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ABSTRACT Satellite image semantic segmentation, including extracting road, detecting building, and
identifying land cover types, is essential for sustainable development, agriculture, forestry, urban planning,
and climate change research. Nevertheless, it is still unclear how to develop a refined semantic segmentation
model in an efficient and elegant way. In this paper, we propose attention dilation-LinkNet (AD-LinkNet)
neural network that adopts encoder–decoder structure, serial–parallel combination dilated convolution,
channel-wise attention mechanism, and pretrained encoder for semantic segmentation. Serial–parallel
combination dilated convolution enlarges receptive field as well as assemble multi-scale features for multi-
scale objects, such as long-span road and small pool. The channel-wise attention mechanism is designed to
advantage the context information in the satellite image. The experimental results on road extraction
and surface classification data sets prove that the AD-LinkNet shows a significant effect on improving
the segmentation accuracy. We defeated the D-Linknet algorithm that won the first place in the CVPR
2018 DeepGlobe road extraction competition.

INDEX TERMS Satellite image, semantic segmentation, AD-LinkNet, dilated convolution, channel-wise
attention.

I. INTRODUCTION
Satellite image semantic segmentation is a pixel-wise clas-
sification task for a satellite image. Satellite images are
gaining attention from the community for map composi-
tion, population analysis, effective precision agriculture, and
autonomous driving tasks because satellite imagery con-
tains more structured and uniform data compared to tradi-
tional images [1]. Understanding satellite image including
extracting road, detecting building, and identifying land cover
types are essential for sustainable development, agriculture,
forestry, urban planning and climate change research. Road
extraction, building detection and land cover classification
are based on semantic segmentation task.

Image semantic segmentation has gained remarkable
improvement with the development of fully convolutional
neural networks. compared with the general semantic seg-
mentation tasks, the challenges of high-resolution sub-meter
satellite image semantic segmentation are to produce finer
predictions for every pixel in the large-scale image. There
are strong differences between satellite imagery and every-
day pictures, such as PASCAL VOC2012 [2] and Microsoft
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COCO [3]. Satellite imagery assumes a bird’s view acquisi-
tion, thus objects lie within a flat 2D plane and every pixel
in satellite images has a semantic meaning. However, the
PASCAL VOC2012 dataset are assume a human-level point
of view and mainly comprised of meaningless background
with a few foreground objects of interest [4].

LinkNet [5] is an efficient semantic segmentation neural
network which takes the advantages of skip connections,
residual block [6] and encoder-decoder architecture. The
original LinkNet uses ResNet18 as its encoder, which is a
pretty light but outperforming network. LinkNet has shown
high precision on several benchmarks [7] and it runs pretty
fast. D-LinkNet uses LinkNet [8] with pretrained encoder as
its backbone and has additional dilated convolution layers in
the central part.

Satellite image contains multi-scale objects: main road
stretching across a whole image (see Figure 1 (a), small
farmland inlaying an urban (see Figure 1 (b). Dilated convo-
lution is a useful kernel to adjust receptive fields of feature
points without decreasing the resolution of feature maps.
It has two types, cascade mode like [9] and parallel mode
like [10]. We add shortcuts to the series dilated convolution,
which makes the series structure expand into a series-parallel
structure.
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FIGURE 1. Example diagram of task introduction.

Satellite image contains rich context information. For
example, ‘‘roads’’ generally cannot directly pass through
‘‘buildings’’, We proposed AD-LinkNet to leverage context
information to benefit satellite image semantic segmentation
task by introducing channel-wise attention [11].

The size of annotated satellite image datasets are small.
Transfer learning is a useful method that can directly improve
network performance in most situation [12], especially
when the training data is limited. In semantic segmentation
field, initializing encoders with ImageNet [13] pretrained
weights has shown promising results [10], [14]. We initi-
alize AD-LinkNet encoder with ImageNet pretrained
weights.

Data augmentation is essential to prevent overfitting.
We augment datasets in an ambitious way, including horizon-
tal flip, vertical flip, diagonal flip, ambitious colour jittering,
image shifting, scaling.

We used the road extraction and land cover classification
datasets of CVPR2018 DeepGlobe Challenge to examine
the effect of AD-LinkNet, and won the 1st places in the
road extraction task, and got the top ten places in the land
classification task. The main contributions of our work are as
follows:

• We analyze the effectiveness of several properties for
satellite image semantic segmentation, and reveal how
to leverage them to benefit the satellite image semantic
segmentation task.

• We design a simple yet effective AD-LinkNet structure
by leveraging the useful properties to conduct satellite
image semantic segmentation in a simple and efficient
way.

• Our AD-LinkNet brings a significant performance boost
to satellite image semantic segmentation: road extrac-
tion task, outperforming the current state-of-the-art
method.

• Our code is available, which can serve as a solid base-
line for the future research in satellite image semantic
segmentation such as road extraction and land cover
classification.

II. BACKGROUND
In this section wewill introduce the state of the art approaches
for road extraction and land classification tasks. Meanwhile,
we will introduce the background knowledge of important
modules in AD-LinkNet, including the dilated convolution
and Attention mechanism. Finally, this section will introduce
the knowledge of our universal approaches to achieving great
results in the competition, which include transfer learning and
data augmentation.

A. SEMANTIC SEGMENTATION OF SATELLITE IMAGE
Satellite image segmentation, used to locate objects and
boundaries in images (straight lines, curves, etc.), refers to
the division of a digital image into multiple pixel sets. More
precisely, image segmentation is the process of assigning a
label to each pixel in an image, same-labeled pixels with same
characteristic [15].

There is a long tradition of using computer vision tech-
niques for satellite image understanding [16], [17]. Histori-
cally, satellite imagery was typically lower-resolution, from a
strictly top- down view, and with a diversity of spectral bands.
The segmentation method based on deep learning emerged
in recent years. Since the fully convolutional network (FCN)
[18] has shown numerous improvements in semantic segmen-
tation, many researchers [19]–[21] have made efforts based
on the FCN. The network model designed in this paper are
based on the FCN. And then, Unet [22] uses Transposed-
conv [23] as its upsampling structure on the basis of FCN,
connects the features of the network Encoder part to the
Decoder part, and combines low-lever information with high-
level information (Such an hourglass & shortcut connection
structure is called U-shape). Volpi and Tuia [24] also pro-
posed to use an subsample-upsample architecture in satellite
semantic segmentation task, which like U-shape structure.
This paper selects Unet as one of the baselines. At the same
time, LinkNet [5] with ResNet [6] as Backbone is also one of
the baselines for this project. LinkNet also uses the U-shape
structure and replaces the convolution structure of each level
of its Encoder and Decoder with a res-block. This network
has a rich shortcut, which is more conducive to transmitting
shallow information to deeper layers of the network. And we
have used LinkNet34 as the basic module of our previous
network model(D-LinkNet34) [8].

B. DILATED CONVOLUTION
The dilated convolution can be used as a general convolution
for weighting operation, and at the same time has the function
of pooling layers to multiply the receptive field. As the gen-
eral convolution layers, dilated convolutions can be stacked
layer by layer to form a series structure. The dilated conv
is to add the ‘‘dilated rate’’ to the last convolution layers of
the pre-trained classification network when performing the
transfer learning. Double the dilated rate of the convolution
for each pooling layer removed and maintain the same dilated
rate under the same feature resolution. OverFeat [25] first
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applied dilated convolution in deep learning to deal with
object localization problem. Deeplab [10] first named this
convolution structure and converted the series structure into
a parallel structure. Dilated ConvNet [9] described in detail
the series convolution and how it achieves the exponential
expansion of the receptive field. Dilated ConvNet [9] and
DRN [26] used the dilated convolution to amplify the network
receptive field. This kind of dilated convolutions amplify the
original classification feature map by multiple times, which
constitutes a Large-scale feature maps with rich spatial infor-
mation and suitable for semantic segmentation.

C. ATTENTION MECHANISM
The Attention mechanism has a great improvement on the
sequence learning task. In the encoder-decoder framework,
the source data sequence is weighted by adding the Attention
mechanism in the encoder. Or the Attention mechanism is
introduced at the decoder, and the weighted change of the
target data can effectively improve the system performance
of the sequence pair sequence in the natural mode [27]. There
is a problem with the LSTM/RNN model of the traditional
encoder-decoder structure: it is encoded into a fixed-length
vector representation regardless of the input length, which
makes the model poorly learn for long input sequences. The
Attention mechanism overcomes the above problem. The
principle focus on the relevant corresponding information
selectively in the input when the model is outputting.

Soft attention developed in recent work [19], [28] can
be trained end-to-end for convolutional network. Attention
to scale [19] uses soft attention as a scale selection mech-
anism and gets state-of-the-art results in image segmen-
tation task [18], [29]. In the semantic segmentation task,
there is a problem with the convolutional neural network
model: for large-scale image as input, the model is difficult
to learn all the information. Especially for satellite images,
segmentation targets often exist as small targets, and it is
difficult for neural network to make accurate segmentation
training. However, the Attention mechanism can process
large-scale images before the model is predicted [27], mak-
ing models better suited for large-scale image segmentation
tasks.

D. TRANSFER LEARNING AND DATA AUGMENTATION
In the field of image semantic segmentation, the pre-
trained data can come from image semantic segmentation
data or image classification data. Be similar to the image
classification task, image semantic segmentation also has the
large and general object segmentation data set. These data sets
can be used as a pre-trained semantic segmentation network,
and then we can fine-tune the network on other data sets.
However, the data set of image semantic segmentation often
labels fewer types of objects (for example, COCO initially
only labels 80 types of semantic labels). In this case, some
methods choose to use a more extensive image classification
dataset (ImageNet, etc.) to pre-train the network and then tune

it on a large-scale semantic segmentation dataset, at last, final
tuning on the target’s segmented data set [30].

Data augmentation is very important for training deep
networks. Evenwith large data sets, the use of reasonable data
augmentation methods can still improve the performance of
the network [6]. In the field of image semantic segmentation,
the scarcity of data is more apparent. On some insufficient
data sets, it is often necessary to use more ‘‘radical’’ data
augmentation methods. The data augmentation methods are
all performed during network training. In fact, in some sce-
narios where not require high real-time effect, some data
augmentation methods used in training can be applied to the
test data, which also lead to better test results.

E. DEEP UNET AND LINKNET
Unet and LinkNet are the basic modules of the baseline
and AD-LinkNet for our experiment. So we introduce these
two models in this section. This paper does not directly
adopt the original Unet networkmodel, butmakes appropriate
improvements to the original Unet, andmakes it more suitable
for the experimental requirements of the project. Unet is a
segmentation network for medical tissue cell images. The
central part has a small receptive field of 140*140 per feature
point, which is not suitable for other tasks, and the input
image size must be fixed at 572*572. However, the data set
for the road extraction task is 1024*1024. The improved Unet
differs from the original Unet in terms of the basic structure.
The improved Deep Unet increases the Padding layer and the
BatchNorm (BN) layer. The Padding layer allows the network
to be maintained during convolution, and the BatchNorm
layer allows the network to capture the distribution of the
data set easily, which promotes the convergence of network.
The basic structure of the original Conv-ReLU is extended
to the structure of Padding-Conv-BatchNorm-ReLu. In this
paper, we expand the four subsampling processes of the
original Unet to seven, which increases the network depth
and greatly increases the receptive field of the central network
(to 1148*1148), making the network suitable for a variety of
tasks.

LinkNet [5] is a variant of U-shape, which differs from
Unet in two main points. Firstly, it replaces Unet’s ordinary
convolution structure with residual module (res-block). Sec-
ondly, it transformsUnet’s deep and shallow feature synthesis
method from ‘‘stacking’’ to ‘‘adding’’. Original LinkNet,
which is one of the lightest ResNet, uses ResNet18 as its
Encoder. Such LinkNet18 can guarantee both high accuracy
and forward propagation efficiency of the network. In prac-
tice, different types of LinkNet can be obtained by transform-
ing the Encoder part of LinkNet into ResNet with different
depths and different representations. Therefore, the opera-
tional accuracy and efficiency can be weighed by adjust-
ing the number of layers of Encoder. In the meantime,
due to the fact that the Encoder of LinkNet maintains the
same structure as ResNet, the pre-trained ResNet can be
directly used as the Encoder of LinkNet. This kind of transfer
learning makes LinkNet converge faster and has stronger
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generalization ability. With five subsampling processes
(four pooling and one step convolution), LinkNet’s central
characteristic resolution is higher than that of deep Unet.

III. AD-LINKNET (ATTENTION DILATION - LINKNET)
From the perspective of network structure evolution, accord-
ing to the characteristics of image semantic segmentation,
we propose a new refined segmentation network step by
step, and finally propose AD-LinkNet which integrates the
advantages of multiple networks and is based on our previous
D-LinkNet34 [8]. Based on the inheritance of D-LinkNet’s
outstanding features, the AD-LinkNet adds a Series-
parallel combination dilated convolution and an Attention
mechanism in the network to form a refined semantic seg-
mentation network. This article discusses AD-LinkNet’s
mechanism and framework, then compares its performance
with D-LinkNet34 in satellite image processing task.

A. SERIES-PARALLEL COMBINATION DILATED
CONVOLUTION
About the choice of dilated convolution, the original author of
ResNet believes that, the validity of the residual structure(res-
block) is derived from the ‘‘identity mapping’’ of the residual
structure(res-block), which benefits the back-propagation of
the network gradient as well as solves the gradient dissipation
problem effectively [31]. However Sergey et al. proposed the
wide residual network [32], stating that the residual network
does not necessarily need to be so deep, while some networks
with fewer layers can even surpass the performance of the
deep residual network when using the residual structure(res-
block). And Veit et al. [33] claimed that ‘‘identity map-
ping’’ may not be the reason for ResNet to improve network
performance, it is due to the shortcut connection. Recently,
Wu et al. [34] designed a model of ‘‘residual module
selection’’, which can choose different residual modules
(res-block) to pass data according to different input data.

In this paper, we use the characteristics of ‘‘parallel
expansion’’ of the residual network, and use the short-cut
connection to make the dilated convolution also form a struc-
ture which is series-parallel combination. This structure has
the function of connecting the dilated convolution expansion
network receptive field series, and also connecting the dilated
convolution comprehensive multi-scale semantics parallel.
This structure is the most crucial part in AD-LinkNet for
network performance enhancement. Next, we will describe a
series-parallel combination dilated convolution and reveal the
advantages of this structure for feature fusion and receptive
field augmentation.

A parallel dilated convolution structure allows the feature
map to use a variety of convolutional structures with different
dilated ratios, and then fuses the information of different
branches by ‘‘stacking’’ to achieve multi-scale feature fusion.
However, the parallel structure has the same depth for each
branch, and each of them has only a single convolution layer.
There is a certain similarity between each branches, so the
diversity of features is lacked.

Inspired by the ‘‘extension of the res-block to parallel’’,
we add a short-cut connection in the series dilated convolu-
tions to form a dilated convolution of the res-block, which can
be decomposed into the form of multiple branches. We places
this structure in the central part of LinkNet, and proposes
AD-LinkNet for refined segmentation tasks.

B. CHANNEL-WISE ATTENTION
We used SE-Net and SE-Loss in the model. For SE-Net [35],
this global feature is used to make channel-wise attention
to other branches of the network. This Attention mecha-
nism enhances the usage of the effective feature layer by
weighting the ‘‘importance’’ of different feature layers. For
SE-Loss [36], the classification information is also incor-
porated into this ‘‘one-dimensional vector’’ while using the
attention information. Such a global pooling plus 1*1 con-
volution structure can generate the channel-wise Attention
mechanism and introduce global information. Two branches
are added to the central part to weight the pre-fusion fea-
tures and the fusion features to form the initial structure
of AD-LinkNet.

C. MODULES OF AD-LINKNET
As shown in Figure 2, part A of AD-LinkNet is the Encoder
of the network, which is based on pre-trained ResNet. ResNet
itself is a neural network with particularly strong representa-
tion ability. Using ImageNet pre-trained ResNet as initializa-
tion can enhance the representation and generalization ability
of AD-LinkNet, and can greatly improve the convergence
speed of the network during training.

Part B is the central part of the network. This part uses
the dilated convolution of the short-cut connection to form a
series-parallel combination structure. And the channel-wise
Attention mechanism is added before and after the dilated
convolution.

The unfolded structure is shown in Figure 3. The central
of part B is divided into five branches, each of which has
a different depth and a different receptive field size. From
top to bottom, the network’s receptive field size for the input
feature map is 31, 15, 7, 3, 1, and the depth is 4, 3, 2, 1, 0.
If the depth is 0, it means that it is the identity map. This
structure greatly enhances the receptive field of the central
part of the network while maintaining the spatial resolution
of the feature. At the same time, the features of different
depths and different breadths are merged, so that the result-
ing feature map has sufficient receptive field and multi-
dimensional semantic information. Finally, the feature scale
is kept unchanged, and there is no loss of relative information
in space.

We also add channel-wise before and after the central
dilated convolution. Although channel-wise Attention mech-
anism can better synthesize all layers features, but this is
not the main purpose of AD-LinkNet. AD-LinkNet’s main
purpose is to lead out branches from the network central part,
so that the network can ‘‘decouple’’ the abstract information
of the image, and the network can understand the meaning
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FIGURE 2. The structure diagram of AD-LinkNet.

FIGURE 3. Schematic diagram of the AD-LinkNet central part.

of the image more comprehensively. In the central part of
AD-LinkNet, several supervised branches are introduced to
form a multi-task model.

As shown in Figure 3, AD-LinkNet adds channel-wise
Attention mechanism and multi-task joint training before
and after multi-layer feature aggregation. Different tasks can
use different one-dimensional vectors lengths. Adding the
module before and after feature aggregation allows different
semantic layers of the network to have decoupled abstract
logic information. This kind of branch structure is very
suitable for weak supervised learning and semi-supervised
learning. Weak supervised learning only needs to add weak
labels as SE-Loss in training; unlabeled data can participate in
training through GAN or Auto Encoder (AE). The branch of
AD-LinkNet can be used as a discriminator for theGAN, or as
a Decoder for the encoder.

Part C is the Decoder part of the network. This part
remains consistent with LinkNet. The purple arrow part of
Figure 2 uses the bottleneck structure of the residual net-
work [36]. This structure reduces the overall computational
load by introducing a 1*1 convolution kernel [37], and can
increases the number of activation functions in the network
and improves the network’s representation ability. Part C uses
transposed convolution for up-sampling, and up-sample the
feature map by 32 times of the side length to restore the
semantic label map with the same scale as the original image.

D. TRAINING
In this paper, three sets of satellite data are augmented using
horizontal, vertical and diagonal folding methods. A total
of 8 times of training data was obtained after augmenting
compared to the original amount of data. The test image is
deformed differently and then through the network, the output
semantic map is restored to the original shape, and then they
are combined. This method of augmenting does not take
up training time, but it doubles the test time based on the
augmenting data.

Since the satellite image has ‘‘isotropy’’, it has no so-
called up, down, left and right points, and the data can be
efficiently augmented by rotating the image. At the same
time, since the satellite image is taken in a bird’s-eye view
state, most objects are stretched, and the semantics can be
kept unchanged. Satellite images will have some light and
dark changes due to different shooting time, and the land
coverage of each location has a large difference. Therefore,
we try to use a more radical color augmentation method,
as shown in Figure 4. We change the hue of the original
image from −30 to +30, the saturation of the original image
from −5 to +5, and the value of the original image from
−15 to +30. The first line of the figure is the change in hue,
the second line is the change in saturation, and the third line is
the change in value.We apply this color augmentationmethod
to the training of multiple models in road extraction tasks and
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FIGURE 4. Example of color augmentation of satellite imagery
(the original image at the center).

land classification, and finally compare their test results. The
method of color augmentation is verified to be universal for
data augmentation of satellite images.

For the choice of loss function, the road occupy a small
proportion of the overall picture, but the background have a
large percentage in the road extraction dataset. For the land
classification dataset, the proportions of the segmentation
target and the background are also unbalanced. So we choose
to use Dice loss instead of IoU loss.

IV. EVALUATION
In this section we first introduce three data sets and imple-
mentation details. Next, we performed an ablation study
on the data augmentation and various methods used in the
experiment. Based on the data augmentation and the spec-
ified loss function, we compare the different depth models
of AD-LinkNet in many aspects. At the same time, we also
compare the segmentation effects of AD-LinkNet and other
models on the road extraction dataset, and verify the transfer
learning ability and universality of AD-LinkNet on the land
classification dataset.

A. DATASETS AND METRICS
This paper uses three satellite semantic segmentation
datasets, namely DeepGlobe’s road extraction dataset [1],
DeepGlobe’s land classification dataset [1], and Inner
Mongolia’s land classification dataset.

The DeepGlobe road extraction dataset is a 2-tiles dataset
from Thailand, India, and Indonesia. The road extraction
dataset contains more scenes and complex road conditions.
The task of this data set is to extract hardened roads from
satellite images. The data set contains 6226 pairs of training
data, 1243 verified images, and 1101 test images. All image

sizes are 1024*1024, and the ground resolution of the image
pixels is 0.5m/pixel.

The DeepGlobe land classification dataset is a 7-tiles
dataset that includes: urban land, agricultural land, pasture,
woodland, water, barren land, and unknown land (including
clouds and others) which contains 1146 satellite images with
2448*2448 pixels. It contains 803 pairs of training data,
171 verification images, and 1101 test images. All images
contain RGB data with the ground resolution of the image
pixels is 0.5m/pixel. Roads and bridges are not annotated in
the training set because they are already reflected in the road
extraction challenge.

The Inner Mongolia land classification dataset is a 7-tiles
dataset from the Jilin No. 1 satellite. The original resolution
of the satellite is 27338*24631 with total of 12 pictures, and
the ground resolution of the image pixels is 0.7m/pixel. In this
paper, the original image is reduced to 7k resolution test chart
with resolution of 1024*1024. We use this dataset to test the
trained model and visually compare the test results with the
DeepGlobe land classification dataset to explore the impact
of different satellite datasets on the model’s performance.

For theMetric: In the road extraction task, we use the pixel-
wise Intersection over Union (IoU) score as our evaluation
metric for each image, defined as Eqn. (1) [1].

IoUi =
TPi

TPi + FPi + FNi
(1)

And TPi is the number of pixels, which are correctly
predicted as road pixels. FPi is the number of pixels, which
are incorrectly predicted as road pixels. FNi is the number
of non-road pixels, which incorrectly predicted as image i.
We assume that there are n images, the final score is defined
as the average IoU among all images (Eqn. (2)).

mIoU =
1
n

n∑
i=1

IoUi (2)

In land classification task, we also use the pixel-wise Inter-
section over Union (IoU) score as our evaluation metric [1].
It was defined slightly differently for each class, as there are
multiple categories (Eqn. 3). Assuming there are n images,
the formulation is defined as,

IoUj =

∑n
i=1 TPij∑n

i=1(TPij + FPij + FNij)
(3)

And TPij is the number of pixels in image i, which are
correctly predicted as class j. FPij is the number of pixels in
image i, which are incorrectly predicted as class j. FNij is the
number of pixels in image i, which are incorrectly predicted
as any class other than class j. Note that we have an unknown
class that is not active in our evaluation. And the final score
is defined as the average IoU among all classes as in Eqn. (2).

B. IMPLEMENTATION DETAILS
In the road extraction and land classification task. We use
PyTorch as the deep learning framework. All models are
trained on 4 NVIDIA GTX1080 GPUs. This paper mainly do
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TABLE 1. Results on validation set of Ablation study in the DeepGlobe Road Extraction Task.

the experiment of Deep Unet, LinkNet, D-LinkNet [8] and
AD-LinkNet on the DeepGlobe road extraction and Deep-
Globe land classification dataset. At the same time, different
depths of AD-LinkNet are analyzed from various aspects
such as network parameters, training efficiency and network
accuracy. And the AD-LinkNet proposed in this paper is
compared with our previously proposed D-LinkNet34.

In these experiments, the batchsize is set between 2
and 8 according to the network. In the transfer learning,
we modified partial BatchNorm layer [38] of the network
to the InstanceNorm [39]. The stability of the network can
be improved when the input Batchsize is small. And using
Adam and RMSProp as the optimizer, the initial learning rate
is 1e-4, and the network loss function tends to be stable. The
measurement standard is reduced to the one fifth of it. The
baseline’s (Deep-Unet) IoU score was 0.5829 without any
data augmentation.

C. ABLATION STUDY
To study the effects of the individual data augmentation
method and accuracy improvement method, this part shows
an ablation study by systematically adding them one at a time.
For this study, we chose Deep-Unet as the baseline model
and the road extraction dataset as the experimental data set,
the result is shown in Table 1 and Figure 5. At the same
time, the results show that these methods are effective for
improving the accuracy of semantic segmentation.

1) Augmentation at the time of testing (TTA). When
TTA was added to Deep-Unet, the accuracy rate increased
by 0.0347 relative to the baseline model. The IoU score
is 0.6176.

2) Color Augmentation(including deformation augmenta-
tion). After adding TTA and color augmentation on Deep-
Unet, IoULoss was used as a loss function. The accuracy
rate increased by 0.0386 relative to the baseline model. The
IoU score is 0.6215.

3) InverseMask. Retain TTA and color augmentation added
on Deep-Unet. The values of 0 and 1 of the mask are
reversed for model training, and the appropriate model fusion
is attempted. The accuracy rate increased by 0.0423 relative
to the baseline model. The IoU score is 0.6252.

4) Cancel augmentation for tuning. Retain TTA and color
augmentation added on Deep-Unet. At the end of the training.
The color augmentation is removed, retaining only the basic
augmentation method like folding. But such an operation sac-
rifices the generalization ability of the network, allowing the

FIGURE 5. Ablation study of accuracy improvement method.

network to converge more on the training set. The accuracy
rate increased by 0.0449 relative to the baseline model. The
IoU score is 0.6278.

5) Replace the loss function. Retain TTA and color aug-
mentation added on Deep-Unet. Replace the IoULoss loss
function with the DiceLoss loss function. The accuracy rate
increased by 0.0465 relative to the baseline model. The
IoU score is 0.6249.

D. EXPERIMENTAL RESULTS
Through the superposition of the above methods, Deep-Unet
has been able to achieve a fairly high segmentation accu-
racy, but it has some inherent problems. There are many
misidentifications in the segmentation results of Deep-Unet,
for example it recognizes rivers, fields and so on as roads.
From the training loss of Deep-Unet, the final IoU score on
the road extraction training set is 62.94%, which means that
the network has reached a less ideal local optimum. Consider-
ing this problem, the network needs to be able to better grasp
the inherent characteristics of the image during training. The
other three networks in this experiment (LinkNet, D-LinkNet,
and AD-LinkNet) use the transfer learning method to help the
network to be converged. Under the premise of using all the
effective method in section 4.3, and using the road extraction
data set, the segmentation results of Deep-Unet, LinkNet, and
D-LinkNet34 are shown in the Table 2. Meanwhile, in order
to improve the performance of the competition, we tried
different ways of model fusion.

As shown in Table 2, the segmentation result of
LinkNet34 is equivalent to that of Deep-Unet. We quan-
tify the segmentation results of the two and find that the
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TABLE 2. Results on validation set of different models in the DeepGlobe Road Extraction Task.

mIoU value of the segmentation results is 0.785, whichmeans
that there are large differences between the two networks. The
advantage of Deep-Unet is that its larger receptive field can
grasp more global information. The advantage of LinkNet is
that the feature resolution of the network center is relatively
high, and the Encoder part of the network uses pre-trained
ResNet34, which has stronger recognition ability. For our
previous proposed D-LinkNet34, the accuracy of segmenta-
tion result exceeds the segmentation accuracy of the original
model. As shown in last two line of the table, themodel fusion
method is effective for improving the segmentation accuracy
in the competition.

This paper attempts to use multiple depths of ResNet
as AD-LinkNet different pre-training Encoder and different
Decoders, this paper tests various depths of AD-LinkNet
on road extraction datasets, including AD-LinkNet34,
AD-LinkNet50 and AD-LinkNet101. We comprehensively
analyze the performance of each network from the perspec-
tives of accuracy, parameter quantity, and training time.

As can be seen from Table 3, AD-LinkNet34 is a relatively
comprehensive network in terms of overall parameter quan-
tity, training time and accuracy. The most accurate network
is the AD-LinkNet50, but the parameter size is 7 times that
of the D-LinkNet34, the training time is about 4 times, and
the forward prediction time is about 4 times that of the
AD-LinkNet34. AD-LinkNet101 has the highest depth and
maximum parameter, but its performance is not better than
AD-LinkNet34. This is because the data of the 6226 train-
ing data of this data set is not enough to make
AD-LinkNet101 converge completely. In summary, for the
scenario where the number of split semantic labels is limited,
we choose AD-LinkNet50 with shallow depth and highest
precision as the final competition model, and we got the 1st
place in the DeepGlobe road extraction challenge.

In order to verify the performance of the AD-LinkNet net-
work. We use the same data augmentation and loss function
to compare the accuracy of AD-LinkNet and our previously
proposed D-LinkNet34, and the two DeepGlobe data sets of
road extraction and land classification are used to verify the
ability of transfer learning and the universality of practical
application.

As shown in Figure 6, AD-LinkNet improve 0.61% accu-
rate than D-LinkNet34 in road extraction tasks. At the same
time, AD-LinkNet get 0.35% higher than D-LinkNet34 in
the land classification task. It can also be seen that the
AD-LinkNet have better transfer learning ability and appli-
cation universality for satellite semantic segmentation tasks.

FIGURE 6. Segmentation performance of D-LinkNet and AD-LinkNet on
road extraction and land classification datasets.

FIGURE 7. Test results of different models on road extraction tasks.

E. RESULT ANALYSIS
For the task of road extraction, as shown in Figure 7, the first
two lines of the figure show the road connection problem
in LinkNet, and there are several road interruptions in the
segmentation result of LinkNet, while there is no such prob-
lem inDeep-Unet, D-LinkNet, andAD-LinkNet. The last two
lines are examples of Deep-Unet mispredictions. Deep-Unet
is more likely to mistake the road as a background or treat
a non-road like river as a road (the third line and fourth
line, many buildings between roads are not identified).
D-LinkNet50 and AD-LinkNet not only have Deep-Unet’s
large receptive field, but also have LinkNet’s pre-trained
Encoder and high-resolution center feature map, and its
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TABLE 3. Results on validation set of different depth AD-LinkNet in the DeepGlobe Road Extraction Task.

FIGURE 8. D-LinkBrach test results for similar terrain on different satellite
land classification datasets.

unique multi-scale feature fusion, thus avoiding disadvan-
tages of Deep-Unet and LinkNet andmade a better prediction.
Compared to D-LinkNet50, AD-LinkNet is more precise in
handling small routes and can accurately segment branch
routes along the main road (as shown in the fourth line).

For land classification tasks, it is difficult to accurately
segment the forest along with the terrain of the lake (scene1).
Conversely, the terrain associated with the forest and the city
is easier to segment (scene2). Therefore, we select two kinds
of terrain distribution images, and use AD-LinkNet to test the
DeepGlobe land classification dataset and the InnerMongolia
land classification dataset. The test result chart is shown in
Figure 8. The data of two different data sets are derived from
two different satellites. The biggest difference between the
two sets of data is the different original resolution, such as
the ground resolution of the image pixels, and the color and
brightness of the picture. It is not difficult to find that the pixel
resolution (0.5m/pixel) of the DeepGlobe dataset is smaller
than the pixel resolution (0.7m/pixel) of the Inner Mongolia
dataset. At the same time, the Color of the DeepGlobe dataset
is relatively softer and brighter. For first two columns in
Figure 8, AD-LinkNet can make a clear segmentation on
DeepGlobe for the terrain of the forest with the lake. How-
ever, in the Inner Mongolia dataset, it mistakenly predicts the
forest under the shadow as a lake (actually there is no lake
in the image). For last two columns in Figure 8, AD-LinkNet
can segment forests and cities on both the DeepGlobe dataset
and the Inner Mongolia dataset, but the edge processing on
the DeepGlobe dataset is more accurate. As shown in the
fourth image, It mistakenly predicts the edge between urban
and forest as rangeland. So we think that the pixel resolution
of the dataset and the color and brightness of the image have
an impact on the model segmentation. For different data sets,
different model optimizations and fine tune should be done.

V. CONCLUSION
In this paper, we focus on the refinement of satellite image
semantic segmentation. Through network design and loss
function design, the segmentation result is more precise
and detailed. Another work in this paper is to design a
data processing and transfer learning method to reduce the
semantic label requirements of the image semantic segmen-
tation task in the satellite domain. In terms of data process-
ing, we design the universal data augmentation method of
imagemorphology, color augmentation, and TTA. For refined
semantic segmentation, we use LinkNet as the basis model
and use pre-trained ResNet as Encoder to implement transfer
learning. We designed a combination module (AD-Link),
which includes a series-parallel combination dilated convo-
lution and two channel-wise Attention mechanism, and add
AD-Link to the central part of AD-LinkNet. Meanwhile,
based on road extraction and land classification satellite
image, we conducted experiments on two representative
satellite domain tasks. Subsequently, we compared various
networks to clarify the importance of the receptive field and
the feature map resolution, and verified the validity of the
AD-Link structure and the AD-LinkNet network.

The various satellite image semantic segmentation net-
works described in this paper are fully convolutional struc-
tures, most of which do not contain a global pooling structure
in the central part. For a network without global pooling,
the process from the original image to the semantic image
is a fixed-size image. The mapping to a pixel label is sim-
ilar to patch-based segmentation. The learning process of
the network is still a fitting of the data itself, but the full
convolution structure can realize the weight sharing in the
calculation. The information with global pooling structure
and coupled non-fixed scale must change the mapping mode
from patch to pixel. The similar information coupling method
has been applied to the object detection field [40]. Then
we will explore and research a variety of information cou-
pling methods. Finally, our future research direction will also
involve multiple directions of image processing [41]–[43].
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