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ABSTRACT As key components in a rotating machinery system, bearings affect the safety of the entire
mechanical system. Hence, early-stage monitor of bearing degradation is critical to avoid abrupt mechanical
system failure. In this paper, a novel bearing performance assessmentmodel is constructed based on ensemble
empirical mode decomposition (EEMD) and affinity propagation (AP) clustering. Unlike most clustering
methods, AP clustering, which automatically finds the center of all available clusters, can determine the
bearing degradation status without an experience-based selection of the number of degradation states.
The original bearing vibration signal is first decomposed by EEMD and its degradation fault features are
extracted from the singular-value decomposition of intrinsic mode functions. Then, the degradation features
are selected as the input of AP clustering to find the cluster centers of different bearing health statuses:
‘‘normal’’, ‘‘slight’’, and ‘‘severe’’. Last, a health evaluation indicator, referred to as the confidence value,
which is obtained from the dissimilarity between actual samples and the various cluster centers, is used to
evaluate the bearing health status. To prove the superiority of the approach, the proposed model is compared
to various popular clustering methods, including, k-means, k-medoids, fuzzy c-means, Gustafson-Kessel,
and Gath-Geva, and commonly used time-domain indicators such as root mean square and kurtosis. The
experimental results show that the proposed method outperforms the above time-domain indicators and
clustering methods in monitoring early-stage degradation, without presetting the number of clusters.

INDEX TERMS Affinity propagation clustering, bearings, ensemble empirical mode decomposition,
performance degradation assessment.

I. INTRODUCTION
Rolling element bearings are widely used in mechanical
machines to support rotating shafts. However, bearing failure
is the main cause of mechanical failure. Therefore, early-
stage detection of bearing degradation is vital [1]. Vibration
signals are commonly used to monitor bearing health. This
requires a signal processing model to process the original
vibration signal.

The associate editor coordinating the review of this manuscript and
approving it for publication was Mariela Cerrada.

Many signal-processing methods, including various time
and frequency domain indices [2]–[5], wavelet trans-
formation (WT) [6]–[9], empirical mode decomposi-
tion (EMD) [10]–[12], and ensemble empirical mode
decomposition (EEMD) [13]–[15], have been proposed.
Theodoros et al. used time-frequency indicators with a
wavelet transform to assess the roller bearings’ diagnostic
performance [16]. Rodney et al. proposed a data-driven
approach that relies on time-frequency domain features,
including root mean square (RMS), to describe the evolution
of bearing faults [17]. Shen et al. used various time-frequency
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FIGURE 1. The flowchart of the proposed method.

metrics includingRMS andWT to extract fault characteristics
of rotating machinery. [18]. Tse andWang proposed an RMS-
based method that pre-processes vibration signals through
pre-specified frequency bands to establish health indicators
for performance degradation assessment (PDA) of bear-
ings [19]. Lei et al. also used RMS to evaluate the degradation
trend of bearings. Their experiments showed that the RMS
can effectively describe the bearing degradation state [20].
Rai et al. used WT to enhance the pulse characteristics of
the bearing signal to improve the quality of the fault feature
extraction [21]. Qiu et al. [22] proposed a model based on
WT and self-organizing maps to establish health indicators
for robust bearing PDA. The eigen-vectors are combined
with the RMS, kurtosis, and crest factor to measure the time-
frequency domain. However, the WT method suffers from
the need to select a wavelet function. The appropriate scale
factor, shape factor, and center frequency must be selected
in WT to ensure that the fault characteristics of the extracted
bearings are accurate. WT is therefore unsuitable for adaptive
decomposition of vibration signals. EMD is an adaptive
method that overcomes the above disadvantages because the
center frequency and bandwidth of the EMD filter can be
adaptively decomposed into intrinsic mode functions (IMFs)
according to the order of frequency from high to low [23].
However, several problems arise with EMD, especially mode
mixing. To overcome this shortcoming, Wu et al. developed
EEMD as an improvement over EMD [24]. The main idea of
EEMD is to suppress the mode mixing problem by adding
white noise. Both methods have been successfully applied
to bearing PDA and fault diagnosis. Zhao et al. incorporated
a consideration of approximate entropy (AE) into EMD to
evaluate the bearing fault size [10]. Zhang et al. used EEMD
to decompose the vibration signal of the rolling bearing into
a series of IMFs, and then calculated the IMF entropy by

FIGURE 2. Overview of PRONOSTIA.

considering the energy entropy. Then, the extracted features
were used as the input of a support vector machine (SVM)
to diagnose the bearing faults [25]. A method for bearing
fault diagnosis using EEMD, sample entropy, and SVM was
used in [26]. Rai et al. proposed a method based on EEMD
and k-medoids to implement bearing PDA and proved that
the method is superior to RMS and kurtosis [27]. Given the
above-mentioned successes of EEMD in a wide range of
signal processing and fault diagnosis tasks, the method was
chosen to process the original vibration signal in this study.

After the EEMD decomposition, the next step is to estab-
lish an evaluation model to build a health indicator for the
bearing PDA that accurately identifies the input character-
istics based on the bearing’s health state. Clustering is one
of the most commonly used methods for PDA construc-
tion and does not require manual data tags. Pan et al. pro-
posed a method based on WT and fuzzy c-means (FCM)
to implement bearing PDA. Although the constructed health
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FIGURE 3. The time domain vibration waveform of (a): Bearing 11; (b): Bearing 12; (c): Bearing 13; (d): Bearing 14.

TABLE 1. Experimental data of the roller bearings under different
conditions.

indicators could effectively monitor bearing degradation at
the end of bearing life, they could not effectively track the
early stages of deterioration of the bearing [28]. Rai et al.
used k-medoids clustering to construct a PDA model. They
first used EEMD to decompose the original vibration sig-
nal, then used singular value decomposition (SVD) to find
the singular value (SV) as the input of the k-medoids to
locate three different state cluster center points, including
‘‘normal’’, ‘‘slight’’, and ‘‘severe’’. Finally, a health indicator
named the confidence value (CV) was calculated from the
distance between each sample and the cluster center point
under the normal state, andwas used to implement the bearing
PDA [27]. However, FCM is only applicable to data sets with
homogeneous structures because it uses Euclidean distance to
calculate the similarity of any two samples. To overcome this
shortcoming, Gustafson-Kessel (GK) clustering was devel-
oped as an FCM-based reinforcement method whose core
idea is to use the adaptive distance norm and covariance
matrix to calculate the distance between sample points [29].
FCM and GK are only applicable to data sets with spher-
ical structures, while the data sets obtained from various
engineering systems are non-spherical. Therefore, the Gath-
Geva (GG) clustering method was developed to solve this
problem, which uses fuzzy maximum likelihood estimation

to calculate the distance norm, making it applicable to data
of various shapes [30].

Moreover, all of the above clustering methods require
the user to preset the number of cluster center points, and
these center points are often filtered by experts with practical
experience. Due to the non-linearity and complexity of the
vibration signal, it is difficult to obtain a suitable number
of empirically determined clusters for a range of complex
systems. Under normal circumstances, practical experience
suggests that the wear state can be divided into three cate-
gories: normal, slight, and severe. However, if the bearing
states transits abruptly between only two states, i.e. normal
and severe, such reliance on practical experience may lead to
misjudgment. Therefore, a knowledge-driven learning model
is needed to automatically determine the optimal number of
clusters.

The core feature of AP clustering is its sole use of respon-
sibility and availability indicators to decide the probability
of a point becoming a cluster center without prior knowl-
edge [31]. AP clustering has previously been applied in fault
feature selection and fault diagnosis. Ze et al. [32] proposed a
method based on EEMD, WT, and AP clustering for adaptive
feature selection. In their work, a number of fault features,
such as time-frequency domain indicators, IMFs with time
domain indicators, and wavelet decomposition energy, were
filtered by a weight self-weight algorithm to obtain sensitive
features at the first step. Then AP clustering was used to
find suitable cluster centers, which were used to calculate
the similarity matrix between each sensitive feature and the
chosen cluster center points to obtain the optimized features.
Finally, the optimized features were taken as the input of AP
clustering for bearing fault diagnosis. However, the use of
AP clustering method to establish health indicators of bearing
status has so far been rare.
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FIGURE 4. The results of EEMD decomposition for bearing 11.

In this work, an AP clustering method for bearing PDA
assessment is proposed. The main contributions of this work
are as follows:

(1) This paper first introduces the AP clustering to bearing
PDA construction. Compared with other popular clustering
methods, such as k-means and k-medoids, which require
manual selection of cluster number in advance, the AP clus-
tering automatically locates all the available cluster centers.

(2) Moreover, instead of calculating only one CV value,
CV values corresponding to different cluster centers are eval-
uated to better determine the bearing status for each sample,
especially when bearing encounters status transition.

(3) Finally, to demonstrate the performance of the proposed
framework (EEMD-SVD-AP) in indicating bearing status,
it is compared with other popular clustering methods, includ-
ing FCM, GK, GG, k-means, k-medoids, and time domain
indicators (RMS and kurtosis).

The rest of this paper is organized as follows. The basic
theory of EEMD, SVD, and AP clustering is introduced
in Section II. Section III describes the experimental plat-
form and step-by-step introduction to the proposed method.

FIGURE 5. Correlation coefficients between the IMFs and original
vibration signals.

Section IV shows the experimental validation and compara-
tive analysis. The conclusion is presented in Section V.

II. BASIC THEORY OF EEMD AND AP
A. THEORETICAL FRAMEWORK OF EEMD
EEMD is proposed to overcome the mode mixing problem in
EMD by Wu and Huang [24]. In this paper, the calculation
procedure is as follows (basically following [33]):
Step 1:Given that X (t) is the original vibration signal, add

a random white noise signal nj (t) to X (t)

Xj (t) = X (t)+ nj (t) (1)

whereXj (t) is the noise-added signal, j = 1, 2, 3, · · · ,m, and
m is the number of trials.
Step 2: Decompose the original signals X (t) into IMFs by

using EMD as follows:

Xj (t) =
Nj∑
i=1

cij + uNj (2)

where cij indicates the ith IMF of the jth sample, uNj denotes
the residue of the jth sample, and N is the number of arrange-
ments of the jth sample.
Step 3: If j < m, then duplicate steps 1-2, adding random

white noise at each cycle.
Step 4: After ensuring that I = min (N1,N2, · · · ,Nm),

compute the ensemble average of the IMFs of the decompo-
sitions as the final results according to (3).

ci =

 M∑
j=1

ci,j

 /m (3)
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FIGURE 6. SV features extracted for bearing 11-14 from the first two IMFs using SVD.

Step 5: ci (i = 1, 2, 3, · · · , I ) denotes the ensemble aver-
age of each IMF of the decompositions.

B. THEORETICAL FRAMEWORK OF AP
The AP clustering algorithm proposed by Frey and
Dueck [27] is based on neighbor information propagation.
Unlike FCM, GK, and GG, which compute the mean value
of the data points to obtain the centers of the clusters, AP
clustering considers all samples as candidates for the cluster
center points. The purpose of AP clustering is to produce a
similarity clustering model between N samples, where in this
paper the negative Euclidean distance squared is selected as
the similarity measure function for any two samples,

S (i, j) = −
∥∥xi − xj∥∥2 (4)

where S (i, j) is the similarity between xi and xj.
The AP clustering algorithm uses the responsibility R (i, k)

and availability A (i, k) to generate candidate cluster center
points. Each iteration of the AP clustering algorithm is the
process of alternately updating information between the two
parameters R (i, k) and A (i, k). Here R (i, k) is the likeli-
hood of k th point xk to be the cluster center of ith point
xi, A (i, k) denotes the suitability of xi, and xk is its cluster
center.

The detailed calculation steps of the AP clustering
algorithm are as follows:
Step 1: Initialize the similarity matrix S by the similarity

between any two samples. Set up the largest number of
iterations tmax .
Step 2: Calculate R (i, k) and A (i, k) of each sample

using (5-6).

R (i, k) = S (i, k)− max
j
{A (i, j)+ S (i, j)}

j = 1, 2, · · ·N and j 6= i, k (5)

A (i, k) = min

0,R (k, k)+
∑
j

max (0,R (i, k))


j = 1, 2, · · ·N and j 6= i, k (6)

R (k, k) = P (k)− max
j
{A (k, j)+ S (k, j)}

j = 1, 2, · · ·N and j 6= k (7)

Step 3:Determine whether the k th point can be taken as the
cluster center point according to (7).

R (k, k)+ A (k, k) > 0 (8)

Step 4: Update R (i, k) and A (i, k) of each sample.

R (i+ 1, k) = (1− lam) · R (i, k)+ lam · R (i− 1, k) (9)

A(i+ 1, k) = (1− lam) · A(i, k)+ lam · A(i− 1, k) (10)
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FIGURE 7. Two-dimensional clusterings of bearings using AP clustering (a): Bearing 11 (b): Bearing 12 (c): Bearing 13 (d): Bearing 14.

Steps (3-4) are utilized to compute the R (i, k) and A (i, k)
for each sample. Here lam in (9-10) denotes the damping
factor. When updating the messages, it is important to avoid
numerical oscillations in some cases.
Step 5: If t is greater than the maximum number of iter-

ations tmax or the model reaches the termination condition,
terminate the process. Otherwise, go back to step 2.

III. PROCEDURES FOR THE PROPOSED METHOD
This section presents the step-by-step introduction to the
proposed method.

(1) The first step is feature extraction. First, all bearing
samples are decomposed as sums of IMFs by EEMD. Then
singular value decomposition is applied to obtain the first SV
(SV1) and the second SV (SV2). The projected data samples
are then served as the input of the proposed clustering method
and other methods to be compared with.

(2) The second step is the building of the bearing PDA
model. SV1 and SV2 are used to find the cluster center point
among three states (normal, slight, and severe).

(3) The final step is status assessment. The sample dis-
similarity is defined as the squared Euclidean distance

between them. The degeneration index (DI) to a cluster is
calculated as the dissimilarity to the center of the cluster.
Therefore, the larger DI, the less likely the sample belong to
the cluster. The DI is further transformed into the confidence
value (CV) using the following equation:

CV = exp(−DI/c) (11)

where c is a proper scale factor. Unlike other clustering meth-
ods, where only one CV is calculated, our method obtains a
CV vector corresponding to each clustering spotted, each CV
value is interpreted as the likeliness of the sample been in the
corresponding cluster.

Finally, the performance of PDA extraction using the pro-
posed method is compared with other clustering methods.
Additionally, the method presented is compared with the use
of RMS and kurtosis. The above procedures are schematized
in Fig. 1.

IV. EXPERIMENT AND COMPARISON
A. ORIGINAL VIBRATION SIGNAL
The rolling bearing experiment were conducted using the
PRONOSTIA platform in the FEMTO Institute at the
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FIGURE 8. Calculated CVs when AP cluster center points are used in different conditions, including normal, slight, and severe (a): Bearing 11
(b): Bearing 12 (c): Bearing 13 (d): Bearing 14.

University of Franche-Comté, France [34]. An annotated
photograph of the test platform is shown in Fig. 2.

Initially, the roller bearings have no defect. As the bearing
speeds up and the radial load increases, the accelerated life
test reproduces the entire degradation process of the bearing
in a few hours. Therefore, the entire life cycle data of the
rolling bearing can be quickly obtained and meanwhile vari-
ous kinds of fault may be generated under different working
conditions. The platform includes seven roller bearings in
total. In this experiment, the roller bearing 11-14 were used.
Table 1 summarizes the detail of the experiment setup.

Collected time domain waveforms for the original vibra-
tion signals of bearing 11, 12, 13, and 14 are shown in Fig. 3.
Conventionally, a bearing is classified into one of the three
degradation states including normal, slight, and severe.

Bearing 11 was sampled 2803 times with a length
of 2560 for each sampling. As shown in Fig. 3(a), bearing
11’s vibration signal increases gradually over time. During
the normal state, the amplitude range of the vibration sig-
nal does not change substantially. Compared with the nor-
mal state, slight and severe have a significant increase in
amplitude, especially for severe state. Bearing 13 is similar
to bearing 11. In contrast, the vibration signal of bearing
12 contains noise in the normal state. The amplitude of the
vibration is basically constant until it increases sharply to the
highest value in the final stage. Therefore, bearing 12 has
only two stages at first glance: normal and severe. It should
be mentioned that the vibration signal of bearing 14 looks
similar to that of bearing 12, but bearing 14 has the same
three stages of degradation as bearing 11. From Fig. 3(d),
the bearing 14 signal shows a gradual increase from normal
to slight. Unlike bearing 12, the bearing 14 signal has two

phases of sharp increase in vibration amplitude, highlighted
by a red rectangle (slight) and a red dotted rectangle (severe),
while bearing 12 has only one such phase. Therefore, three
degradation states, including normal, slight, and severe, are
observed for bearing 14. The following experimental results
will demonstrate that AP clustering can accurately distin-
guish the different degradation stages of these bearings with-
out the need for a user with practical experience to select
the center points of the assembly. In addition, a compara-
tive analysis of AP clustering with other clustering methods
(including k-means, k-medoids, FCM, GK, and GG) and
time domain indicators (RMS and kurtosis) will be presented.
bearing 14 signal has two phases of sharp increase in vibration
amplitude, highlighted by a red rectangle (slight) and a red
dotted rectangle (severe), while bearing 12 has only one such
phase. Therefore, three degradation states, including normal,
slight, and severe, are observed for bearing 14. The follow-
ing experimental results will demonstrate that AP clustering
can accurately distinguish the different degradation stages
of these bearings without the need for a user with practical
experience to select the center points of the assembly. In
addition, a comparative analysis of AP clustering with other
clustering methods (including k-means, k-medoids, FCM,
GK, and GG) and time domain indicators (RMS and kurtosis)
will be presented.

During the signal decomposition phase, the original vibra-
tion signal is decomposed by EEMD into a series of IMFs
and arranged in frequency order. However, there are two key
parameters in EEMD that need to be set, the ensemble number
m and the amplitude of the addedwhite noise ni (t) [13], [35]–
[37]. In general, accurate results can be obtained if the
ensemble number is set to a few hundred, and if the added
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FIGURE 9. Calculated CVs when AP cluster center points on timescales extended through the entire lifetime are used in different conditions: normal,
slight, and severe (a): Bearing 11 (b): Bearing 12 (c): Bearing 13 (d): Bearing 14.

white noise is a small fraction of the standard deviation.
Then, an error of less than 1% is likely. In [11], the author
suggests that the added white noise should be about 20%
of the original signal standard deviation. In this paper, m =
100. Fig. 4 shows the result of the EEMD decomposition for
bearing 11.

In Fig. 4, the first IMF of bearing 11 has the largest ampli-
tude range of all IMF components, and the second IMF com-
ponent has the second largest amplitude range. These results
indicate that the first several IMFs contain the primary and
most useful characteristic information of the original signal.
To determine the degree of correlation between each IMF and
the original signal, the correlation coefficient is calculated.
The closer the correlation coefficient is to 1, the stronger
the correlation and vice versa. The calculated correlation
coefficients between the original signal and each IMF for all
bearings are shown in Fig. 5.

As can be seen, the first two IMFs have the highest and
the second highest correlation coefficient values. To facilitate

data visualization of the clustering results, the first two IMFs
are selected and used to calculate the SV value. The first two
SVs calculated for all bearings are shown in Fig. 6.

All of the SV curves accurately represent the trend in
degradation of the respective bearings. The trend of degra-
dation is a gradual increase for bearing 11 and 13, while
bearing 12 and 14 appear to jump suddenly to the final wear
stage. Comparedwith bearing 12, the degradation tendency of
bearing 14, highlighted by the red rectangle, is more gradual,
while the black rectangle shows that the jumping behavior
of bearing 12 is obviously stepwise. Therefore, only two
degradation states (normal and severe) are experienced during
the life of bearing 12, while bearing 14 has both slight and
severe degradation stages in addition to normal. These results
indicate that EEMD combined with SVD has a good ability
to extract the finer features of degradation. To identify the
degradation state automatically, the next step is to use AP
clustering to find the available cluster center points during
the normal, slight, and severe degradation states.
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FIGURE 10. Two-dimensional clusterings of bearings using different clustering methods (a-d): k-means (e-h): k-medoids (i-l): FCM (m-p): GK (q-t): GG.

B. PARAMETER SETTING
In this section, FCM, GK, GG, k-means, k-medoids, and AP
clustering methods are used to find the cluster center points
at each degradation phase followed by a comparative analysis

of these methods. For this purpose, some parameters must be
pre-determined.

(1) FCM, GK, and GG: The number of cluster center
points c for bearing 11, 13, and 14 is 3, while that for
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FIGURE 11. CV values calculated for bearing 11 by various clustering methods (a): AP, (b): k-means, (c): k-medoids, (d): FCM, (e): GK, (f): GG.

bearing 12 is 2. At the same time, the termination tolerance
ε = 1e − 6. Euclidean distance is used as distance between
any two samples.

(2) k-means, k-medoids: The setting of the number of clus-
ter center points is the same as above. Again, the Euclidean
distance is adopted.

(3) AP: the parameter p is usually fixed as the median value
of the input similarities matrix. In (9-10), the parameter lam
is often set within [0.6, 1] [29]. Here, we adopt lam = 0.9,
and the largest iterative number tmax = 100.

C. RESULTS OF AP CLUSTERING
Clustering results using the AP method are shown in Fig. 7,
where three clusters are identified for bearing 11, 13, and 14,
while two clusters are identified for bearing 12, with the
black squares on the figure representing the cluster center
points. These clusters correspond to different degradation
states including normal, slight, and severe. The determination
of the cluster status is based on the SV value. As observed
from Fig. 6, the SV value increases in general as the bearing
degrades. Therefore, in Fig. 7, normal (red triangle), slight
(blue diamond), and severe (red dot) clusters are identified for
bearing 11, 13, and 14, while normal (red triangle) and severe
(red dot) clusters are identified for bearing 12. The clustering
results coincide with the observation in Fig. 3. Therefore,
the APmethod successfully identified all the available cluster
center points for all four bearings.

Fig. 8 shows the CV values calculated for the clusters of
the bearings. The consideration of all the CVs of different
clusters help us better determine the wear state of the bearing.
Take bearing 11 for example, three clusters are determined
by the proposed algorithm, which is further identified as
normal, slight and severe. Initially, the CV value corresponds
to normal cluster is the maximum, indicating the bearing
is functioning well. Around sample 1500, normal CV value
starts to decrease, while slight CV value increases, indicating

the transition of the bearing state. Finally, at around sample
2850, the bearing state shifts abruptly to severe as the CV
value of slight drops drastically and that of severe increases
accordingly. Fig. 9 provides more details on the status transi-
tion areas. It’s worth mentioning that the evolution of the CV
matches the time domain observation of the bearing status as
in Fig. 3. For bearing 12, 13 and 14, similar results can be
obtained as of bearing 11.

In summary, the proposed APmethod can properly address
the number of bearing status, meanwhile the CV curve pro-
vides an intuitive way to precisely determine the bearing
status for each sample.

D. COMPARISON WITH K-MEANS, K-MEDOIDS,
FCM, GK, AND GG
In this section, the PDA performance of AP clustering is com-
pared with the commonly used k-means, k-medoids, FCM,
GK, andGGmethods. The two-dimensional clustering results
for all the bearings are shown in Fig. 10. The CVs for bearing
11, 12, 13, and 14 are illustrated in Fig. 11, 12, 13, and 14,
respectively.

As in Fig. 10, the k-means and k-medoids successfully
address all the clusters and present almost identical clustering
results. While FCM and GK, both fail to distinguish the
slight state from the normal state. The GG method presents
the worst clustering results, which fails on bearing 11 and
bearing 14. Nonetheless, it is still necessary to observe the
CV curve from all clustering methods to further determine
their effectiveness.

From Fig. 11 to Fig. 14, the performances of all the clus-
tering methods are divided into three groups based on the
likeliness of the resulting CV curves, a) AP and k-means;
b) k-medoids, FCM and GK; c) GG.

For all four bearings, the resulting CV curves of the
k-means method are verisimilar to those of the proposed
AP clustering method. However, when the cluster number
is unknown or incorrectly initialized, the k-means method
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FIGURE 12. CV values calculated for bearing 12 by various clustering methods (a): AP, (b): k-means,
(c): k-medoids, (d): FCM, (e): GK, (f): GG.

FIGURE 13. CV values calculated for bearing 13 by various clustering methods (a): AP; (b): k-means; (c): k-medoids; (d): FCM; (e): GK; (f): GG.

generates very different CV curve. For instance, Fig. 15
presents the CV curves of bearing 11 when cluster is ini-
tialized as 2 and 3 for the k-means method. When there are
only two clusters, although it is still possible to distinguish
the normal and severe states, the CV curve associated with
the normal state first decreases and then increases, which
indicates the bearing state is not stable. Moreover, early-
stage detection of the commencement of the slight status in
bearings enables the maintenance personnel adequate time
to execute the rehabilitation actions. In comparison, the pro-
posed method presents almost identical CV curve, but is free
of the trouble to initiate the cluster number.

The performance of k-medoids, FCM and GK are less
satisfying. When there are three clusters, namely for bear-
ing 11, 13 and 14, these methods are not always capable of
differentiating the slight status. Take bearing 11 for example,
the CV value of normal and slight statuses from the three
methods are all very close to 1, making it difficult to tell the
actual bearing states.

For GG method, it simply fails for all bearings. For
bearing 11, 12 and 13, the CV values for all states are 1,
making it impossible to determine the bearing states. For
bearing 14, the CV value of normal and slight statuses are not
distinguishable.
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FIGURE 14. CV values calculated for bearing 14 by various clustering methods.

FIGURE 15. CV curves calculated by k-means with different preset clustering numbers.

These experimental results indicate that the PDA perfor-
mance of AP clustering is the same as k-means with cluster
number a priori and is superior to those of k-medoids, FCM,
GK, and GG despite of pre-determined cluster number.

E. COMPARISON WITH RMS AND KURTOSIS
In this section, the performance of the proposed method is
compared with the time-domain features RMS and kurtosis.
Fig. 16 and Fig. 17 show the results of RMS and kurtosis,
respectively.

In Fig. 16(a) and Fig. 16(b), some noise can be seen in the
normal condition, for example in the CV values before the
1490th sample for bearing 11 and before the 828th sample
for bearing 12, 13, and 14, which adds to the difficulties in
distinguishing the bearing state transition point. In contrast,
the CV curve from the proposed method is clearer and more

stable for the normal condition, as in Fig. 8 and Fig. 9.
Moreover, when bearing 11 transits from normal to slight at
around the 1490th sample in Fig. 9(a), there is a sharp increase
of CV value. For the RMS method, it increases steadily at
the 1490th sample, with no obvious features observed. While
the drastic change of CV value in Fig. 9 provides the user
with evidence of bearing status transition, especially from
normal to slight, the RMS plot is smoother, thus provides less
information, which is also verified on bearing 13 and 14, see
Fig. 9 and Fig. 16 for detail.

From Fig. 17(a), (b) and (c), kurtosis plot introduces
even larger fluctuations in the normal state than KMS plot,
which is again undesirable. What’s more, little information
can be extracted from Fig. 17 to determine the bearing
state transition point as compared with the proposed method
in Fig. 9.
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FIGURE 16. RMS results for different bearings (a): Bearing 11 (b): Bearing 12 (c): Bearing 13 (d): Bearing 14.

FIGURE 17. Kurtosis results for different bearings (a): Bearing 11 (b): Bearing 12 (c): Bearing 13 (d): Bearing 14.

Reinforcing the conclusions above, these results demon-
strate that the PDA ability of AP clustering is superior to that
of RMS and kurtosis.

V. CONCLUSION
This paper presents a new method for bearing PDA. First,
EEMD is used to decompose the bearing vibration signal into
IMFs. Second, the SV values obtained from the IMFs are
used to extract and calculate the degeneration vector of the
bearing. Then the extracted features are subject to AP clus-
tering to determine the cluster center. Finally, CV as a health

indicator was calculated from the distance between each
sample and the cluster center point under the normal state
to implement the bearing PDA. Compared with traditional
clustering method, the newly employed AP method doesn’t
require a pre-determined cluster number and is demonstrated
experimentally to truly identify all the cluster centers for
all bearings. The performance of proposed framework was
also compared with traditional methods k-means, k-medoids,
FCM, GK, and GG, and temporal features such as RMS and
kurtosis. When cluster number is known a priori, the k-means
and the proposed method yields almost identical results.
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Otherwise it is shown that the AP method provides superior
CV index than those methods in reflecting slight changes in
degradation status.
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