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ABSTRACT The process capability index (PCI) is widely used in an on-line quality control stage for
measuring and controlling the quality level of a production process. The calculation of PCI requires a large
number of samples, but in the off-line quality control stage, a certain production process in off-line quality
control stage only has a few individual observations. From the perspective of quality loss and tolerance
cost, this paper proposes a parameter and tolerance economic design approach for multivariate quality
characteristics based on themodified PCI with individual observations. The response surfacemodels of mean
and variance are constructed using individual observations, and exponential models are fitted according to
the tolerance cost data of design variables. A modified PCI is proposed with the consideration of three types
of quality characteristics. The optimal design variables and tolerances are obtained by a comprehensive
optimization model that is constructed based on the proposed PCI. An example of an isobutylene-isoprene
rubber (IIR) inner tube is used to (i) demonstrate the implementation of our proposed approach, (ii) improve
the PCI value and reflect the sensitivity of the deviation between process mean and specification, and
(iii) reduce the risk of increasing cost of quality caused by replicated experimental design and some other
unknown reasons.

INDEX TERMS Parameter, tolerance, economic design, multivariate quality characteristics, process
capability index, individual observations.

I. INTRODUCTION
Juran predicted that the 21st century would be the century
of quality [1]. Product quality is not only the lifeline of
enterprise, but also the key to winning customers world-
wide. In quality management, cost of quality (CoQ) was
first introduced by Feigenbaum and extensively studied as a
component of efforts to improve quality and reduce costs [2].
A widely used CoQ approach is the prevention-appraisal-
failure (PAF) model of Feigenbaum, which was also adopted
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by the American Society for Quality [3]. The PAFmodel uses
the preventive cost, appraisal cost and failure cost to describe
the total quality costs [4]–[6]. According to the PAF model,
we know that parameter design and tolerance design are
important sources of preventive and appraisal cost. Therefore,
the question of how to improve the technology of parameter
design and tolerance design is significant to improving the
quality level and reducing the total cost of quality.

In the area of modern quality engineering and manage-
ment, variation is considered as the main cause of quality
problems. Although variation cannot be eliminated com-
pletely, its impact on a production process can be controlled
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FIGURE 1. Relationship between off-line quality control and on-line
quality control.

using statistical tools and approaches [7]. Dr. Taguchi formed
the theory of on-line quality control and off-line quality con-
trol by applying statistical tools and economic approaches.
Taguchi introduced the three design approaches of system
design, parameter design and tolerance design, which are
widely used in off-line control [8]. The relationship between
off-line quality control and on-line quality control is illus-
trated in Figure 1. From Figure 1, we find that off-line
quality control and on-line quality control are implemented
in sequence. When the tolerance design constraint cannot be
satisfied, the system and parameter must be redesigned. This
type of improvement process always causes higher prevention
cost and appraisal cost due to replicated experimental design.
Therefore, it is beneficial to improve the optimal quality level
and reduce the CoQ by applying the technology of on-line
quality control to parameter design and tolerance design.

Parameter design is the key component of off-line qual-
ity control. The basic principle of parameter design is to
choose the optimal parameter sets that reduce the influ-
ence of noise variables and make the products more
robust and reliable. Many scholars have studied parameter
design [9]–[11]. System design and parameter design are
used to obtain the optimal design variables, and tolerance
design decides whether the tolerance range of design param-
eters should be adjusted from the perspective of economy.
In engineering practice, Dr. Taguchi’s ‘three designs’ are
conducted in sequence. Bisgaard and Ankenman [12] noted
that the optimal sets of design variables were obtained under
the assumption of a specific range of tolerance. However, in
tolerance design, the adjustment of tolerance means that the
optimal sets from parameter design are not actually optimal.
Therefore, it is necessary to implement parameter design and
tolerance design simultaneously. The related literature can be
consulted [13]–[20], but previous research only solves the
design problems of off-line quality control stage and does
not consider the indices of the on-line quality control stage.
Therefore, it is worthwhile to introduce the indices of on-line
quality control into parameter and tolerance design.

Statistical process control is an important on-line quality
control technology that consists of process capability analysis
and process control [21]. Process capability analysis focuses
on evaluating the ability of process thatmakes products or ser-
vices to meet given specifications. Such an ability is usually
measured by process capability indices [22], [23]. Certain
scholars suggested that process capability can be estimated
when PCI is introduced into the parameter and tolerance
design stages [24]–[26]. In previous studies, the approach to

solution of parameter and tolerance parallel design for mul-
tivariate quality characteristics is described as follows. First,
sample the experiment repeatedly and construct a response
surface model. Second, calculate the PCI for a single quality
characteristic. Third, establish a multivariate process capabil-
ity index (MPCI), and finally, treat it as an optimization func-
tion and obtain the optimal design variables using algorithms.
However, those studies overlooked three problems: (i) nor-
mally, the calculation of process capability index requires a
large amount of samples, but only individual observations can
be collected due to unreplicated experiments, as documented
in the literature [27]–[31]; (ii) these approaches primarily
aimed to fix only the-nominal-the-best type (NTB-type) qual-
ity characteristic but cannot be used on the-larger-the-best
type (LTB-type) and the-smaller-the-best type (STB-type)
quality characteristics; (iii) these approaches considered the
deviance of process mean from the target value but ignored
the difference between process mean and specification. This
paper proposes a new approach to solve these problems.

In this paper, we propose a parameter and tolerance eco-
nomic design approach based on the modified PCI for mul-
tivariate quality characteristics with individual observations.
First, the response surface models for process mean and
variance are constructed in terms of design variables and
tolerances. Second, the tolerance cost models are fitted with
the tolerance cost data of design variables. Third, according to
the types of quality characteristics and the deviance of process
mean from the specification, a modified PCI based on quality
loss and tolerance cost is proposed. Finally, a comprehensive
optimizationmodel based on themodified PCI is constructed.

The remainder of this article is organized as follows.
Section 2 supplies a review of parameter design and tolerance
design, Section 3 introduces the process capability index and
quality loss function, and Section 4 proposes the parameter
and tolerance economic design approach for multivariate
quality characteristics based on a modified PCI with individ-
ual observations. Section 5 describes an example to illustrate
the feasibility of the proposed approach and compares it with
other approaches, and Section 6 presents the conclusions.

II. LITERATURE REVIEW
Dr. Taguchi initially proposed a parameter design approach
based on inner-outer arrays and signal-noise ratio. Many
scholars subsequently researched the Taguchi parameter
design approach [32], [33]. The response surface method
(RSM) was first proposed by Box and Wilson [34] and intro-
duced in parameter design by Shoemarker et al. [35]. This
approach explored the relationship between design variables
and outputs using experiments, built a response surfacemodel
to establish an objective function, and finally obtained opti-
mal design variables using an optimization method [36], [37].
Vining and Myers [38] noted that the deviation of mean
from the target and the variance both cause variation and
proposed the dual response surface method (DRSM). With
the difference in customer demand for products, multi-
ple quality characteristics often must be considered in the
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optimization design of a product or process. Common sta-
tistical approaches for multivariate quality characteristics are
the quality loss function approach, Mahalanobis distance
approach, and desirability function approach [39]–[44].

Tolerance design is useful for quality improvement and
cost reduction. Jin et al. [45] researched tolerance design
based on nonsymmetrical quality loss in the case in which
the quality characteristic follows a non-normal distribution.
Zhao et al. [46] constructed a service model from the per-
spective of quality loss and tolerance cost according to the
distribution of the product life and proposed a parameter
economic design approach based on the quality loss of ser-
vice. Zhang et al. [47] considered the type of quality char-
acteristic and solved tolerance economic design problems
of hierarchical products based on the quality loss function.
Moreover, selected scholars proposed other tolerance design
approaches to solve problems in tolerance design [48]–[50].
These studies all assumed that the design variables are fixed
prior to tolerance design. According to Bisgaard’s view, engi-
neers can only obtain the true optimal design variables and
tolerances through parallel parameter and tolerance design.
Kim and Cho [13] solved the parameter and tolerance eco-
nomic design problem using the Taguchi quality loss cost and
tolerance cost. Jeang [14] performed parallel optimization
for design variables and tolerances by considering quality
variation and CoQ.Moskowitz et al. [15] analyzed the quality
loss cost and the supplier/manufacturer cost and researched
parameter and tolerance design problems for multivariate
quality characteristics using parametric and nonparamet-
ric approaches, respectively. Plante [16] used the quadratic
model to solve parameter and tolerance parallel design prob-
lems. Wu [17] proposed a parallel design approach for mul-
tivariate dynamic quality characteristics based on sequential
optimization. Park et al. [18] considered the impact of noise
factors and solved the parameter and tolerance parallel design
problem of a rechargeable battery using amixed experimental
design approach. Han and Tan [19], [20] proposed computer-
aided parameter and tolerance design approaches for com-
puter experiments, in which the means and tolerances of input
characteristics are simultaneously optimized to minimize the
total cost. The mentioned literature solved the design prob-
lems in off-line quality control but did not consider the indices
of on-line quality control. Therefore, the question of how to
combine on-line and off-line quality control approaches to
solve parameter and tolerance economic design problems is
a topic worthy of research.

PCI is used tomeasure the quality level of a production pro-
cess. Plante [24] proved that it is worthwhile to apply MPCI
to multiple-response optimization design of both product
and process. Jeang [25] analyzed the manufacturer cost and
quality loss cost and subsequently implemented parameter
and tolerance parallel design using MPCI. Jeang [26] used
the DSRM to build the models of mean and variations and
proposed an optimal function based on the MPCI from the
literature [25]. In the literature, the approaches all calculated
PCI via multiple sampling experiments but did not consider

the case of individual observations due to unreplicated exper-
iments. In this paper, we propose a parameter and tolerance
economic design approach based on MPCI with individual
observations.

III. RELEVANT FUNCTIONS
A. PROCESS CAPABILITY INDEX
In recent decades, the PCI was an important approach used
in on-line quality management. Various PCIs have been
proposed from the viewpoints of product specification and
quality loss [22], [23]. Juran et al. [1] first introduced the
concept of capability ratio and proposed the index Cp to
compare the evaluation of process output with the tolerance
range of design. The premise of process capability analysis is
that the process exists in a state of statistical control, which
means that the output has a stable and predictable distribution.
In this paper, we assume that the quality characteristic y is
normally distributed with mean µ and variance σ 2. When the
mean of the process output is consistent with the center of
specification limit, the Cp is expressed as follows [51]

Cp =
USL − LSL

6σ
(1)

where USL and LSL are the upper and lower specification
limits, respectively.

However, the mean of process output does not always coin-
cide with the center of the specification limits. Tomeasure the
process capability, Kane [52] and Chang et al. [53] proposed
indices Cpk and Cpm, respectively.

Cpk = min
{
USL − µ

3σ
,
µ− LSL

3σ

}
= (1− w)Cp (2)

Cpm =
USL − LSL

6
√
(µ− T )2 + σ 2

(3)

where w is the skewness, and T is the target value. When
Cpk < 1, the process capability is insufficient; when
1 ≤ Cpk < 1.5, the process capability is normal; and
when 1.5 ≤ Cpk , the process capability reaches the level
of 6 sigma, and we can loosen the tolerance to reduce the
production cost. Additionally, Cpm is known as the Taguchi
process capability index and is used to emphasize the quality
loss that results from the deviation of the quality characteristic
from the design target.

Pearn [54] considered the situation in which the process
mean is different from target and specification center and
proposed the index Cpmk .

Cpmk =
Cpk√(

µ−T
σ

)2
+ 1

(4)

To analyze the process capability of the production process
for multivariate quality characteristics, Wang and Du [55]
extended the PCI for a single quality characteristic to
multivariate quality characteristics and constructed the
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MPCI using the geometric average approach.

MCp =

[
v∏

m=1

Cp;m

] 1
v

(5)

where Cp;m is the process capability index for the m th vari-
able. Similarly, when themean of the output deviates from the
target value, we can obtain the following multivariate process
capability index.

MCpk =

[
v∏

m=1

Cpk;m

] 1
v

(6)

where Cpk;m is the process capability index for the
m th variable when the deviation exists.

B. QUALITY LOSS FUNCTION
Quality is an abstract concept and is highly difficult to pre-
cisely define. Conceptually, it is more appealing to consider
that the product has the best quality when it exactly meets
the requirements and that it suffers a loss of quality when
it deviates from the requirements [56]. Taguchi [57] defined
quality as follows: ‘‘quality is the loss a product causes to
society after being shipped, other than any losses caused by
its intrinsic functions’’. Furthermore, Taguchi quantifies the
deviations from the requirements in term of monetary units
using a quadratic loss function given by

L (y) = k (y− T )2 (7)

where k is the loss coefficient that transform the quality loss
to a value unit. To quantify quality loss, Taguchi proposed the
expected quality loss function

E [L (y)] = kE (y− T )2 = k
[
σ 2
+ (µ− T )2

]
(8)

Obviously, to reduce quality loss in the production pro-
cess, the variance of process output should be reduced under
the condition that the process mean is close to the design
target [46].

According to the Taguchi’s quality viewpoint, quality char-
acteristics can be divided into NTB-type, LTB-type and
STB-type quality characteristics. The quality loss function in
formulas (8) is only applicable for the NTB-type characteris-
tic. If the quality characteristic y is the STB-type and its value
is positive, the target of y can be set to zero. Thus, the quality
loss function is given by the following

L (y) = ky2 (9)

Similarly, if y is the LTB-type, 1/y. should be the
STB-type, and therefore, its quality loss function is given by
the following

L (y) =
k
y2

(10)

IV. PROPOSED APPROACH
A. MEAN AND VARIANCE MODELS OF QUALITY
CHARACTERISTICS
Normally, the design variables are fixed values in research
on parameter design of products and processes. However,
in engineering practice, the design variable is a normally
distributed variable with the nominal value as its mean
value [13]. This paper considers the problem of multivariate
quality characteristics and constructs the models of mean
and variance based on the design variables and tolerances.
Suppose that ym is the m th quality characteristic, xi is the
i th design variable, zi is the coding value of xi, and the
response surface model can be built as follows

ym(z) = βm0 +
n∑
i=1

βmizi +
n∑
j=i

n∑
i=1

βmijzizj + εm (11)

where βm0, βmi and βmij are coefficients associated with the
constant, first-order and quadratic terms, respectively, and
εm is random error and is assumed to follow a normal dis-
tribution N

(
0, σ 2

εm

)
. Applying the approach of least squares

based on the experimental data at each design point, the fitted
model for the transfer function is given by the following

ŷm(z) = β̂m0 +
n∑
i=1

β̂mizi +
n∑
j=i

n∑
i=1

β̂mijzizj (12)

where β̂m0, β̂mi and β̂mij are the least squares estimates of
βm0, βmi and βmij, respectively. By transforming the coded
variables to the original design variables, formula (12) can be
rewritten as shown

ŷm(x) = b̂m0 +
n∑
i=1

b̂mixi +
n∑
j=i

n∑
i=1

b̂mijxixj (13)

where b̂m0, b̂mi and β̂mij are the appropriate coefficients
associated with the constant, first-order and quadratic terms,
respectively.

In engineering practice, design variable xi is a random
variable that varies around the nominal value 1i and follows
a normal distribution with mean value N

(
1i, σ

2
xi

)
. When

xi is given, the models of mean and variance of m th quality
characteristic can be derived via Taylor expansion.

µ̂m (x) = Ŷm (x)+ 1/2
n∑
i=1

b̂miiσ 2
xi (14)

σ̂ 2
m (x) =

n∑
i=1

b̂mi + 2b̂miixi+
n∑

j=i+1

b̂mijxj +
i−1∑
j=1

b̂mjixj

2

× σ 2
xi + σ

2
εm

(15)

Based on the popular relationship between the tolerance and
variance of the design variable ti = 3σxi , formulas (14)
and (15) can be rewritten in term of x and ti as follows

µ̂m (x, t) = Ŷm (x)+ 1/18
n∑
i=1

b̂miit2i (16)
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σ̂ 2
m (x, t)= 1/9

n∑
i=1

̂bmi+2b̂miixi+ n∑
j=i+1

b̂mijxj +
i−1∑
j=1

b̂mjixj


×

2t2i + σ
2
εm

(17)

If the design variables are fixed values, the response sur-
face models for mean and variance are difficult to obtain
when the sampled data of output are individual observations.
Therefore, the PCI cannot be implemented in optimization
of design variables. In this paper, we assume that the design
variables follow a normal distribution, and we obtain the
models of mean and variance to solve this problem.

B. QUALITY LOSS COST MODEL
Based on the Taylor expansion approach, we construct the
model of quality loss cost cL;m for three types of quality
characteristics.

In formula (18), as shown at the bottom of the next page, for
the STB-type quality characteristic, we adopt the first three
terms of Taylor expansion to accurately calculate the quality
loss cost.

C. TOLERANCE COST MODEL
The aim of tolerance design is to reduce the variabil-
ity of product or process by decreasing the tolerance of
design parameters. Although tolerance design can improve
the robustness of process and product, enterprise applica-
tion requires more accurate equipment and skilled staff for
implementation. All of these factors result in an increase in
production cost. Therefore, in the tolerance design stage, the
designer should make a comprehensive decision on tolerance
and cost with consideration of their relationship. Currently,
certain scholars have proposed selected models for this rela-
tionship, such as the reciprocal model and exponential model.
In this paper, according to the actual condition of design vari-
ables, the exponential model is used to model the tolerance
cost with the following form.

ĉi (ti) = ĉ0 + ĉ1t
−2
i (19)

The corresponding model for the total tolerance cost of all
design variables can be found as shown

CM (t) =
n∑
i=1

ĉi (ti) =
n∑
i=1

ĉ0;i +
n∑
i=1

ĉ1;it
−2
i (20)

D. MODIFIED PCI WITH QUALITY LOSS COST AND
TOLERANCE COST
In the research on process capability analysis and tolerance
design, it is often assumed that the quality characteristic
is the NTB-type. Formulas (1) to (4) are applied for the
NTB-type characteristic but cannot be applied to LTB-type
and STB-type characteristics. Considering the type of quality
characteristic, the process capability index can be expressed

as follows.

Cpk;m (x, t)=



dm−2
∣∣µ̂m (x, t)−Mm

∣∣
3σ̂m (x, t)

NTB− type

USLm−µ̂m (x, t)
3σ̂m (x, t)

LTB− type

µ̂m (x, t)−LSLm
3σ̂m (x, t)

STB− type

(21)

where dm = (USLm − LSLm)
/
2 is half the length of the

specification interval, and Mm = (USLm + LSLm)
/
2 is the

mid-point of the specification interval. Hence, referring to the
calculation of Cpmk in formula (4), the index Cpmk;m based on
the quality characteristic type can be expressed as

Cpmk;m (x, t)

=



dm−
∣∣µ̂m (x, t)−Mm

∣∣
3
√
σ̂ 2
m (x, t)+

[
µ̂m (x, t)− Tm

]2 NTB− type

USLm−µ̂m (x, t)

3
√
σ̂ 2
m (x, t)+µ̂2

m (x, t)
LTB− type

µ̂m (x, t)− LSLm

3

√
1

µ̂2
m (x, t)

[
1+

3σ̂ 2
m (x, t)

µ̂2
m (x, t)

−
4σ̂ 3

m (x, t)
µ̂3
m (x, t)

] STB− type

(22)

Obviously, the Cpmk;m from formula (22) considers the
Taguchi quality loss and emphasizes the impact of deviance
of the mean from target value. However, previous researchers
did not consider the tolerance cost. According to the principle
from the literature [25], a modified process capability index
is proposed with the quality loss cost and tolerance cost as
formula (23) at the bottom of the next page.

E. COMPREHENSIVE OPTIMIZATION MODEL
This paper transforms the variation from mean and variance
to quality loss cost through the Taguchi quality loss function
and measures the tolerance cost. Based on these two types of
cost, we obtain the modified PCI model of the quality char-
acteristic and construct a MCpmkc. Thus, the parameter and
tolerance economic design is described as in the following
mathematical problem.

maxF = MCpmkc =
M∏
m=1

Cpmkc;m (x, t)

st. x−i ≤ xi ≤ x
+

i

y−m ≤ ym ≤ y
+
m

i = 1, · · · , n

m = 1, · · · ,M (24)

where x−i and x+i are the lower bound and upper bound of
design variable xi, and y−m and y+m are the constraint lower
bound and upper bound for yi, respectively. From the form of
objective function (25), we know that this is a global nonlin-
ear optimization problem and can be solved by a nonlinear
optimization algorithm.
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F. FRAMEWORK AND PROCEDURE
In this paper, considering the types of quality characteris-
tics and the deviance of process mean from the specifica-
tion center, we propose an economic optimization design
approach that addresses the parameters and tolerances for
multivariate quality characteristics. The framework and pro-
cedure are illustrated in Figure 2. This approach solves the
problem with the pattern of design-experiment-modeling-
optimization. This approach contains six steps described as
follows.

Step 1: According to the actual case, we ascertain the
types of quality characteristics and the levels of design
variables. We form the experiment plan by analyzing the
constraints in experiments. If the number of design vari-
ables are greater than three, a central-composite design
approach is used; otherwise, a factorial design approach
is used [58]. The corresponding data are collected via
experiments.

Step 2: The response surface model of every quality
characteristic is fitted using the experimental data from
step 1. Considering the distributions of design variables,
the response surface models of mean and variance of every
quality characteristic are constructed based on the design
variables and tolerances.

Step 3: According to the range of the tolerance from step 1,
a tolerance cost experiment is implemented, and the data are
collected.

Step 4: The tolerance cost models are fitted with the toler-
ance cost data from step 3.

Step 5: Based on the model of quality loss cost and tol-
erance cost, the modified PCI with tolerance cost model is
obtained and is used to construct the MPCI.

Step 6: The MPCI is treated as an objective function.
By maximizing the objective function, the optimal design
variables and tolerances are obtained via a nonlinear opti-
mization algorithm.

TABLE 1. Design variables and their levels in the IIR inner tube
experiment.

V. EXAMPLE
A. EXPERIMENT ON IIR INNER TUBE
The production process for IIR inner tube involves multiple
design variables and quality characteristics, and the toler-
ances have a highly significant impact on the manufacturing
cost [59], [60]. Therefore, it is necessary that the parameters
and tolerances are designed in parallel from an economical
perspective.
Step 1:The semi-reinforcing furnace black (x1), sulfur (x2),

and TMTD (x3) are the design variables, and the tear strength
(y1) and stretching strength (y2) are the quality characteris-
tics. This paper studied the design variables and their toler-
ances and calculated their optimal values. The two quality
characteristics are both LTB-type characteristics and must
satisfy the constraints y1 ≥ 15 and y2 ≥ 55, respectively.
The ranges of the design variables are 20 ≤ x1 ≤ 40,
0.8 ≤ x2 ≤ 2 and 0.8 ≤ x3 ≤ 2.2. In practice, the design
variables follow a normal distribution with the nominal value
as their mean. Therefore, it is assumed that
x1 ∼ N

(
11, σ

2
x1

)
, x2 ∼ N

(
12, σ

2
x2

)
and x3 ∼

N
(
13, σ

2
x3

)
in which 11, 12 and 13 are the nominal values

of x1, x2 and x3, respectively, and z1, z2 and z3 are the coded
variables of x1, x2 and x3. The levels of design variables in
this experiment are illustrated in Table 1.

According to the actual condition, a central composite
design approach is implemented, and the corresponding data
are collected as shown in Table 2.

cL;m =


kmE

[
ŷm (x)− Tm

]2
= km

{
σ̂ 2
m (x, t)+

[
µ̂m (x, t)− Tm

]2} NTB− type

kmE
[
ŷ2m (x)

]
= km

[
σ̂ 2
m (x, t)+ µ̂

2
m (x, t)

]
LTB− type

kmE
[

1
ŷ2m (x)

]
≈

km
µ̂2
m (x, t)

[
1+

3σ̂ 2
m (x, t)

µ̂2
m (x, t)

−
4σ̂ 3

m (x, t)
µ̂3
m (x, t)

]
STB− type

(18)

Cpmkc;m (x, t) =



dm −
∣∣µ̂m (x, t)−Mm

∣∣
3

√{
σ̂ 2
m (x, t)+

[
µ̂m (x, t)− Tm

]2}
+
CM (t)
km

NTB− type

USLm − µ̂m (x, t)

3

√[
σ̂ 2
m (x, t)+ µ̂2

m (x, t)
]
+
CM (t)
km

LTB− type

µ̂m (x, t)− LSLm

3

√
1

µ̂2
m (x, t)

[
1+

3σ̂ 2
m (x, t)

µ̂2
m (x, t)

−
4σ̂ 3

m (x, t)
µ̂3
m (x, t)

]
+

CM (t)
km

STB− type

(23)
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FIGURE 2. Framework and procedure for parameter and tolerance economic design.

Step 2: From the experimental data in Table 2, the response
surface models for y1 and y2 are fitted as follows

ŷ1 (z) = 13.901− 0.627z1 − 0.180z2 − 0.295z3 − 0.365z21
+ 0.145z1z2 + 0.079z1z3 + 0.058z22 − 0.013z2z3
+ 0.235z23

ŷ2 (z) = 50.063− 0.724z1 − 0.979z2 − 3.922z3 − 1.826z21
+ 0.790z1z2 + 0.923z1z3 + 0.118z22 − 0.531z2z3
+ 0.294z23

By transforming the coded variables to the original vari-
ables, the response surface models can be rewritten as

ŷ1 (x) = 17.612+ 0.371x1 − 3.700x2 − 5.615x3 − 0.010x21
+ 0.068x1x2 + 0.032x1x3 + 0.456x22 − 0.088x2x3
+ 1.357x23

ŷ2 (x) = 55.758+ 1.897x1 − 11.151x2 − 20.7x3 − 0.052x21
+ 0.373x1x2 + 0.373x1x3 + 0.927x22 − 3.577x2x3
+ 1.697x23
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TABLE 2. Factor response experiment data for IIR inner tube.

From the above analysis, we find that the variances
of estimated errors of y1 and y2 are 1.141 × 10−4 and
4.606 × 10−3. We introduce the above formula and the
corresponding data in formulas (14) and (15) and obtain the
response surface models for mean and variance of design
variables and tolerances as follows.

µ̂1 (x, t)

= 17.612− 5.556× 10−4t21 + 0.025t22 + 0.075t23
+ 0.371x1 − 3.700x2 − 5.615x3 − 0.010x21
+ 0.068x1x2 + 0.456x22 − 0.088x2x3 + 1.357x23

µ̂2 (x, t)

= 55.758− 2.889× 10−3t21 + 0.052t22 + 0.094t23
+ 1.897x1 − 11.151x2 − 20.7x3 − 0.052x21
+ 0.373x1x2+0.373x1x3 + 0.927x22−3.577x2x3
+ 1.697x23

σ̂ 2
1 (x, t)

=
1
9
(0.371− 0.02x1 + 0.068x2 + 0.032x3)2 t21

+
1
9
(−3.700+ 0.912x−0.088x3+0.068x1)2 t22

+
1
9
(−5.615+ 2.714x3−0.032x1−0.088x2)2 t23

+ 1.141× 104

σ̂ 2
2 (x, t)

=
1
9
(1.897− 0.104x1 + 0.373x2 + 0.373x3)2 t21

+
1
9
(−11.151+1.854x2−3.577x3+0.373x1)2 t22

+
1
9
(−20.7+ 3.394x3+0.373x1−3.577x2)2 t23

+ 4.606× 103

TABLE 3. Tolerance cost experimental data for the design variables.

Step 3: After referring to the literature and interviewing
experts, the tolerance ranges of design variables are 1.0 ≤
t1 ≤ 5.0, 0.1 ≤ t2 ≤ 0.9 and 0.2 ≤ t3 ≤ 1.0. According
to the tolerance ranges of design variables, a tolerance cost
experiment is implemented. The experimental data are shown
in Table 3.
Step 4: By analyzing the experimental data in Table 3,

the tolerance cost models in the form of formula (19) can be
found as follows

ĉ1 (t1) = 0.513+ 1.794t−21

ĉ2 (t2) = 0.602+ 0.011t−22

ĉ3 (t3) = 0.540+ 0.050t−23

A total tolerance cost model can be found as follows

CM (t) = 1.655+ 1.794t−21 + 0.011t−22 + 0.050t−23

Step 5: Because the two quality characteristics are
LTB-type characteristics, we can calculate indicesCpmk;1 and
Cpmk;2 as shown

Cpmkc;1 (x, t)

=
µ̂1 (x, t)− LSL1

3

√
k1

µ̂2
1(x,t)

(
1+

3σ̂ 21 (x,t)
µ̂2
1(x,t)

−
4σ̂ 31 (x,t)
µ̂3
1(x,t)

)
+ CM (t)

Cpmkc;2 (x, t)

=
µ̂2 (x, t)− LSL2

3

√
k2

µ̂2
2(x,t)

(
1+

3σ̂ 22 (x,t)
µ̂2
2(x,t)

−
4σ̂ 32 (x,t)
µ̂3
2(x,t)

)
+ CM (t)

Step 6: A comprehensive objective function is constructed
as follows

Therefore, the parameter and tolerance economic design
for multivariate quality characteristics is formulated as an
optimization problem with a certainty variable space.

To compare the quality loss and tolerance cost, this paper
assumes that the loss coefficients k1 and k2 in the quality
loss function are 4 × 103 and 4 × 104. By maximizing
the MPCI, the optimal levels of design variables and
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F = MCpmkc =

[
µ̂1 (x, t)− LSL1

] [
µ̂2 (x, t)− LSL2

]
9

√[
1

µ̂2
1(x,t)

(
1+

3σ̂ 21 (x,t)
µ̂2
1(x,t)

−
4σ̂ 31 (x,t)
µ̂3
1(x,t)

)
+

CM (t)
k1

] [
1

µ̂2
2(x,t)

(
1+

3σ̂ 22 (x,t)
µ̂2
2(x,t)

−
4σ̂ 32 (x,t)
µ̂3
2(x,t)

)
+

CM (t)
k2

]

max

[
µ̂1 (x, t)− LSL1

] [
µ̂2 (x, t)− LSL2

]
9

√[
1

µ̂2
1(x,t)

(
1+

3σ̂ 21 (x,t)
µ̂2
1(x,t)

−
4σ̂ 31 (x,t)
µ̂3
1(x,t)

)
+

CM (t)
k1

] [
1

µ̂2
2(x,t)

(
1+

3σ̂ 22 (x,t)
µ̂2
2(x,t)

−
4σ̂ 32 (x,t)
µ̂3
2(x,t)

)
+

CM (t)
k2

]
st. 20 ≤ x1 ≤ 40

0.8 ≤ x2 ≤ 2

0.8 ≤ x3 ≤ 2.2

1 ≤ t1 ≤ 5

0.1 ≤ t2 ≤ 0.9

0.2 ≤ t3 ≤ 1.0

y1 ≥ 55

y2 ≥ 15

tolerances are calculated. This optimization problem can be
viewed as a global optimization problem with a certainty
variable space. The problem is that multipeak values and a
large amount of computation should be solved in the opti-
mization. The DIRECT algorithm [61]–[63] is commonly
used in certainty optimization and is especially suitable for
the robust parameter design problem with certainty vari-
able spaces. In this paper, the DIRECT algorithm and the
MATLAB Global Optimization Toolbox are used to solve
the problem. The optimal levels of design variables xoptimal
and their tolerances toptimal values are (26.06, 0.80, 0.80) and
(3.86, 0.90, 1.00), respectively.

B. COMPARISON
In this paper, the total cost function from literature [45] and an
improved Taguchi process capability index from a previous
paper [25] are used as the objective functions for comparison
with the proposed approach.
Approach 1: A previous study [45] proposed a total cost

function in terms of expected quality loss cost and tolerance
cost. The optimal values of design variables and tolerances
are obtained byminimizing the total cost function. The objec-
tive function is written as shown

minF = C (x, t) = CL (x, t)+ CM (t)

where CL (x, t) =
2∑

m=1
cL;m (x, t) is the total expected quality

loss cost in which cL;m (x, t) is the expected quality loss cost
for the m th quality characteristic ym.
Approach 2: The literature [25] suggested the improved

Taguchi process capability index as the objective func-
tion. Previous researchers obtained the optimal design vari-
ables and tolerances by maximizing the multivariate process

capability index. The objective function is written as shown

maxF =
2∏

m=1

Cpmc;m

=
(USL1 − LSL1) (USL2 − LSL2)

9
√[
cL;1 (x, t)+ CM (t)

] [
cL;2 (x, t)+ CM (t)

]
where the values of USL1, LSL1, USL2 and LSL2 are 17, 15,
60 and 55, respectively.

Using approach 1 and approach 2, the optimal design vari-
ables xoptimal are (28.51, 0.80, 0.80) and (32.65, 2.00, 0.80),
and the optimal tolerance values toptimal are (5.00, 0.90, 0.87)
and (5.00, 0.90, 0.95), respectively. Some indices are listed
for comparison with the three approaches in Table 4.

Figure 3 through Figure 6 are used to compare the proposed
approach with other two approaches. From Table 4, we find
that the optimal levels for x3 are all equal to 0.8 and that
the optimal t2 are all equal to 0.9 by applying these three
approaches to the experiment. Therefore, we compare the
quality characteristic, quality loss cost and total tolerance cost
under x3 = 0.8 and t2 = 0.9.
Figure 3a and Figure 3b show the response surfaces of y1

and y2 in terms of x1 and x2 when x3 = 0.8. From Figure 3a,
y1 is proportional to x1in the early stage and decreases with x1
after y1 reaches its peak, whereas y2 is inversely proportional
to x2.

Figure 3c and Figure 3d present the contour plots of y1
and y2 in terms of x1 and x2 in which q′1, q

′

2 and q′∗ are
the optimal design variables for approach 1, approach 2 and
the proposed approach. According to the contour plots and
positions of optimal design variables, the y1 and y2 obtained
by the proposed approach when the optimal design variable
is q′∗ are larger than q′1 and q′2. Because y1 and y2 are
LTB-type quality characteristics, the optimal design
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FIGURE 3. Response surfaces and contour of y1 and y2 in terms of x1 and x2 when x3 = 0.8.

TABLE 4. Comparison of proposed approach and approaches 1 and 2.

variables from the proposed approach are superior to those
from approaches 1 and 2.

Figure 4 displays the contour plot of quality loss function
L1 (x) and L2 (x) in terms of x1 and x2 when x3 = 0.8.
Because y1 and y2 are both LTB-type characteristics,
L1 (x) and L2 (x) are inversely proportional to y1 and y2.

According to the position of optimal points in contour plot,
the quality loss cost of proposed approach is less than those
of the other two approaches.

Figure 5 shows the response surface and contour plots of
the total tolerance cost C about t1 and t3 when t2 = 0.9.
From Figure 5a, the total tolerance cost decreases with
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FIGURE 4. Contour of L1 (x) and L2 (x) in terms of x1 and x2 when x3 = 0.8.

FIGURE 5. Response surface and contour of total tolerance cost CM
(
t
)

when t2 = 0.9.

increasing t1 and t3 in the region of t1×t2 = [1, 5]×[0.2, 1.6].
In Figure 5b, points p′1 p′2 and p′∗ are the optimal toler-
ance values from approach 1, approach 2 and the proposed
approach. According to the contour plots and positions of
optimal tolerance points, the tolerance cost from the pro-
posed approach is approximately similar to the counterparts
obtained from approaches 1 and 2. The reason for this result
is that the proposed approach reasonably increases the man-
ufacturing cost to reduce the quality loss of production and
satisfy the customer requirements.

Figure 6 illustrates the spatial position plot of quality
characteristics andMCpmk under the optimal design variables
and tolerances. In this plot, R1, R2 and R∗ are the optimal
values of y1, y2 andMCpmk from approach 1, approach 2 and
the proposed approach, respectively. Points R′1, R

′

2 and R
′
∗ are

the mapping points of R1, R2 and R∗ on the planeMCpmk = 0.
The MCpmk obtained by the proposed approach shows
improvements of 10.2% and 109.2% compared with
approach 1 and approach 2. Obviously, the total cost from
the proposed approach is close to the cost of the other

FIGURE 6. Spatial position of quality characteristics and MCpmk under
the optimal design variables and tolerances.

two approaches, but the PCI is better than the others. The
proposed approach considers the types of quality character-
istics, more sensibly reflects the deviance of mean value of
quality characteristic from the target value, and emphasizes
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the importance of the target value. The results from the
proposed approach are much better than those of the other
two approaches.

It is important to note that the total cost is composed
of the quality loss cost from quality characteristic variation
and the tolerance cost of design variables. Approach 1 does
not consider the product process capability in optimization,
which means that the product process capability should be
evaluated after optimization. When the process capability is
less sufficient, parameter and tolerance designmust be imple-
mented again. Therefore, according to the PAF model from
Feigenbaum, this situation is expected to profoundly increase
the loss cost, prevention cost and appraisal cost. Approach 2
does not consider the types of quality characteristics and the
impact from the deviance of target value and the center of
specification. From the above analysis, ignoring the impact
results in an optimization outcome that has a large difference
from the design target could result in an unpredictable loss.
Obviously, from the perspective of quality loss, the proposed
approach improves the effectiveness and credibility of opti-
mization result and reduces the risk of increasing the CoQ
for unpredictable reasons.

VI. CONCLUSION
The procedure of parameter and tolerance economic design
for multivariate quality characteristics based on the modified
PCI is proposed in this paper. We analyze the different of
quality characteristic types and the deviation between the
specification center and the target value, and then constructed
a modified PCI. In the current literature, the calculation of
PCI requires a lot of data. The modified PCI proposed in
this paper can be calculated with individual observations,
which reduces the cost of replicated experiments. Through
the process capability analysis in the product design stage,
this approach improves the robustness of the optimal design
variables and reduces the production cost.

This paper discusses the parameter and tolerance economic
design of the experiment on IIR inner tube by comparing to
the total cost function approach and Taguchi process capa-
bility index approach. The example shows that the proposed
approach had better quality loss andMCpmk than the other two
approaches. Meanwhile, the optimal quality characteristics
are LTB-type, and the proposed approach can obtain more
optimal quality characteristics than the other two approaches.
On the whole, the robustness and economy of the proposed
approach are better than the other two approaches. It is note-
worthy that Taguchi noted that the design variables can be
divided into control variables and noise variables. Therefore,
how to analyze and reduce the influence of noise variables on
economic design of parameters and tolerances is an important
subject worthy of further study.
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