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ABSTRACT Experimental studies have demonstrated that long-non-coding RNAs (lncRNAs) are closely
related to human disease. However, due to the complexity of diseases and high costs of bio-experiments,
associations between diseases and lncRNAs are still unclear. Hence, it is essential to establish effective
computational models to predict the potential relationships between diseases and lncRNAs. In this paper,
different from traditional prediction models based on random walk with restart (RWR), a novel prediction
model based on internal inclined random walk with restart (IIRWR) has been established to infer potential
lncRNA-disease associations and compared to the state-of-the-art RWR-based prediction models. One major
novelty of our IIRWR-based prediction model is the introduction of the concept of disease clique, which
makes the process of the random walk to possess an internal tendency. The other major novelty of our model
lies in the addition of the weights of disease linkages to the traveling network, which guarantees our model
can achieve excellent prediction performance while the number of known lncRNA-disease associations is
limited. The simulation results show that our model can achieve reliable AUCs of 0.8080, 0.8363, and 0.8745
under the frameworks of five-fold cross-validation (CV), ten-fold CV, and leave-one-out cross validation
(LOOCV), respectively. Moreover, in case studies of cervical cancer and leukemia, the experimental results
show that eight and ten out of the top ten predicted lncRNAs can be confirmed by related literature, which
demonstrates that our method is effective in predicting novel diseases associated lncRNAs.

INDEX TERMS lncRNA, lncRNA-disease associations, internal inclined random walk with restart.

I. INTRODUCTION
Accumulating evidence suggests that lncRNAs play crit-
ical roles in lots of biological processes such as epige-
netic regulation, cell cycle regulation, cell differentiation,
transcriptional regulation, and so on [1]–[5]. With more
and more lncRNAs being identified by newly developed
sequencing technologies, their functions especially their con-
tributions to various diseases have received much attention
recently. More and more biological experiments have shown
that mutations and dysregulations of lncRNA are associated
with diseases [6]–[8], such as leukemia [9], [10], cardio-
vascular diseases [11], Alzheimer’s disease [12] and various
kinds of cancers [13]. Therefore, effectively identifying the
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association between disease and lncRNA cannot only help
us understand the molecular mechanism of disease but also
provide biomarkers for disease treatment and find drug tar-
get. Many lncRNA-related databases including LncRNADis-
ease [14], NRED [15], lncRNAdb [16] and NONCODE [17]
have been established successively. However, since tradi-
tional bio-experiments in testing the relationships between
lncRNAs and diseases are costly and time-consuming, the
numbers of known lncRNA-disease associations in these
databases are still small [18]–[20]. Hence, it is necessary
to develop high-throughput computational models to dis-
cover potential lncRNA-disease associations. Various com-
putational models have been proposed for this purpose.

According to their implementation strategy, these methods
can be roughly classified into three categories to predict
novel lncRNA-disease associations [6]. The first category
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is to build a machine learning model that predicts poten-
tial lncRNA-Disease association based on known lncRNA-
disease associations. For instance, Yu and Wang et al.
develop a Naive Bayesian Classifier to predict lncRNA-
disease associations [21], which builds two global networks
by integrating multiple biological information to predict
potential lncRNA-disease associations. However, this kind
of supervised classifier model needs negative sample infor-
mation, which is usually unavailable. So they randomly
selected unlabeled lncRNA-disease pairs as negative samples,
which would affect the prediction performance. In 2013,
Chen et al. establish a model of Laplacian Regularized Least
Squares for LncRNA-Disease Association (LRLSLDA) to
predict potential lncRNA-disease association base on a semi-
supervised learning framework [22]. This model does not
require negative sample information, and meanwhile signif-
icantly improves the performance of previous predictions.
However, there are also some limitations, for example, how
to choose the optimal parameters have not been solved.

The second category are to integrate known lncRNA-
disease association network, disease similar network,
lncRNA similar network to establish a heterogeneous net-
work, and implement propagation algorithm. In 2014,
Sun et al. propose a prediction model named RWRlncD by
adopting random walk with restart (RWR) in the lncRNA
functional similarity network [23]. As a matter of fact, the
random walk algorithm has been widely used in bioinfor-
matics and other fields, and has achieved good performance.
For example, Yang and Li et al. develop a model called
RWPCN (RandomWalker on Protein Complex Network) for
predicting and prioritizing disease genes [24]. In the same
year, Yang et al. establish coding-non-coding gene-disease
bipartite network by integrating known disease genes with
lncRNA-disease associations [25], and implement propaga-
tion algorithms on this bipartite network to predict potential
lncRNA-disease associations. Although this model achieved
good predictive performance, there is some limitation such
as the lack of lncRNA function annotation would have an
influence on its performance.

Due to the confirmed lncRNA-disease associations are still
limited, some researchers began to predict potential lncRNA-
disease associations by othermeans, rather than the above two
categories method based on known lncRNA-disease asso-
ciation pairs. For example, in 2014, Liu et al. established
the first computational model that does not rely on known
lncRNA-disease association [26], it integrates disease genes
and the relationship between genes and lncRNA, successfully
avoided the limitations of using limited lncRNA-disease cor-
relation samples, however, this model can not be applied to
lncRNA that without related gene records.

In this paper, a novel Internal Inclined Random Walk with
Restart (IIRWR) was proposed to predict potential lncRNA-
disease associations by integrating known lncRNA-disease
associations, disease semantic similarity, disease weight and
Gaussian interaction profile kernel similarity for lncRNAs.
Different from the traditional RWR method, IIRWR in the

addition of the weights of disease linkages to the traveling
network, solved some limitations of the traditional RWR
method such as aimlessness, ensuring that our models get
better predictive performance (MATLAB code can be down-
loaded at https://github.com/xiaoyubin123/code.git). In order
to better estimate the prediction performance of our newly
proposed IIRWR-based model, several methods including
5-fold Cross Validation (5-fold CV), 10-fold Cross Validation
(10-fold CV) and Leave-One-Out CrossValidation (LOOCV)
have been implemented. As a result, our IIRWR-based model
can achieve reliable AUCs of 0.8080, 0.8363, 0.8745 in the
5-fold CV, 10-fold CV and LOOCV, respectively, out-
performing those of several state-of-the-art traditional
RWR-based models. Moreover, we also validated novel
lncRNA-disease associations predicted by our method by
literature mining.

II. MATERIALS AND METHODS
A. CONSTRUCTION OF THE ADJACENCY MATRIX OF
KNOWN LNCRNA-DISEASE ASSOCIATIONS
In this paper, we downloaded lncRNA-disease associations
from the latest version of the LncRNADisease database
(http://www.cuilab.cn/lncrnadisease) [14]. After removing
non-human data and repeated associations supported by mul-
tiples evidences, we finally got 1695 unique experimentally
verified human lncRNA-disease associations (see Supple-
mentary material 1), which including 828 unique lncRNAs
and 314 unique diseases. The data can be expressed as an
828 × 314 lncRNA-disease association adjacency matrix A,
in which A(i, j) =, if and only if there is a known association
between lncRNA li and disease dj, and A(i, j) = 0 otherwise.
In addition, we defined NL = 828 and ND = 314, thus, the
newly obtained adjacency matrix A is of dimensionNL ×ND.

B. CONSTRUCTION OF THE DISEASE SEMANTIC
SIMILARITY MATRIX
For each of the 314 diseases, we further downloaded its
correspondingMESH descriptor from the National Library of
Medicine (http://www.nlm.nih.gov) [27], which categorizes
and provides semantic information for various diseases. In the
light of previous knowledge, relationships between different
diseases can be illustrated as a structure of Directed Acyclic
Graph (DAG) [27], [28]. For example, a disease d can be
described as DAG(d)= (D(d), E(d)), in which D(d) is a node
set consist of d itself and its ancestor nodes, while E(d) is the
set of directed edges from parents to child nodes. Therefore,
for a disease d and one of its ancestor nodes t in D(d), we can
define the contribution of disease t to the semantic value of
disease d as follow:

Dd (t) =

{
1 if t=d

max
{
1 ∗ Dd (t ′)|t ′∈ children of t

}
if t 6=d

(1)

1 is the semantic contribution factor with value between
0 and 1, according to experimental results done by
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FIGURE 1. The DAG corresponding to the digestive system neoplasms.

predecessors [27], it is better to set 1 to 0.5. Hence, by
combining contributions from all disease terms in DAG(d),
we can define the semantic value of d as follow:

D(d) =
∑

ti∈DAG(d)

Dd (ti) (2)

According to formula (1) and formula (2), the calcula-
tion of the semantic value of Digestive-System Neoplasms
D (DSN) was shown in Fig. 1, There is D(DSN) = 1 (the
contribution of Digestive System Neoplasm) + 0.5 (the con-
tribution of Neoplasms by site) + 0.5 (the contribution of
Digestive system Disease) + 0.5*0.5 (the contribution of
Neoplasms) = 2.25.

Moreover, based on the concept of DAG, it is reasonable to
assume that two diseases with more common ancestor nodes
will have higher semantic similarity, the disease semantic
similarity (DSS ) between disease di and disease dj can be
calculated as follow:

DSS(i, j) =

∑
t∈(DAG(di)∩DAG(dj))(Ddi (t)+ Ddj (t))

D(di)+ D(dj)
(3)

Therefore, an ND × ND dimensional DSS matrix can be
constructed(see Supplementary material 2).

C. CONSTRUCTION OF THE GAUSSIAN INTERACTION
PROFILE KERNEL SIMILARITY
MATRIX FOR LNCRNAS
For any two given lncRNAs li and lj, the Gaussian interaction
profile kernel similarity (KL) between them can be defined as
follows [29]:

KL(i, j) = exp(−γl ||IP(li)− IP(lj)||2) (4)

γl =
γ ′l∑Nl

i=1 ||IP(li)||
2

(5)

IP(li) and IP(lj) denote the ith and jth column in the adja-
cency matrix A (i, j) separately, γl control kernel bandwidth
base on normalizing the new bandwidth parameter γ ′l , the
best choice of γ ′l is 1 depend on previous data [22]. Com-
bining formula (4) and formula (5), an NL × NL dimen-
sional Gaussian interaction profile kernel similarity matrix
KL is established.

D. CONSTRUCTION OF THE IIRWR-BASED
PREDICTION MODEL
As illustrated in Fig. 2, the IIRWR-based prediction model
consists of three major steps. Step 1: Constructing the roam-
ing network (lncRNAs network) based on diseases similarity
and lncRNAs similarity. Step 2: Implementing random walk
on the newly constructed roaming network. Step 3: Rank-
ing candidate lncRNAs after obtaining stable random walk
probability.

1) STEP 1: CONSTRUCTION OF THE ROAMING NETWORK
AND INITIAL PROBABILITY
Step 1.1 (Revision the Disease Semantic Similarity Matrix:
Although a DSS matrix can be constructed through for-
mula (3), the matrix is very sparse. Moreover, for any dis-
ease di, it is obvious that elements with a value not equal
to zero in the ith row of DSS matrix represent all collected
diseases that are related to di. lncRNAwith more associations
to disease clique will have greater relevance to the target
disease. Thus, we defined the set of elements with the value
not equal to zero in the ith row of DSS matrix as the Disease
Clique of disease di. Thereafter, for any two diseases di and dj,
the similarity between them can be re-calculated as follows:

RDSS(i, j) = βij ∗ DSS(i, j)

+ (1− βij) ∗ α ∗
∑

t∈DS(i)

DSS(i, t) ∗ DSS(t, j)

(6)

βij =

{
1; if DSS(i, j) > 0
0; Otherwise

(7)

Here, α is the penalty factor with a value between 0 and 1,
DS(i) denotes the set consisting of the nonzero elements in the
ith row of DSS. Along with rectification by formula (6) and
formula (7), the problem of the sparsity of the DSS matrix is
solved efficiently.
Step 1.2 (Construction of the Disease Weight Matrix): For

any given lncRNA li and disease dj, it is reasonable to assume
that there exists a potential association between them if li has
more known associations with diseases in the Disease Clique
of dj. Hence, based on the above assumption, we obtained an
NL × ND dimensional disease weight matrix DW as follows:

DW (i, j) =
SDW (i, j)

max(SDW (j))
(8)

SDW (i, j) =
∑

m∈DL(i)

RDSS(m, j) (9)

Here, DL(i) represents a set of diseases that have known
associations with li, SDW(j) denotes the jth row of the matrix
SDW. The calculation process of the DW matrix is illus-
trated in detail. As showed in Fig. 3 (1), there are three
diseases d3, d4 and d5 related with lncRNA l1, then we can
obtain that RDSS (3,1) = 0.68, RDSS (4,1) = 0.9, RDSS
(5,1) = 0.7 through Fig. 3 (2) and (3). Therefore, SDW(1,1)
= RDSS(3,1) + RDSS (4,1) + RDSS (5,1) = 0.68 + 0.9 +
0.7 = 2.28. Finally, DW(1,1) = 1 according to formula (8),
Fig. 3 (4).
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FIGURE 2. Flow chart of IIRWR-based prediction model.

FIGURE 3. Illustration of the construction of the disease weight matrix.

Step 1.3 (Construction of the Roaming Network): For any
given disease dm, as a walker, it can move from the current
node to the next node according to a transition probability
matrix and obtain the migration probability vector of the next
hop node simultaneously. Therefore, based on formula (4)

and formula (8), for any two given lncRNAs li and lj,
an N L× NL dimensional transition probability matrix TPM
can be structured as follows:

TPM (i, j) =
STPM (i, j)∑NL
k=1 STPM (k, j)

(10)

STPM (i, j) = γjm ∗ DW (j,m)+ (1− γjm) ∗ KL(i, j) (11)

γjm =

{
1; if DW (j,m) > 0
0; Otherwise

(12)

Based on the matrix TPM, a roaming network can be
obtained easily, in which, the node-set consists of NL = 828
kinds of lncRNAs. For any two given lncRNA nodes li and lj
in the roaming network, there is an edge between them when
TPM (i, j) > 0.
Additionally, let the disease dm be a walker, then for each

lncRNA li (i∈[1, NL]), we can structure a NL dimensional
initial probability vector IPM0 for dm as follows:

IPM0(i) =
A(i,m)∑NL
i=1 A(i,m)

(13)
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2) STEP 2: PROCESS OF THE RANDOM WALK
For any given walker disease dm, its random walk is initially
started from any given lncRNA node in the roaming network
and can be carried on from the current node to the next hop
node according to the TPM matrix and the IPM0 indicated
in step 1.3. Moreover, during the period of disease dm

′

s
random walk, IIRWR will restart its random walk in each
step with a probability of r. Hence, supposing the walker
dm has currently arrived at the lncRNA node li after having
gone through t steps in the roaming network and IPMt =

(IPMt (1), (IPMt (2), . . . , (IPMt (NL))T also been obtained by
dm at present, then it is evident that dm can further obtain an
updated probability vector IPMt+1 as follow:

IPMt+1 = (1− r) ∗ TPM ∗ IPMt + r ∗ IPM0 (14)

3) STEP 3: OBTAIN THE RANKS OF CANDIDATE LNCRNAS
For any given disease node dm, while it walks in the roaming
network, all lncRNAs have known associations with dm will
be regarded as seed lncRNAs, while other lncRNAs without
associations with dm will be considered as the candidate
lncRNAs. According to formula (14), it is easy to deduce that
the probability vector IPMt obtained by dm will be stable in
final as long as t is big enough. Additionally, in view of time
efficiency and accuracy requirement, IPMt will be considered
stable if the difference between IPMt and IPMt+1 is less
than 10−10. So far, we can get the ranking for all lncRNAs
based on IPMt , for any given lncRNA li, the higher the
ranking the more probability it would be associated with the
disease walker dm.

III. RESULTS
A. PERFORMANCE EVALUATION
In order to assess the prediction performance of IIRWR,
the framework of LOOCV was firstly implemented based
on our previously obtained 1695 known lncRNA-disease
associations. During the experiment, for a given disease d,
each lncRNA has known association with disease d was left
out as a test sample in turn, and all other lncRNAs have
associations with disease d was retained as seed lncRNAs or
training samples for our model learning. Test samples and
those lncRNAs have no associations with disease d were
considered as candidate lncRNAs. Thus the ranking of the
left-out test sample relative to candidate samples could be
evaluated. If the ranking of the test sample is greater than
the given threshold, then it would be regarded as a successful
prediction, otherwise, it is an unsuccessful prediction. More-
over, upon different given thresholds, their corresponding
true positive rates (TPR, sensitivity) and false positive rate
(FPR, 1-specificity) could be figured out, in which sensi-
tivity denotes the percentage of test samples with ranking
higher than the corresponding threshold, while specificity
represents the percentage of test samples that rank below
the corresponding threshold. Hence, the Receiver-Operating
Characteristics (ROC) curve can be drawn through plotting
TPR versus FPR at different thresholds, and the area below

FIGURE 4. The AUCs achieved by IIRWR, KATZLDA, PMFILDA, and
LRLSLDA in LOOCV based on the dataset downloaded from the 2017
version of the lncRNAdisease database.

ROC curve (AUC) could be applied to evaluate the prediction
performance of our prediction model IIRWR. In general,
the AUC value of 1 represents a perfect prediction while the
AUC value of 0.5 means a random guess. However, in the
experimental process of LOOCV, there would be a situation
that the left-out lncRNA is the only lncRNA has known
association with a specific disease, which would lead to both
the initial probability vector IPM0 turning to be a zero vector
and some points in the ROC curve focus on the location
of FPR = 0.5. In order to ensure the fairness of our fore-
casted results, we have randomly set an initial vector in this
kind of situation.

Through simulation, we first compared IIRWR with three
state-of-the-art lncRNA-disease association prediction mod-
els KATZLDA [30], LRLSLDA [22] and PMFILDA [31]
in the framework of LOOCV. The comparison results were
shown in Fig. 4. IIRWR achieves a reliable AUC of 0.8745,
which is higher than that of 0.8257 acquired by KATZLDA,
the AUC of 0.7003 obtained from LRLSLDA and the AUC
of 0.8346 from PMFILDA. Besides, in the validation exper-
iment, it took about 3 seconds for our IIRWR model to
validate a lncRNA-disease association, while it cost more
than 10 seconds for both KATZLDA and LRLSLDA.

Next, the performance of our IIRWR model was
further compared with several others state-of-the-art
lncRNA-disease association prediction models such as
LRLSLDA [22], RWRLNCD [23] and NRWRH [32] and
in the framework of LOOCV. Considering that different
data versions may lead to different prediction performance,
we downloaded the same dataset adopted by RWRLNCD,
NRWRH and LRLSLDA from the 2012 version of the
lncRNADisease database, which consists of 293 known
lncRNA-disease associations including 167 different diseases
and 118 various lncRNAs. The comparison results were
listed in Table. 1. IIRWR achieves reliable AUC of 0.6796,
which far outweighs the AUC of 0.5024 from RWRLNCD,
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TABLE 1. The AUC achieved by IIRWR, RWRLNCD, NRWRH, and LRLSLDA
in LOOCV based on the 2012 version of the lncRNAdisease database.

FIGURE 5. The AUCs achieved by IIRWR, BRWLDA, and SIMCLDA in LOOCV
based on the dataset downloaded from the 2014 version of the
lncRNAdisease database.

and also higher than the AUC of 0.6363 in NRWRH and
0.6585 achieved by LRLSDA as well. Then, IIRWR was
compared with the recently proposed two state-of-the-art
computational models such as BRWLDA [33] and SIM-
CLDA [34] in the framework of LOOCV. Consistent with
the above comparison, we downloaded the same database
adopted by BRWLDA and SIMCLDA from the 2014 version
of lncRNADisease database,which consists of 319 known
lncRNA-disease associations including 169 different diseases
and 131 various lncRNAs. As shown in Fig. 5, we can
see that IIRWR achieves a reliable AUC of 0.8464,which
is significantly higher than AUCs of others (0.7874 from
BRWLDA and 0.7741 from SIMCLDA).

In addition, by comparing Table. 1, Fig. 4 and Fig. 5,
it is easy to find that the AUC achieved by IIRWR based
on the 2012 version of the lncRNADisease database is not
as good as that based on the 2014 version, Even far below
the 2017 version. This difference is owing to the known
lncRNA-disease associations in the dataset of 2012 version is
sparse than in the dataset of 2014 version and 2017 version.
Therefore, for the purpose of further assess the prediction
performance of IIRWR, frameworks of K-fold Cross Val-
idation including 5-fold Cross Validation (5-fold CV) and
10-fold Cross Validation (10-fold CV) were applied. In the
framework of K-fold Cross Validation, all these known
lncRNA-disease associations were equally divided into K
distinct groups, each group was ruled out as a test group in
turn, while others were retained as training groups. Fig. 6
and Fig. 7 shows that IIRWR can achieve reliable AUC of

FIGURE 6. AUC achieved by IIRWR, KATZLDA, LRLSLDA, and PMFILDA
under the framework of 5-fold cross validation.

FIGURE 7. AUC achieved by IIRWR, KATZLDA, LRLSLDA, and PMFILDA
under the framework of 10-fold cross validation.

0.8080 and 0.8363 under the framework of 5-fold CV and
10-fold CV,respectively.

B. SENSITIVITY ANALYSIS OF PARAMETERS
According to above descriptions, there are two major param-
eters in our prediction model IIRWR, one is the parameter
α in formula (6), and the other is the parameter r in the
formula (13). In this section, the effects of both parameters
to the performance of our prediction model were estimated.
For testing the effect of the parameter α, a series of AUCs in
the framework of LOOCV with α varying from 0 to 1 were
calculated. The simulation results in Table. 2 demonstrates
that IIRWR achieves the best prediction performance when
α = 0.6.
Similarly, with r varying from 0.1 to 0.9. IIRWR achieve

the best prediction performance when r = 0.4 (Table. 3).
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TABLE 2. AUCs achieved by IIRWR in LOOCV with different values of α.

TABLE 3. AUCs achieved by IIRWR in LOOCV with different values of r.

TABLE 4. Top 10 potential cervical cancer-related lncRNAs predicted by
IIRWR and confirmed by PubMed unique identifier.

C. CASE STUDIES
Cancer and leukemia have threatened human beings for hun-
dreds of years [35], [36]. In order to further confirms the
practical prediction performance of our IIRWRmodel, cervi-
cal cancer and leukemia were selected as case studies. while
simulation, only those leukemia-related lncRNAs and cervi-
cal cancer-related lncRNAs which have not been included
in the data set of 1695 known lncRNA-disease associations
would be considered as validation candidates. And moreover,
all predicted lncRNAs associated with leukemia and cervical
cancer would be ranked according to their scores respectively.
Top 10 disease-related lncRNAs predicted by the IIRWR
were confirmed by experiments and articles downloaded
from NCBI, and the corresponding evidence was listed in
Table. 4 and Table. 5.

A large number of evidences proves that lncRNA plays
a key role in the development of cervical cancer [37], [38].
As exhibited in Table. 4, when implementing IIRWR to
predict cervical cancer-related lncRNAs, there are 8 out of
the top 10 predicted candidate lncRNAs having been con-
firmed by biomedical literature. Rankings of the other two
lncRNAs without being confirmed were 8th and 10th, respec-
tively. Similarly, abnormalities of some lncRNAs have been
reported closely related to the development of leukemia
[39], [40]. As displayed in Table. 5, 10 out of the top 10 pre-
dicted candidate lncRNAs having been confirmed by biomed-
ical literature.

In summary, IIRWR achieves satisfactory and reliable
prediction performance in prediction of potential lncRNA-
disease associations.

TABLE 5. Top 10 potential leukemia-related lncRNAs predicted by IIRWR
and confirmed by pubMed unique identifier.

IV. DISCUSSIONS
Accumulating evidence manifested that lncRNAs play crit-
ical roles in various biological processes and relate to the
pathological change of human diseases. However, verifica-
tion of lncRNA-disease associations through bio-experiments
is costly and time-consuming. Therefore, it is necessary and
feasible by using an effective computational model to infer
potential lncRNA-disease associations. In this study, a novel
computational model called IIRWR was constructed based
on random walk with internal tendency. In order to assess
the prediction performance of IIRWR, various experiments
have been carried out, simulation results show that IIRWR
achieves reliable AUCs of 0.8080, 0.8363 and 0.8745 under
the framework of 5-fold CV, 10-fold CV and LOOCV, respec-
tively. Comparing with traditional state-of-the-art computa-
tional models, IIRWR outperforms more as well. In addition,
in case studies, experimental results further verify that 8
out of the top 10 predicted lncRNAs and 10 out of top 10
predicted lncRNAs are associated with cervical cancer and
leukemia separately, which strongly supports that IIRWR
greatly improves the recognition of potential lncRNA-disease
associations.

Even so, the current version of IIRWR has limitations.
For example, only 1695 known lncRNA-disease associations
have been adopted by IIRWR, the prediction accuracy of
IIRWR will improve higher if more known lncRNA-disease
associations are added. Additionally, when applied IIRWR
in the situation that a disease has no association with any
lncRNA, we tried to change the initial probability vector
to the weight probability vector of lncRNAs related to the
clique of the specific disease, however, the effect is not very
satisfactory. Certainly, all problems in the current version of
IIRWR will be the focuses of our following researches.
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