution and survival
state between training and test sets. Continuous variables are
tested by KS-test while categorical variables are tested by
chi2-test. As shown in Table 2, there is no significant differ-
ence between the training and test set in data distribution and
survival state. The P-value is given by log-rank test [22] that
tests the difference of survival state between two populations.

TABLE 2. Statistics of training and test sets.

B. PERFORMANCE
We evaluate the predictive performance of HitBoost on four
datasets, and compare it with the classical survival analysis
methods, such as methods assuming the hazard ratio (CoxPH
and CoxBoost), methods taking the hazard function as a
form-fixed stochastic process (ThresReg), and the popular
Random Survival Forest (RSF).
(1) CoxPH [35], a traditional Cox proportional hazard

model as introduced in Section II, takes the hazard ratio
as a time-independent constant.

(2) CoxBoost [23], a variant of Cox using boosting method
to optimize coefficients.

TABLE 3. Models hyper-parameters.

(3) ThresReg [24], a traditional FHT model as introduced
in Section II, assumes that the hazard function is a
Wiener process.

(4) RSF [25], a popular and powerful survival analysis
method derived from Random Forest, estimates the
hazard function without any prior assumptions.

The training and test sets are used to fit and evaluate
the models, respectively. The hyper-parameters of models
are tuned via 5-fold cross validation and bayesian hyper-
parameters optimization [33] on the training sets. As a result,
the final tuned hyper-parameters are shown in Table 3.
As mentioned before, hyper-parameters of HitBoost come
from the custom objective function and XGBoost framework.
Since both of CoxPH and ThresReg are essentially linear
models, so they don’t have any extra hyper-parameters to be
tuned. By default, the number of boosting (or iteration) round
of RSF andCoxBoost is set to 100.More related details can be
seen in the corresponding software packages [23]–[25], [35].

We take Time-Dependent C-index (td-CI) [26] as a metric
to evaluate the performance of survival predictivemodels. For
observing the stability of HitBoost model, the learning curve
on each dataset is shown in Fig. 3.

FIGURE 3. Learning curves of HitBoost model.

As shown in Fig. 3, all four models tend to steady in the
end, which demonstrates the stability of HitBoost. Among
tuned hyper-parameters given in Table 3, only nrounds is reset
to 150 when models run on each dataset. The hollow dot
in Fig. 3 indicates the actual number of iteration obtained
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by hyper-parameters tuning. Every point on curves represents
the number of iteration and the corresponding model perfor-
mance on test sets.

TABLE 4. Performance (td-CI).

After tuning hyper-parameters, we evaluate the model per-
formance on independent test sets. As shown in Table 4,
HitBoost outperforms all other four methods. For exam-
ple, HitBoost has better prediction performance with td-CI
0.929190, increased by about 1.7% over RSF in the WHAS
dataset. However, RSF has the best performance with td-CI
0.913789 among the four traditional methods. Similarly,
td-CI has also been increased by about 2.7% and 2.8% in
the SUPPORT and METABRIC, respectively. Only in the
ROTT2 dataset, the performance improvement with about 1%
is not significant.

It demonstrates that the HitBoost has better prediction
performance and more powerful risk discrimination than the
classical survival analysis methods. Since the HitBoost no
longer makes any assumptions about the hazard function
but exploits the higher-performance Multi-Output GBDT to
directly learn the latent representation between static covari-
ates and hazard functions, it eventually can be applied in
various scenarios.

C. FACTOR ANALYSIS
Besides the superior prediction performance, the HitBoost
also can be taken as a tool to find important factors for
cause-specific failure in survival analysis, which is indeed
essential in clinical research as we have introduced in
Section I. But for those deep learning-based survival analysis
methods, such as the DeepHit and DRSA, factor analysis
is unable to be reached, although they can capture more
complex functions. As demonstrated in some pieces of lit-
erature and research [28]–[31], Random Forest can be taken
as an effective means to extract and rank features in many
areas. Therefore, taking Random Forest as a reference, in this
sectionwewill inspect theHitBoost from the aspect of feature
importance evaluation.

The HitBoost and RSF are all used to evaluate the feature
importance in each dataset. Themodels are built to fit with the
training set, followed by measuring the importance scores of
features in each dataset. We repeat this procedure for 20 times
and obtain the results in Fig. 4.

As illustrated in Fig. 4, in the WHAS, METABRIC and
ROTT2 dataset, the importance scores of top 2 features calcu-
lated by the HitBoost and RSF are the same. In the SUPPORT
dataset, the features except for ‘cancer’ are of similar

FIGURE 4. Depiction of feature importance evaluations given by HitBoost
and RSF on four benchmarks. (a) WHAS. (b) SUPPORT. (c) METABRIC.
(d) ROTT2.

importance score. It demonstrates that the HitBoost and
RSF are basically consistent in finding important features,
although there are minor differences in the quantifiedmetrics.
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FIGURE 5. Survival curves of the cases randomly selected from datasets. (a) WHAS. (b) SUPPORT. (c) METABRIC. (d) ROTT2.

Therefore, the HitBoost is capable of finding the important
factors for cause-specific failure in real-world survival anal-
ysis just like RSF.

D. CASE STUDIES
We arbitrarily choose one sample in the test set of each dataset
and apply the predictive models to estimate the survival
function of them. All the estimated survival functions are
visualized in Fig. 5.

As shown in Fig. 5, the curves of survival function esti-
mated by the CoxPH, CoxBoost and ThresReg are relatively
smooth, because they all follow the assumption that the indi-
vidual hazard function is with an explicit and fixed math-
ematical expression. For samples in the WHAS (Fig. 5a),
SUPPORT (Fig. 5b) and ROTT2 (Fig. 5d), all of them occur
the event at the corresponding observed time, i.e. E = 1.
In comparison to the CoxPH, CoxBoost, ThresReg and RSF
models, the curve of survival function estimated by the Hit-
Boost model shows a sharp decline at the observed time that
is marked by the vertical dashed line in Fig. 5, which implies
there could be a higher risk at the observed time point. More-
over, the estimated survival rate of the HitBoost model at the

observed time is lower than all other four models, which is
consistent with the actual data. For the sample inMETABRIC
(Fig. 5c), it does not occur the event in the corresponding
observed time, i.e. E= 0 or right-censored. Unlike the under-
estimated survival rate of all other four models, the survival
rate estimated by the HitBoost model is more in line with the
actual situation, i.e. the right-censored patient should have a
greater probability of surviving over the observed time.

Case studies intuitively demonstrate that whether it is
for patients with event occurrence or right-censored, the
HitBoost survival predictive model is more accurate in esti-
mating the probability density function of FHT. Therefore,
the HitBoost has a strong power of risk discrimination.

V. CONCLUSION
This paper proposes the HitBoost method that exploits
multi-output gradient boosting decision tree to predict the
probability density function of the first hitting time. It over-
comes the constraint of assuming the hazard function as
the potential stochastic process to predict the future survival
status and solves the problem of poor factor interpretation
in practical applications. Instead of making any assumptions
about the underlying stochastic process, the HitBoost uses
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the multi-output gradient boosting decision tree to implic-
itly learn the latent representation between covariates and
the underlying stochastic process. That effectively improves
the model’s prediction performance. Moreover, the proposed
method can be utilized to find the important factors for
cause-specific failure, which is unreachable for survival pre-
dictive models built by complex deep learning methods.
Therefore, the HitBoost can provide an important way for
survival analysis, and it has a wider range of application
scenarios and greater practicality.
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