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ABSTRACT Predicting the remaining useful life (RUL) is an effective way to indicate the health of
lithium-ion batteries, which can help to improve the reliability and safety of battery-powered systems.
To predict the RUL, the line of research focuses on using the empirical degradation model followed by
the particle filter (PF) algorithm, which is used for online updating the model’s parameters. However,
this works well for specific batteries under specific discharge conditions. When the degradation trends
cannot be presented by the chosen empirical model or the standard PF encounters impoverishment and
degeneracy problem, the RUL prediction would be inaccurate. To improve the RUL prediction accuracy,
we propose a novel approach by enhancing the existing method from two aspects. First, we introduce a
neural network (NN) to model battery degradation trends under various operation conditions. As NN’s
generalization and nonlinear representing ability, it outperforms the typical empirical degradation model.
Second, the NNmodel’s parameters are recursively updated by the bat-based particle filter. The bat algorithm
is used to move the particles to the high likelihood regions, which optimizes the particle distribution and
thus reduces the degeneracy and impoverishment of PF. In this paper, quantitative evaluation is presented
using two datasets with different batteries under different aging conditions. The results indicate that the
proposed the approach can achieve higher RUL prediction accuracy than conventional empirical model and
standard PF.

INDEX TERMS Lithium-ion batteries, neural network, capacity degradation, remaining useful life predic-
tion, bat algorithm, particle filter.

I. INTRODUCTION
Lithium-ion batteries have been broadly used in transporta-
tion, aerospace, and defense military applications due to their
low self-discharge rate, high operating voltage, long cycle
life, and high energy density. The lithium-ion batteries are
usually used to provide power for electrical systems, in other
words, they store and then release electrical energy through
internal electrochemical reactions. However, the battery suf-
fers from side reactions during operation, which leads to
materials aging and capacity fade of the battery, and thus
cause performance degradation or even catastrophic events
of electrical systems [1]. Therefore, predicting the remaining
useful life (RUL) of lithium-ion batteries is critical and indis-
pensable for the electrical systems. Accurate RUL prediction
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can effectively indicate lithium-ion batteries’ health, which
could help to provide maintenance plans to ensure the relia-
bility and safety of the systems [2], [3].

Many approaches have been proposed to predict the
RUL of lithium-ion batteries [4], which can be generally
grouped into two families, the fully data-driven methods
and the model-based methods. Note that hybrid approaches
fused data-driven and model-based methods also gain lots
of research interests recently [5]–[7]. Regarding the fully
data-driven methods, the degradation features are extracted
from the historical data such as voltage, current, and tem-
perature. Then the machine learning algorithms are used
to predict the degradation and estimate the RUL of the
batteries. Typical data-driven approaches used for battery
RUL prediction include auto regressive integrated mov-
ing average (ARIMA) model [8], Gaussian process regres-
sion (GPR) [9], long short-term memory recurrent neural
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network (LSTM RNN) [10], relevance vector machine
(RVM) [11], [12]. The data-driven methods require com-
pletely historical data to fully train models, which is
not always available in real-world systems. Besides, fully
data-driven methods usually do not support prediction uncer-
tainties. Thus, model-based RUL prediction methods, which
modeling the degradation trends by a mathematical model
and corresponding parameters, gain more attention recently.
The degradation model can be further divided into physics
of failure (PoF) model and empirical model. The PoF model
is developed based on the knowledge of material properties,
loading conditions and failure mechanisms of the batteries.
However, it is hard to build an accurate PoF model because
complicated electrochemical experiments and professional
equipment are needed to identify the model parameters,
which limits its generalization for on-board applications [13].
Instead, empirical models require less physical or electro-
chemical information of the batteries. They are usually estab-
lished based on regression analysis of the battery degradation
data.

Obviously, building a precise empirical model to capture
the capacity or resistance fade behaviors is critical for accu-
rate RUL prediction. Saha et al. [14] extracted the resistances
from the electrochemical impedance spectroscopy (EIS) data
and then performed RVM regression to build the exponential
resistance growth model. He et al. [15] introduced a double
exponential model to fit the battery degradation behavior
and used this model to estimate the RUL. Xing et al. [16]
presented a model that fuses He’s model and a polynomial
model to take account of both global and local degradation
behaviors. Guha and Patra [17] proposed a model by combin-
ing an exponential capacity degradation model and a polyno-
mial resistance growth model. Yang et al. [18] developed a
logarithmic model for Li(NiMnCo)O2 batteries, which have
concave degradation trends. Wang et al. [19] developed a
discharge-rate-dependent degradation model by extending an
exponential model. All the above models are designed for the
degradation behaviors under specific discharge conditions or
for batteries with particular materials. In real-world appli-
cations, the batteries often work under non-nominal operat-
ing conditions. Thus, a general and flexible model, which
can capture the capacity fade trend under varying operation
conditions, is urgently desired for battery RUL prediction.
Recently, the neural network (NN) has been successfully
used in vast applications due to its powerful capability of
generalization and representing the nonlinear behavior [20].
Regarding the RUL prediction, the NN has the potential to
effectively deal with the nonlinear and dynamic degradation
behavior of lithium-ion batteries.

To recursively update the parameters of the degradation
model for online RUL prediction, filter techniques are usually
adopted [21]. Among numbers of filter techniques, particle
filter (PF) is widely used because it can deal with both
non-Gaussian and nonlinear systems [15]–[18]. The insight
of PF is to utilize a set of random particles with their impor-
tance weights to estimate the posterior probability density

function (pdf) for the system states. However, the standard
PF method suffers from particle degeneracy and impoverish-
ment problems. Thus, some efforts have been made to tackle
those problems by choosing different importance functions
or resampling strategies [22], [23]. Miao et al. [24]–[26]
introduced an unscented PF for battery RUL prediction.
Ma et al. [27] developed a Gauss-Hermite PF to update
the degradation model’s parameters. Li et al. [28] proposed
a mutated PF method to estimate the system states and
implemented it for battery life prediction. Wang et al. [29]
established a state-space model for battery degradation and
employed the spherical cubature PF to estimate the bat-
tery life. As an alternative, intelligent PF is a promising
approach to improve the robustness and effectiveness of PF.
The essential of intelligent PF is utilizing metaheuristic algo-
rithms to optimize the distribution of particles rather than
simply delete the low weight particles [30] in resampling
procedure, which effectively tackles the particle impover-
ishment problem. Several metaheuristic methods (such as
particle swarm optimization [31], genetic algorithm, and fire-
fly algorithm [32]) have been explored and proven to be
able to enhance the standard PF in typical applications.
Recently, a bat-inspired metaheuristic algorithm is proposed
by Yang [33]. The bat algorithm is a random search mech-
anism with a stronger adaptive ability and better precision
of convergence than conventional swarm-like particle swarm
optimization algorithm. Therefore, it is promising to further
improve the intelligent PF by integrating of the bat and the
PF.

In this paper, an intelligent battery RUL prediction
approach using the NN model and the bat-based PF (Bat-
PF) is proposed. This approach improves the RUL predic-
tion accuracy of the current PF based method from two
aspects. Firstly, a general NNmodel is developed for capacity
degradation modeling. The NN model is more flexible and
powerful than existing empirical models, and thus improves
the RUL prediction accuracy by precisely modeling vari-
ous degradation trends. Secondly, the parameters (weights
and biases) of the NN model are updated using Bat-PF,
which enhances the PF method by the bat algorithm. The
Bat-PF method moves the particles to high likelihood regions
based on the new capacity data by simulating the move-
ments of bats. This method optimizes the particle distribution
more robust comparing to the standard PF, and thus further
improves the prediction accuracy under complex conditions.

This paper is organized as follows. Section II introduces
the developed NN capacity degradation model. Section III
presents the theory of Bat-PF and the proposed RUL predic-
tion method. Experiment results are discussed in section IV.
Lastly, the conclusions are summarized in section V.

II. CAPACITY DEGRADATION MODEL
A. CAPACITY DATASETS
In our paper, two different datasets are considered to inves-
tigate the capacity degradation behavior and illustrate the
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FIGURE 1. Capacity degradation curves of CALCE batteries.

effectiveness of the developed degradation model and RUL
prediction approach.

1) CALCE DATASET
The first dataset is from Center for Advanced Life Cycle
Engineering (CALCE). Four LiCoO2 pouch batteries (identi-
fied as CS35 to CS38) were cycled using an Arbin battery test
system. The rated capacity is 1.1 Ah for those batteries. They
were chargedwith a standard charging profile, and discharged
at 1.1 A until the voltage fell to the cut-off voltage (2.7 V).
The battery discharge capacity was obtained by Coulomb
counting method. For those batteries, the failure threshold is
recommended as 80% of the rated capacity [13]. The capacity
degradation curve versus cycle is shown in Fig. 1. Since
these batteries were cycled under constant load profiles, their
capacities experience smooth fade trends, which form expo-
nential curves in Fig. 1.

2) NASA DATASET
The second dataset is from NASA Ames Prognostics Center
of Excellence [34]. To simulate the dynamic operation con-
ditions in real applications, 18650 LiCoO2 batteries (2.1 Ah)
were cycled under a series of random currents rather than
the constant discharge currents. Each loading period lasted
for 5 minutes. A 2 A charging and discharging test was
performed after every 1500 periods (about 5 days) to measure
the battery capacity. For our study, we used the data from
RW9 to RW11 batteries. Refer to [35], the failure thresholds
for those batteries are considered as the capacities at the
end of the test. The capacities are plotted against the test
time (days) in Fig. 2. We can see that the capacity curve is
highly dynamic and nonlinear.

B. NN DEGRADATION MODEL
Neural network gains huge success in recent years. With the
powerful capability of generalization and representing, NN is
widely used in various communities and proven to be able to
solve complex problems effectively. In this paper, we utilize
NN to model capacity degradation behavior. The basic unit

FIGURE 2. Capacity degradation curves of NASA batteries.

FIGURE 3. Structure diagram of a MLP model.

of a NN model is called neuron. Neurons are connected to
form the layers of the neural network. Each neuron receives
multiple inputs from other connected neurons in proportion
to their weights. Then each neuron will generate a single
output under activation function which may propagate to sev-
eral other neurons. Among numerous NN variants or imple-
mentations, the multilayer perceptron (MLP), as a popular
feed-forward NN, is characterized by simple structures [36].
Thus, MLP can be trained easily with rapid convergence
while keeping conventional NN’s capability of nonlinear
approximation. In our case, to model the dynamic and non-
linear degradation trend of battery, MLP is the most attractive
choice.

Fig. 3 shows the structure of a MLP model. The model
consists of the input, hidden, and output layers. In our applica-
tion, the network is used to model the capacity as the function
of battery cycle. Thus, the input node is the cycle number
or the cycle time (C), while the output node is the battery
capacity (Q). The hyperbolic tangent sigmoid activation func-
tion (tansig) is adopted for the neurons in the hidden layer.
The linear activation function (purelin) is employed for the
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TABLE 1. Model parameters estimation results of EXP model and 2 neurons NN model for CALCE dataset.

TABLE 2. Goodness-of-fit of different models for CALCE dataset.

output node. Thereby, the output of each hidden neuron can
be calculated as:

h = tansig (IW · C + b1)

=
1− exp [−2 (IW · C + b1)]
1+ exp [−2 (IW · C + b1)]

(1)

where, IW and b1 are the weight and bias associated with the
input node (C).

Then, the output of whole network can be calculated as:

Q = purlin (LW1 · h1 + · · · + LWM · hM + b2)

= LW1 ·
1− exp [−2 (IW1 · C + b11)]
1+ exp [−2 (IW1 · C + b11)]

+ · · · + LWM ·
1− exp [−2 (IWM · C + b1 M )]
1+ exp [−2 (IWM · C + b1M )]

+ b2

(2)

where LW and b2 are the weight and bias associated with the
hidden neurons,M is the number of hidden neurons.

C. DEGRADATION ANALYSIS BASED ON DIFFERENT
MODELS
In this section, the developed NNmodel, i.e.,the MLP model,
is compared with the conventional empirical model in terms
of capacity degradation modeling. Regarding the empirical
model, as the double exponential model [15] is the most
widely used one for RUL prediction, it (denoted as EXP
model) is chosen for this comparison. Specifically, the EXP
model can be expressed by two exponential functions:

Q = ϕ1 ∗ exp (ϕ2 ∗ C)+ ϕ3 ∗ exp (ϕ4 ∗ C) (3)

where, ϕ1, ϕ2, ϕ3, and ϕ4 are the model parameters.

The parameters of the EXP model are fitted using the
nonlinear least square method in MATLAB curve fitting
tool. For the evaluation of the NN model, two types of
implementation are considered. Concretely, we evaluate
the NN model with 2 hidden neurons (denoted as 2 neu-
rons NN model) and 3 hidden neurons (denoted as 3 neu-
rons NN model). The parameters of the NN models are
obtained using the MATLAB nntrain tool. The R-square
(R2) and root mean square error (RMSE) are used to assess
the goodness-of-fit of these models [16], which are defined
in (4) and (5), respectively. Note that the higher is bet-
ter in terms of R2, while the lower is better in terms of
RMSE.

R2 = 1−

∑n
i=1

(
Qi,real − Qi,est

)2∑n
i=1

(
Qi,real − Qmean

)2 (4)

RMSE =

√√√√1
n

n∑
i=1

(
Qi,real − Qi,est

)2 (5)

where, Qi,real is the real capacity, Qi,est is the fit-
ted capacity, and Qmean is the mean of real capacity
values.

1) DEGRADATION ANALYSIS FOR CALCE DATASET
Fig. 4 shows curve fitting results for CS35 and CS37 based
on the EXP model and two NN models, respectively. All
these models can successfully capture the capacity degra-
dation trend for these two batteries. The parameters fitting
results for all 4 batteries based on EXP model and 2 neurons
NN model are shown in Table 1. While the goodness-of-fit
results of different models are shown in Table 2. We can
see that the RMSEs are less than 0.02 while the R2 values
are higher than 0.98, which indicates that all the models can
fit the capacity degradation data well. The RMSEs of the
3 neurons NN model are the smallest while the R2 values are
the largest among three models for all batteries. This means
the fit capability of the 3 neurons NNmodel is the best among
three models. However, the performance of the 3 neurons NN
model does not improve significantly and the performance
of the 2 neurons NN model and EXP model are acceptable
in this case, because the capacity curves for those batteries
are relatively smooth and follow the exponential degradation
trends.
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FIGURE 4. Curve fitting results for CALCE dataset: (a) CS35, and (b) CS37.

TABLE 3. Goodness-of-fit of different models for NASA dataset.

2) DEGRADATION ANALYSIS FOR NASA DATASET
Fig. 5 shows curve fitting results for RW9 to RW11 based
on the EXP model and NN models. The EXP model can
only fit the first two-thirds of the data for RW9 and RW10.
Moreover, the EXPmodel cannot track the whole degradation
for RW11. Note that the poor-fitting of EXP model is due to
the random fluctuation in capacity. However, we can see that
the 2 neurons and 3 neurons NNmodels can both fit the whole
life data.

Table 3 shows the goodness-of-fit statistics of different
models. It can be found that the NN models have larger R2

values and smaller RMSEs than the EXPmodel, whichmeans
the NN models show better global regression performance
than the EXP model. For RW10, the 2 neurons model out-
performs the 3 neurons model.

According to the degradation modeling analysis on those
two datasets, the EXPmodel can only fit the degradation data
whose trend is satisfied with the model assumption. However,
the fitting results indicate the proposed NN model is suitable

to describe the nonlinear degradation behavior of the battery
cycled under different conditions. The performances of the
2 neurons and 3 neurons model show no much difference.
Theoretically, the more hidden neurons used, the higher capa-
bility of the model can be achieved in terms of tracking
the complex degradation trend. However, a large number
of hidden neurons may cause overfitting problems. Further-
more, more hidden neurons mean more parameters to be
optimized, i.e., more computing complexity, during the initial
training and the PF updating. Thus, we choose 2 hidden
neurons model in our RUL prediction method.

III. RUL PREDICTION BASED ON BAT-PF
In the last section, we propose and evaluate the accuracy
of the degradation model. However, to predict the RUL in
an online manner, the model parameters should be updated
step-by-step (each cycle). A typical solution for such online
parameters adjustment is PF and related methods. Here,
we first introduce the PF theory in section III-A. Next, we pro-
pose an enhanced PF method by metaheuristic bat algorithm
(Bat-PF) in section III-B. Last, we describe our Bat-PF based
RUL prediction approach in detail in section III-C.

A. STANDARD PARTICLE FILTER
PF is a state estimation method based on Monte Carlo and
recursive Bayesian algorithm. In general, the state-space
model for a dynamic system can be expressed by:

xκ = F (xκ−1)+ wκ ↔ p (xκ |xκ−1) (6)

zκ = H (xκ)+ vκ ↔ p (zκ |xκ) (7)
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FIGURE 5. Curve fitting results for NASA dataset: (a) RW9, (b) RW10, and (c) RW11.

where, xκ is the system state,wκ denotes the process noise, zκ
is the observed vector, vκ represents the measurement noise,
κ is the sampling point, F is the state transition function, and
H is the measurement function.

In PF algorithm, random particles are generated from the
importance function q (xκ |z1:κ) using Monte Carlo method.
Denote x iκ is the ith particle, and ωiκ is its associated weight.
Then the posterior pdf p (xκ |z1:κ) can be estimated by those
weighted particles [37]:

p (xκ |z1:κ) ≈
N∑
i=1

ωiκδ
(
xκ − x iκ

)
(8)

where N is the number of particles, δ(·) is the Dirac delta
function.

The importance function q (xκ |z1:κ) highly relies on the
newest measurement zκ and the previous state xκ−1. In bat-
tery RUL prediction applications, the prior pdf p(x iκ |x

i
κ−1) is

usually selected as the importance function to simplify the

calculation of weights:

q
(
x iκ |x

i
κ−1, zκ

)
= p

(
x iκ |x

i
κ−1

)
(9)

Thus, the weight of each particle can be calculated as
follows:

ωiκ = ω
i
κ−1

p
(
zκ |x iκ

)
p
(
x iκ |x

i
κ−1

)
q
(
x iκ |x

i
κ−1, zκ

) = ωiκ−1p
(
zκ |x iκ

)
(10)

where, p(zκ |x iκ ) is the condition likelihood of x iκ .

B. BAT-PF
A common problem of the standard PF is the particle
degeneracy, that is most of the particles having negligible
weights after several iterations. A typical solution to this
problem is resampling. The insight of resampling is to remove
low-weight particles and fill up with duplicated high-weight
particles. However, this will cause particle impoverishment
and influence the accuracy of state estimation. Another prob-
lem of the PF is that it uses the prior distribution as the
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importance functionwithout considering the newestmeasure-
ment. If the newest measurement has meaningful influences
on the importance function, the estimated state will become
unreliable and inaccurate.

To solve those problems and improve the accuracy of PF
based RUL prediction, we propose a new method by integrat-
ing the bat algorithm into the PF. Bat is a population-based
random search algorithm that imitates the behavior of micro-
bats. In brief, the behavior of micro-bats can be mathe-
matically modeled by flying randomly with velocity ν at
position x with a varying frequency f hunting for prey [38].
Micro-bats can automatically adjust their loudness A and the
emission rate of pulse r during the hunting.
The core idea of the bat based PF is that after random drawn

the particles from the prior distribution, each particle will be
optimized by bat towards the high likelihood region in the
state space. Then, those optimized particles are used for state
estimation without resampling process. Besides, the key of
the approach is the design of the objective function, which is
used to evaluate each particle’s position [38]. By introducing
the newest observed value (zk ) into the particle optimization
process, we define the objective function for bat using the
exponential function as follows:

Minimize : I (xκ ) = exp
[
−

1
2R
(zκ − z̄κ)

]
(11)

where, z̄κ is the predicted value of the newest observed value
zκ , R is the standard deviation of measurement noise v in (7).

The main steps of Bat-PF are described as follows:

1) INITIALIZATION
Generate N particles {x iκ}

N
i=1 from the prior distribution

using (6) as the initial particle swarm in bat. Each particle is
randomly assigned a frequency fi from [fmin, fmax], a loudness
Ai(0) and an emission rate ri(0). Note that fmax and fmin are
the maximum and minimum frequency, respectively.

2) PARTICLE OPTIMIZATION
During the nth optimization iteration, the position and veloc-
ity of the ith bat are updated as follows:

fi = fmin + (fmax − fmin) β (12)

νi(n) = νi(n− 1)+ (xi(n− 1)− xbest) fi (13)

x iκ (n) = x iκ (n− 1)+ νi(n) (14)

where β is randomly chosen from [0, 1], xbest is the best
position.

Evaluate the solutions for each particle using the objective
function (11). Generate a random number (rand1) from a
uniform distribution [0, 1]. If rand1 < ri(n − 1), the new
solution of the ith bat will be generated using (14). Otherwise,
the new solution should be generated around the best solution
by adding a random disturbance:

xnew = xold + εA′ (15)

where ε is a random number in [0, 1], At is the average
loudness for all bats.

FIGURE 6. Flowchart of the proposed RUL prediction method for
lithium-ion batteries.

Generate another random number (rand2) from a uniform
distribution [0, 1]. If rand2 < Ai(n− 1) and the new solution
is better than the old one, accept the new solution and adjust
the corresponding loudness and the emission rate.

Ai(n) = αAi(n− 1) (0 < α < 1) (16)

ri(n) = ri(0)[1− exp(−γ n)] (γ > 0) (17)

where α and γ are constants, ri(0) is the initial emission rate.

3) OUTPUT THE STATES
If the maximum search iteration is reached or the search
accuracy is satisfied, update theweights using (10), normalize
the weights and output the states.

C. RUL PREDICTION METHOD
With the proposed NN degradation model and the novel
Bat-PF algorithm, the RUL of lithium-ion batteries can be
predicted in an online manner. Fig. 6 shows the flowchart of
our RUL prediction method. Based on the capacity degra-
dation data of the historical batteries, a state-space model
is constructed based on the NN degradation model. Then,
the Bat-PF is used to adjust the states (i.e., the parameters of
the degradation model). After that, the updated degradation
model is extrapolated to the failure threshold to estimate the
RUL. The detailed steps are described below.

1) CONSTRUCT THE STATE-SPACE MODEL
The weights and biases of the 2 neurons NN model
are selected as the system states,i.e., [IW1, IW2, b11, b12,
LW1,LW2, b2]. These 7 states are assumed to follow the
randomwalk mode. Note the battery capacity is the measured
vector. Thus, the state-space model can be constructed as
follows:

θκ =



IW1,κ
IW2,κ
b11,κ
b12,κ
LW1,κ
LW2,κ
b2,κ


=



IW1,κ−1
IW2,κ−1
b11,κ−1
b12,κ−1
LW1,κ−1
LW2,κ−1
b2,κ−1


+



w1
w2
w3
w3
w5
w6
w7


,

w1 ∼
(
0, σ 2

1

)
w2 ∼

(
0, σ 2

2

)
w3 ∼

(
0, σ 2

3

)
w4 ∼

(
0, σ 2

4

)
w5 ∼

(
0, σ 2

5

)
w6 ∼

(
0, σ 2

6

)
w7 ∼

(
0, σ 2

7

)
(18)
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Q′κ = NN (θκ , κ)+ v, v ∼
(
0, σ 2

v

)
(19)

where, NN(·) is the NN degradation model, all the noise (w1
to w7, v) are assumed to obey Gaussian distribution.

2) UPDATE THE STATES BASED ON BAT-PF
In this paper, the prior information for the states (i.e.,
NN model parameters) in the PF algorithm is obtained from
the database of the historical batteries which have the same
specification with the test battery. The NN model parameters
are initialized by training the degradation model using the
data from historical samples. Then, the parameters can be
updated using the constructed state-space model and Bat-PF
as described in section III-B based on the available capacity
data of the test battery. After obtained the posterior distribu-
tion of the model parameters {θ iκ , ω

i
κ}
N
i=1, the capacity at κ

can be estimated as:

Qκ =
N∑
i=1

ωiκQ
i
κ =

N∑
i=1

ωiκNN
(
θ iκ ,Cκ

)
(20)

3) RUL PREDICTION
By extrapolating the NN degradation model, the capacity at
κ + l can be predicted as:

Qκ+l =
N∑
i=1

ωiκQ
i
κ+l =

N∑
i=1

ωiκNN
(
θ iκ ,Cκ+l

)
(21)

Then, the RUL of the ith particle at κ (RULiκ ) can be
estimated according to:

NN
(
θ iκ ,Cκ + RULiκ

)
= threshold (22)

The posterior pdf of the RUL at κ is approximated by:

p (RULκ |Q1:κ) ≈

N∑
i=1

ωiκδ
(
RULκ − RULiκ

)
(23)

The expectation of RUL can be estimated by:

RULκ =
N∑
i=1

ωiκRUL
i
κ (24)

IV. RESULTS AND DISCUSSION
The datasets from CALCE and NASA are used to evaluate
the accuracy and robustness of the developed RUL prediction
method. The following three methods are used for compara-
tive analysis: the combination of EXP model and standard
PF (EXP+PF), the combination of NN model and standard
PF (NN+PF), and the combination of NN model and Bat-PF
(NN+Bat-PF). The absolute error (AE) as shown in (25) is
utilized to assess the accuracy of RUL prediction. The pdf
width (PW) as shown in (26) is used to quantify the con-
fidence level of RUL predictions [39]. A smaller pdf width
indicates a more reliable RUL prediction.

AE =
∣∣RULκ, real − RULκ, pred

∣∣ (25)

TABLE 4. Comparative analysis of different prediction methods for CS37.

where RULκ, real is the real RUL at prediction point κ , and
the RULκ, pred is the predicted RUL.

PW = Uci − Lci (26)

whereUci and Lci are the upper and lower bounds of 95% con-
fidence interval (CI) of RUL prediction result, respectively.

A. RESULTS FOR CALCE DATASET
Batteries CS35, CS36, and CS38 are arbitrarily selected as
the historical batteries to provide prior information for model
initialization, while CS37 is used to test the RUL prediction
performance. Model initialization includes initializing the
parameters and the corresponding variance. For the EXP
model, the average values of the curve fitting results for
the historical batteries’ capacity data are used as the initial
model parameters. The initial weights and biases of the NN
model are obtained by training the network based on all the
historical data. The noise variances are driven by the order
of magnitudes of the variables in the state-space model, but
they may vary from case to case. After the initialization,
the parameters can be updated based on the newly measured
capacity and the RUL can be predicted. Here, the particles
number N is set as 100.
The RUL of CS37 is predicted from different cycles (i.e.,

cycle 300, cycle 400, cycle 500, respectively). Fig. 7 to
Fig. 9 show the RUL prediction for CS37 using EXP+PF,
NN+PF and NN+Bat-PF, respectively. The black line is
the real capacity. The red dotted line denotes the estimated
capacity, and the red solid line shows the predicted curve.
The black dotted line is the failure threshold. The yellow
area denotes the predicted RUL pdf. As we can see from
those figures, with more degradation capacity data obtained,
the prediction curves gradually approach the true curve for all
three methods, which indicates that the model parameters are
correctly updated.

We can observe that the prediction curves obtained by NN
models ( Fig. 8 and Fig. 9) are closer to the real capacity
degradation curve than using the EXP model (Fig. 7) at the
same prediction point. Also, the RUL pdfs obtained using
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FIGURE 7. Prediction based on EXP+PF at different cycles for CS37: (a) T=300, (b) T=400, and (c) T=500.

FIGURE 8. Prediction based on NN+PF at different cycles for CS37: (a) T=300, (b) T=400, and (c) T=500.

FIGURE 9. Prediction based on NN+Bat-PF at different cycles for CS37: (a) T=300, (b) T=400, and (c) T=500.

FIGURE 10. Prediction based on EXP+PF at different times for RW11: (a) T=30, (b) T=70, and (c) T=100.

NN models are narrower and taller than that obtained by the
EXPmodel. Detailed quantitative results are listed in Table 4.
Both the prediction errors and the RUL pdf widths in Table 4
suggest a relatively higher accuracy of the proposed NN

degradation model than the EXP model. The reason for this
result is that the NN model can better track the battery fade
trend and consequently offer a more accurate state-space
model for the RUL prediction framework.
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FIGURE 11. Prediction based on NN+PF at different times for RW11: (a) T=30, (b) T=70, and (c) T=100.

FIGURE 12. Prediction based on NN+Bat-PF at different times for RW11: (a) T=30, (b) T=70, and (c) T=100.

TABLE 5. Comparative analysis of different prediction methods for RW11.

It can also be found that NN+Bat-PF has lower AE, and
narrower pdf width as compared to the NN+PF method in all
prediction cycles, except for the pdf width at cycle 400. Using
the numerical prediction results at cycle 500 for illustration,
the RUL prediction error of the NN+Bat-PF is decreased
by 5 cycles than that of NN+PF. The RUL pdf width of
NN+PF is 41 cycles, which is larger than that of NN+Bat-
PF (35 cycles). This result indicates that Bat-PF has not only
better prediction accuracy but also less prediction uncertainty
than PF.

B. RESULTS FOR NASA DATASET
For the NASA dataset, RW9 and RW10 are trained to
obtain the initial model parameters, and RW11 is selected

as the test battery. The RUL of RW11 is also predicted
from different days. Fig. 10 to Fig. 12 are the RUL pre-
diction results for RW11 using different methods. As we
can see from Fig. 11 and Fig. 12, the prediction results
based on NN methods show the desirable properties, that
is the prediction curves can converge to the real capacity
curves and the RUL pdfs become narrow as the time of
prediction advances. Especially, in Fig. 11(c) and Fig. 12(c),
the NN method tracks the aging variation well when col-
lected the data after sudden changes (100 days). This is
because by adjusting themodel parameters usingmore capac-
ity data, the NN model can effectively track the degrada-
tion trend and accordingly, achieve good prediction results.
However, the capacity prediction curves obtained by the
EXP model shown in Fig. 10 are obviously different from
the real ones for all prediction times. The reason is that
the degradation characteristic for this battery is relatively
complex with strong dynamic. Thus, it is difficult to be
tracked and predicted using the simple EXP model. The
aforementioned analysis is in line with the prediction results
in Table 5.
The detailed comparison results between Bat-PF and PF

are also shown in Table 5. Similar to the prediction results for
CALCE dataset, the Bat-PF method can obtain smaller pre-
diction errors and narrower pdf widths than the standard PF
at different prediction times, indicating the Bat-PF improves
the prediction performance. For example, the RUL prediction
error of NN+PF is 2.81 days and that of NN+Bat-PF is
2.19 days at 100.02 days, and the pdf width of NN+Bat-PF
is 7.97 days smaller than that of NN+PF.
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V. CONCLUSION
The accuracy of RUL prediction of lithium-ion batteries
depends on both the degradation model and the online model
updating method. In this paper, we propose a novel intel-
ligent RUL prediction approach using the NN degradation
model and Bat-PF. Comparing with the conventional empir-
ical model, the proposed NN model has no requirement
on the degradation pattern and can be adapted to various
dynamic trends, which achieves better performance. On the
other hand, by integrating the bat algorithm with the standard
PF, we introduce a promising Bat-PFmethod to online update
the degradation model parameters and estimate the RUL.
Benefiting from the unique mechanism of the bat algorithm,
which utilizes the newly capacity data to improve the PF
particle distribution by moving the particles to high like-
lihood locations, our proposed Bat-PF method avoids the
resampling process and thus prevents the particle degeneracy
and impoverishment problem in standard PF method. Fur-
thermore, we quantitatively evaluate the proposed NN model
and Bat-PF method using two representative datasets, which
are collected under different cycling conditions. The experi-
mental results indicate that our method can better model the
capacity degradation trend and obtain a higher RUL predic-
tion accuracy (small prediction error and narrower pdf width)
compared with conventional methods.

In future work, we are interested in extending our predic-
tionmethod tomore practical based applications. On the other
hand, by exploring the relationship between the degradation
model and the operation conditions, such as the working
temperature and current, we also plan to build a general
degradation model.
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