
Received April 1, 2019, accepted April 11, 2019, date of current version May 1, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2912067

Collision Avoidance/Mitigation System: Motion
Planning of Autonomous Vehicle via
Predictive Occupancy Map
KIBEOM LEE AND DONGSUK KUM , (Member, IEEE)
Graduate School of Green Transportation, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea

Corresponding author: Dongsuk Kum (dskum@kaist.ac.kr)

This work was supported by the Development of Deep Learning-Based Future Prediction and Risk Assessment Technology considering
Inter-vehicular Interaction in Cut-in Scenario through the Technology Innovation Program funded by the Ministry of Trade, Industry, and
Energy, South Korea, under Grant 10083646.

ABSTRACT Despite development efforts toward autonomous vehicle technologies, the number of collisions
and driver interventions of autonomous vehicles tested in California seems to be reaching a plateau. One of
the main reasons for this is the lack of defensive driving functionality; i.e. emergency collision avoidance
when other human drivers make mistakes. In this paper, a collision avoidance/mitigation system (CAMS) is
proposed to rapidly evaluate risks associated with all surrounding vehicles and to maneuver the vehicle into
a safer region when faced with critically dangerous situations. First, a risk assessment module, namely,
predictive occupancy map (POM), is proposed to compute potential risks associated with surrounding
vehicles based on relative position, velocity, and acceleration. Then, the safest trajectory with the lowest
risk level is selected among the 12 local trajectories through the POM. To ensure stable and successful
collision avoidance of the ego-vehicle, the lateral and longitudinal acceleration profiles are planned while
considering the vehicle stability limit. The performance of the proposed algorithm is validated based on side
and rear-end collision scenarios, which are difficult to predict and to monitor. The simulation results show
that the proposed CAMS via POM detect a collision risk 1.4 s before the crash, and avoids the collision
successfully.

INDEX TERMS Autonomous vehicle, advanced driver assist system (ADAS), collision avoidance, risk
assessment, motion planning.

I. INTRODUCTION
Autonomous vehicles have been one of the most active
research topics in an automotive industry hoping to maxi-
mize safety and user convenience. In terms of safety, many
researchers argue that autonomous vehicle technologies will
substantially reduce the number of collisions, because 90%
of collisions are caused by human error [1]. Although auto-
mated and autonomous vehicles will eliminate simple human
errors such as those resulting from texting and drowsiness,
automated vehicles will lead to other collisions that human
drivers would have been able to avoid, e.g. through defensive
driving [2], [3]. For instance, Waymo’s autonomous vehicles
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(a.k.a. Google cars) often experience collisions caused by
other vehicles at fault [2], [3]. In a September 2016 accident,
Waymo’s autonomous vehicle was hit by a van running a
red light at an intersection in California. In another case, the
Waymo van in autonomous mode collided with an onrushing
vehicle that drove over the centerline in Arizona inMay 2018.
In these scenarios, if human drivers had been driving the
vehicles, collisions would not have occurred as drivers would
have made defensive maneuvers. Unfortunately, the most
advanced autonomous vehicles today, such as Google cars,
still cannot make such decisions to avoid collisions initi-
ated by other vehicles [3]. In fact, many prior autonomous
vehicle technologies focused on improving intelligence of
risk predictions and path planning during normal conditions.
In order to resolve these limitations, a collision avoidance/
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mitigation system (CAMS) is proposed, in which the CAMS
can override the normal driving algorithm when a collision is
imminent.

In the literature, in order to avoid collisions from unexpect-
edly approaching vehicles, many researchers plan collision
avoidance trajectories by focusing on single obstacles. When
a target obstacle is detected, the system plans the path to
avoid the obstacle based on the location and size of the obsta-
cle [4]. Guo et al. proposed a steering and braking control
algorithm for vision-based emergency obstacle avoidance [5].
Isermann et al. proposed a tracking method that developed a
velocity profile based on optimal trajectory and obstacle size
and position [6]. Hesse and Sattel based on potential field and
elastic band theory, developed a path and velocity profile that
avoids obstacles at the front of the vehicle while reaching
target position [7]. However, in actual collision avoidance
situations, considering one obstacle is very limited.

When a vehicle steers to avoid an obstacle, it will go out of
its current lane. Thus, it is essential to check all surroundings
of the ego vehicle and ensure that the planned trajectory is
safe for the vehicle to follow. Otherwise, when avoiding target
obstacles, vehicle will collide with other nearby obstacles. To
resolve such limitations, there have been studies that have
considered all risks of the vehicle surrounding environment
based on the potential field [8]–[12]. Kim et al. proposed a
method using a potential risk concept that identifies potential
risk of surroundings and finds the safest optimal path [13].
The multi-vehicle problem may have been resolved, but the
risk to the surrounding vehicles is determined based on the
current position. However, since surrounding vehicles are
moving fast, it is dangerous to plan collision avoidance paths
based on current position. For safe collision avoidance, it is
necessary to predict trajectories of surrounding vehicles.

In vehicle research groups, trajectory prediction algo-
rithms have been studied [14]–[16]. However, it is diffi-
cult to use these advanced algorithms to derive predictions
results quickly in situations of impending collision. The
physics based motion model can produce sufficiently high
prediction accuracy 1 to 2 seconds before the moment of
collision [17]–[21]. This method is also well suited for colli-
sion avoidance algorithms with fast computation speeds. The
trajectory prediction result is described as vehicle’s future
position or time-series OGM. However, these results do not
indicate the risk to surrounding vehicles.

Based on the trajectory prediction results, a risk assessment
algorithm is needed. Risk assessment determines the danger
of trajectories planned for the ego vehicle based on future
prediction. Themost commonly used risk indicator is time-to-
collision (TTC), which will predict the time at which the ego
vehicle will collide with an obstacle [22]–[24]. To overcome
the limitations in using deterministic properties for the risk
indicator, probability-based collision probabilistic methods
have been researched as well [25]–[28]. However, the risk
index can only be determined under the condition that ego-
vehicle and target vehicle paths are known. Furthermore,
the risk index is suitable for two-vehicle collisions, but cannot

be applied in multi-vehicle collision situations [29]. For col-
lision avoidance maneuvers, a multi-vehicle risk assessment
algorithm in necessary.

In this paper, a collision avoidance/mitigation algorithm
has been proposed that is based on POM. The risk of each
candidate trajectory can be evaluated and selected quickly
in multi-vehicle situations using POM, which represents the
risk for each space based on the predicted surrounding vehi-
cle trajectories. This algorithm can overcome the limitations
mentioned from previous studies and safely mitigate the
potential risks caused by sudden maneuvers of surrounding
vehicles. The main ideas proposed in this paper is 1) the Pre-
dictive Occupancy Map (POM), which can simultaneously
identify potential risks in spatial and temporal space. POM
is able to solve the problem of all-around risk assessment
and multi-vehicle risk assessment based on future trajectory
prediction results. 2) A trajectory risk assessment algorithm
that determines the risks of trajectories selected through the
POM. An omnidirectional pre-determined trajectory can be
compared fairly based only on the surrounding risk. 3) A local
motion planning algorithm that generates an acceleration
profile while simultaneously considering trajectory and
velocity.

The remainder of this paper is organized as follows:
In Section II, an overview of the proposed collision
avoidance/mitigation system and algorithm is provided.
In section III, a predictive occupancy map design method is
proposed. In section IV, a trajectory candidate risk assessment
based on POM and motion planning study is carried out.
In section V, an algorithm is investigated using simulation
with representative collision scenarios. Finally, Section VI
provides the concluding remarks.

II. PROPOSED COLLISION AVOIDANCE/
MITIGATION SYSTEM
In this section, the operating concept of the proposed colli-
sion avoidance/mitigation system (CAMS) is discussed. The
activation conditions, based on ego vehicle collision risk and
sequence of CAMS algorithm, are described.

A. ACTIVATION OF COLLISION AVOIDANCE/
MITIGATION SYSTEM
Previous algorithms were developed with a focus on reducing
errors caused by the ego vehicle. CAMS estimates the future
based on the surroundings of the ego vehicle and determines
its collision risk accordingly. Figure 1 illustrates the proposed
drive mode decision process of the autonomous vehicle. The
vehicle will constantly monitor its surroundings and, if ego
vehicle collision risk (Riskego) exceeds a pre-determined
threshold (Riskthreshold), the Collision avoidance/mitigation
algorithm will override the currently active algorithm and
will plan the vehicle’s future trajectory and track accordingly.
Once CAMS is executed it will remain active for a certain
period, which is described as follows

tCAMS = k ·1t (t0 ≤ tCAMS < tf ) (1)
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FIGURE 1. Flow chart of driving mode (general autonomous driving mode
and collision avoidance/mitigation driving mode) decision process.

where tCAMS is the collision avoidance/mitigation system
active time, t0 is the collision avoidance/mitigation system
start time, tf is the collision avoidance/mitigation systemfinal
time, k is the iteration number, and 1t is the time interval of
each step.

When tCAMS reaches tf, the CAMS terminates, and then
the general autonomous driving algorithm executes driving
again. When CAMS is on, but there is no safe trajectory
because the risks of all trajectories are larger than the trajec-
tory risk threshold (Trajthreshold), it indicates that the current
driving space is a relatively safe space. In this case, the vehicle
drives with a general autonomous driving algorithm andwaits
for a safe avoidance space to evade collision.

This study does not focus on sensing technology; it is
assumed that accurate information of ego vehicle surround-
ings is sent as input. Future prediction and risk assessment of
the proposed algorithm is conducted in areas where sensing
is available, and areas that are not sensed are ignored.

B. OVERVIEW OF COLLISION AVOIDANCE/
MITIGATION ALGORITHM
Figure 2 shows the overall control architecture of the
proposed collision avoidance/mitigation system. CAMS
algorithm operates, in order, starting with prediction, risk
assessment, andmotion planning. Prediction of future vehicle
position is conducted with the constant acceleration (CA)
model. There are various prediction models that have already
been developed. However, in unexpected situations close
to collision, there are not enough data to predict vehicle

behavior and method provides inaccurate results. The
CAmodel can provide accurate prediction within a short term
of 2 seconds, and is suitable for vehicle future prediction in
unexpected situations.

Much research on risk assessment algorithms has been
conducted. However, risk has been assessed with a focus on
a single vehicle, and risks for pedestrian, other vehicles, and
surrounding environment were done separately. To overcome
this problem, this study proposes a POM that can integrate all
the surrounding risks, including time and space information.
Through the risk assessment stage, the risk of the ego vehi-
cle (Riskego) and a riskmap of its surroundings are calculated.
When the vehicle is involved in an emergency in which it

nearly reaches vehicle friction/stability limit, the trajectory
and velocity must be simultaneously planned; as well, it is
necessary to determine that the planned route is physically
viable for vehicle to drive. In the motion planning section
of the proposed method, the route and vehicle velocity can
be simultaneously considered through the g-g diagram and
local trajectory candidate. The CAMS is activated when the
longitudinal velocity is set above 5m/s due to vehicle’s non-
holonomic dynamic characteristics. The system will be deac-
tivated at velocity under 5m/s.

III. PREDICTIVE OCCUPANCY MAP (POM)
In this section, the design procedure allowing the POM to
observe the surrounding risks is discussed. When vehicle is
operating on a freeway, ‘dangerous’ objects are categorized
into two parts: surrounding vehicles and the driving envi-
ronment. Surrounding vehicles consist of obstacles near the
road, static vehicles, and dynamic vehicles, while driving
environment consists of drivable regions and traffic lanes.

Setting the ego vehicle as the base coordinate, and deter-
mining surrounding vehicles and their relative positions,
velocity, and acceleration, the POM can predict future posi-
tions with respect to time. The POM will designate the most
dangerous space and least dangerous space with ratings of
5 and 0, respectively. To achieve exact risk assessment and
provide the most suitable trajectory for vehicle to drive,
the ego vehicle’s driving information is needed; it can be
acquired through sensors equipped on the vehicle as shown
below

Xego = [pego,x , pego,y,Vego,x ,Vego,y,Aego,x ,Aego,y] (2)

where Xego is the set of ego vehicle driving information,
pego is the ego vehicle local position, Vego is the ego vehicle
velocity, Aego is the ego vehicle acceleration, and subscripts
x and y are the x-axis and y-axis, respectively. Since the
coordinates are relative to the ego vehicle, the value of pego is
zero.

A. RISK MAP GENERATION FOR
SURROUNDING VEHICLES
When evaluating the level of risk for the vehicle, the position,
velocity, and acceleration of the obstacle and the surrounding
vehicles are assessed and its future position is predicted.
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FIGURE 2. Collision avoidance/mitigation system architecture diagram.

FIGURE 3. Ego vehicle fixed coordinates and surrounding vehicle
information.

1) OCCUPANCY PREDICTION MODEL FOR
SURROUNDING VEHICLES
To predict the future positions of surrounding vehicles, Fig. 3
shows the corresponding position, velocity, and accelera-
tion of surrounding vehicles relative to the ego vehicle. The
information for surrounding vehicles is expressed in Eq. (3),
while the relative information between the ego vehicle and
surrounding vehicles is expressed in Eq. (4)

Xon = [pon,x , pon,y,Von,x ,Von,y,Aon,x ,Aon,y]

for n ∈ [1, · · · ,Obstacle number] (3)

Xrn = Xon − Xego
= [pon,x , pon,y,Vrn,x ,Vrn,y,Arn,x ,Arn,y] (4)

where Xo is the set of surrounding vehicle driving informa-
tion, po is the surrounding vehicle relative position, Vo is the
surrounding vehicle velocity, ao is the surrounding vehicle
acceleration, Vego is the ego vehicle velocity, aego is the ego
vehicle acceleration, Xr is the set of surrounding vehicle rela-
tive driving information,Vr is the surrounding vehicle relative

velocity, Ar is the surrounding vehicle relative acceleration,
subscripts x and y are the x-axis and y-axis, respectively, and
subscript n is the obstacle index.
In this study, short term prediction is carried out in immi-

nent collision situations using the CA prediction model. The
CA model predicts vehicle’s future position while assum-
ing that the current vehicle’s velocity and acceleration are
maintained. Therefore, the CA model can provide accurate
prediction results in a short period, which is appropriate in
unexpected driving situations such as near-collisions. The
equation of motion of the simple CA model is expressed as

1D =
1
2
· Ar ·1t2 + Vr ·1t (5)

where1D is the driving distance within time interval of each
step.

In order to acquire time (t) to arrival at a certain posi-
tion (Don ) through Eq. (5), the time-to-occupancy (TTO) can
be calculated.

TTOn(Don ) =
−Vr −

√
V 2
r − 2 · Ar · Don
Ar

(6)

Under normal driving circumstances, the TTO can pro-
vide accurate short-term prediction. However, for sudden
unexpected situations, acceleration/deceleration surge may
occur and can degrade prediction performance. Therefore,
in Eq. (7), the idea of Advanced Time-to-occupancy (ATTO)
is proposed; similar to a PD controller, ATTO can separate
and adjust the effectiveness of the acceleration.

ATTOn(Don ) =
Don

Vr + d · Ar
(7)

where d is the gain of the relative acceleration effect.
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FIGURE 4. Example of single vehicle risk.

2) RISK ASSESSMENT OF SURROUNDING VEHICLES
In transportation and vehicle research groups, the ‘collision
risk’ has had various meanings, but the definition of risk has
not been precisely defined. In this research, the ATTO is used
as the risk. Using the ATTO based on the CAmodel proposed
in the previous subsection, the arrival time of vehicles at
specific positions can be predicted. In order to represent the
risk by considering both current and future situations, it is
necessary to define the risk by considering the concept of
position relative to time. Therefore, the POM represents risk
as a reciprocal of time taken for vehicle to be located at a
certain point in space. This is expressed as ‘Risk[D]’, and it
also the inverse of ATTO, as shown below.

Riskn(Don ) = ATTO−1n (Don ) (8)

During ATTO = 0 condition, when the vehicle collides,
the ATTO−1 value becomes infinity. Therefore, the maxi-
mum risk (Riskmax) was set at 4 (ATTO = 0.25 seconds).
In addition, the current vehicle position was assigned a risk
factor of 5, the highest risk value. In this case, the acceleration
gain (d) is tuned with 0.1. Through Eq. (8), the risk for a
single vehicle can be observed, as shown in Fig. 4.

Finally, the risk within two-dimensional space based on
the center of an obstacle and surrounding vehicle considering
vehicle size is given by Eq. (9) - (11) below and described
in Fig. 5.

Riskn(Don,x ,Don,y)=
Vr,x+d · Ar,x
Don,x−ll/2

(
∣∣Don,y∣∣ ≤ lw/2) (9)

Riskn(Don,x ,Don,y)=
Vr,y+d · Ar,y
Don,y−lw/2

(
∣∣Don,x ∣∣ ≤ ll/2) (10)

Riskn(Don,x ,Don,y) =
(

Don,x−ll/2
Vr,x+d · Ar,x

+
Don,y−lw/2
Vr,y+d · Ar,y

)−1
(
∣∣Don,x ∣∣ > ll/2,

∣∣Don,y∣∣ > lw/2)

(11)

where ll and lw are the length and width of the vehicle,
respectively, and subscripts x and y are the x-axis and y-axis,
respectively.

3) INTEGRATION OF SURROUNDING VEHICLE RISK MAPS
By calculating the risk of all surrounding vehicles that are
sensed around the ego vehicle, it is possible to integrate all

FIGURE 5. Two-dimensional collision risk assessment of surrounding
vehicles.

FIGURE 6. Placement of surrounding vehicle risk based on ego vehicle
local coordinates.

surrounding risks. The risk of surrounding vehicles is deter-
mined relative to the position of the ego vehicle. The relative
position of the surrounding vehicle risk is expressed as

Riskintn (Dx ,Dy) = Riskn(Don,x − pon,x ,Don,y − pon,y) (12)

After placing the risk of each obstacle relative to the
position of the ego vehicle, the maximum risk values at
each space are used to determine the overall risk (Risko&v),
which considers obstacles and surrounding vehicles. Risko&v
is calculated using Eq. (13) and described in Fig. 6.

Risko&v = sup(Riskint1 ,Riskint2 , · · · ,Riskintn ) (13)

B. RISK MAP GENERATION FOR DRIVING ENVIRONMENT
Risks regarding driving environment are divided into two
categories: drivable regions and traffic lanes. Similar to
the risk considering surrounding obstacles and nearby vehi-
cles, the driving environment design, which considers both
drivable boundaries and risk involved from lane changes,
is needed.

1) DRIVABLE REGION
The drivable region is determined to indicate the extent to
which the vehicle can travel. In freeway conditions, the driv-
able region is determined based on barriers. Spaces inacces-
sible to vehicles were set at the highest risk value of 5. The
equation of drivable region (Riskbound ) is expressed as

Riskbound = 5{step
(
Dy − Bl

)
+ step

(
−Dy − Br

)
} (14)
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FIGURE 7. Concept of driving environment risk map.

where Bl and Br are the distance of the left and right bounds
to the vehicle center line, respectively; step means the step
function.

2) TRAFFIC LANE
Changing the lane to avoid collision can alter the vehicle’s
driving traffic lane, and so can be relatively more dangerous
than accelerating or decelerating the vehicle in the same lane.
In addition, if the level of risk for traveling in the longitudinal
direction or changing lanes to avoid collision are the same,
longitudinal direction is preferred. To reflect these road con-
ditions, traffic lane risk (Risk lane) was formulated as

Risk lane = −

∣∣∣∣laner · cos( π

lanew
· Dy

)∣∣∣∣+ laner (15)

where laner is the max risk value of lane, and lanew is the
width of the traffic lane.

3) INTEGRATION OF DRIVABLE REGION AND
TRAFFIC LANE RISKS
Traffic lane risk and drivable region risk are combined in
driving environment risk (Riskenv), as shown in Eq. (16),
while Fig. 7 shows the driving environment risk map based
on the freeway. The closer the lane, the greater the risk by
Eq. (15), and beyond the centerline, the risk indicate 5 by
Eq. (14).

Riskenv = sup(Risklane,Riskbound ) (16)

C. INTEGRATION OF SURROUNDING VEHICLES AND
DRIVING ENVIRONMENT RISKS
The POM can be obtained by integrating the surrounding
vehicle and driving environmental risks, as described in
Eq. (17). Ego vehicle risk is expressed as the risk value at the
(0, 0) point, which is the center of the vehicle in the POM.

POM = sup(Risko&v,Riskenv) (17)

D. SIMULATION RESULTS
The sample scenarios for the POM designed in the previous
subsection are shown in Fig. 8. The variables for the ego
vehicle, surrounding vehicles, and driving environment used
in the sample scenario are expressed in Table 1. Fig. 8(a)
illustrates the single vehicle risk based on obstacle vehicleO1,

FIGURE 8. Concept of predictive occupancy map (POM) with sample
scenario (a) Obstacle vehicle O1 risk, (b) Predictive occupancy map with
x-y axis view, and x-y-z view.

TABLE 1. Vehicle and driving environment sample scenario.

while Fig. 8(b) illustrates the POM for surrounding vehicles
O1 and O2 relative to the ego vehicle.

IV. MOTION PLANNING FOR COLLISION
AVOIDANCE/MITIGATION
In this section, the safest route is selected based on the POM
designed in the previous section. By utilizing the driving
information from the ego vehicle, the maximum acceleration
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FIGURE 9. Ego vehicle acceleration limit and reachable region limit
(a) Vehicle acceleration limit, (b) Reachable region limit under
acceleration limit.

is calculated. Then, the reachable region limit, which is the
maximum distance that can be reached within a limited time,
is obtained. The drivable trajectories based on calculated
reachable region limit are generated, and the risk of each
trajectory is determined through the POM. The trajectory
with the lowest risk value is selected and the longitudinal and
lateral acceleration is calculated.

A. REACHABLE REGION
For stable operation of vehicle, it is necessary to determine
the stability limit. The vehicle generally cannot produce a
force equal to or greater than the frictional force limits of
the tires. If force exceeds this limit, slip will occur and result
in unstable and even uncontrollable vehicle operation. For
safe control, trajectory must be planned within the g-g dia-
gram, which is the maximum acceleration reachable within
the force limit [30]. In the case of forward acceleration,
the limit is assigned based on engine limit. Acceleration limit
is described as

(µg)2 = A2xlim + A
2
ylim (18)

Axlim =

Aelim , (Aelim≤
√
(µg)2−A2ylim )√

(µg)2−A2ylim , (Aelim >
√
(µg)2−A2ylim )

(19)

where µ is the road friction coefficient, g is the gravita-
tional acceleration,Alim is the acceleration limit, derived from
friction limit, and Aelim is the acceleration limit from engine
power. Equations (18) and (19) are also graphically illustrated
in Fig. 9(a).

Based on the time limit relative to the acceleration limit,
reachable vehicle positions are indicated. In the case of lateral
motion, it is imperative that lateral vehicle velocity be zero
after reaching the desired position. Therefore, the lateral posi-
tion limit is half of the longitudinal position limit. Reachable
regions are expressed as

Sxlim =
1
2
Axlim t

2
f (20)

Sylim =
1
4
Aylim t

2
f (21)

FIGURE 10. Trajectory candidate risk assessment with predictive
occupancy map (POM), (a) Concept of trajectory candidate on POM,
(b) Risk distribution of twelve trajectories, (c) Comparison of twelve
trajectory candidates risk values with max, mean, and min values.

where Slim is the reachable region limit within the CAMS
active time under acceleration limit. Equations (20) and (21)
are also graphically illustrated in Fig. 9 (b).

B. RISK ASSESSMENT OF TRAJECTORY CANDIDATES
Once a reachable region limit that guarantees the stability of
the vehicle in time is determined, trajectory candidates can be
set within the limit. A total of 12 pre-determined trajectories
that are 30 degrees apart are assigned and are expressed as
follows.

Trajectoryi =
√
S2ixl im
+ S2iylim

for i ∈ T [1, 2, · · · , 12] = T [0◦, 30◦, · · · , 330◦] (22)

Using the sum of risks from each trajectory until CAMS
algorithm is completed, the 12 trajectories can be combined
with the POM to indicate the risk of each trajectory. The
trajectory generated based on the sample scenario coupled
with POM is shown in Fig. 10 (a), while the risk values of
each of the 12 routes are shown in Fig. 10 (b). There is a
fast approaching obstacle vehicle O1 at the rear of the ego
vehicle, which generates a high risk. On the leftward route of
the ego vehicle, the POM predicts that vehicle could collide
with obstacle vehicle O2, thus also generating a high risk at
this trajectory. On the other hand, the rightward route of the
vehicle shows low risk.

Within the 12 pre-determined trajectories, it is important
to select the safest route through fair comparison. To select
the safest route, 10 points of each route are selected because
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each trajectory length is different, and the max, mean, and
min values are calculated as

RAtraimax = max
{∑10

c=1
POM

( c
10
Six ,

c
10
Siy
)}

(23)

RAtraimean = mean
{∑10

c=1
POM

( c
10
Six ,

c
10
Siy
)}

(24)

RAtraimin = min
{∑10

c=1
POM

( c
10
Six ,

c
10
Siy
)}

(25)

Through Eq. (23)-(25), comparison of the 12 trajectories
can be illustrated, as shown in Fig. 10(c). The blue bar of
Fig. 10(c) represents the mean value of the trajectory candi-
date risk. The red bars are the boundary of trajectory risk with
max and min values.

Conditions for safe trajectory are assigned as follows. The
trajectory risk with a max value that does not exceed the
threshold value (Trajthreshold ) as

RAtraimax ≤ Trajthreshold (26)

After satisfying the first condition in Eq. (26), the trajec-
tory risk with the lowest mean value is selected.

Trajectoryi = argmin
i∈T

(RAtraimean) (27)

When multiple trajectories that satisfy the condition in
Eq. (27) are present, the trajectory risk with the lowest min
value is selected; this is ultimately the safest route for the
vehicle.

Trajectoryi = argmin
i∈T

(RAtraimin) (28)

In the sample scenario based on Table 1, the safest tra-
jectory that satisfied condition Eq. (26)-(28) is trajectory
candidate number 10.

C. ACCELERATION PROFILE PLANNING
After selecting the safest trajectory from the previous sub-
section, acceleration planning is performed. The safest tra-
jectory is selected while considering that vehicle is in motion.
Therefore, the longitudinal and lateral acceleration and veloc-
ity are independently considered depending on direction of
trajectory. The vehicle’s acceleration is determined based on
the final trajectory the vehicle selects. The x-axis and y-axis
accelerations of the final trajectory are described as

Ax = 2Sx ·
1

t2f
(29)

Ay =


4Sy ·

1

t2f
(0 ≤ tCA <

1
2
tf )

−4Sy ·
1

t2f
(
1
2
tf ≤ tCA < tf )

(30)

where (Sx , Sy) is the collision avoidance/mitigation final
point when final time (tf ), and Ax ,Ay are the accelerations,
for reaching collision avoidance/mitigation final point.

FIGURE 11. Each acceleration-based trajectory (red dash line)
corresponds to global trajectory (blue solid line).

When planning acceleration trajectory based on a
reachable region, the vehicle’s movement path in global
coordinates is shown in Fig. 11. Each red dash acceleration
trajectory corresponds to a blue solid path after tCAMS sec-
onds. The trajectory candidate number 10 that selected at
sample scenario is highlighted purple dash line at Fig. 11.

V. PERFORMANCE EVALUATIONS
In this section, a multi-vehicle collision scenario simula-
tion was designed, and operation of proposed algorithm was
verified.

A. SIMULATION SETTINGS
The risk threshold (Riskthreshold) and CAMS final time (tf)
are tuning parameters for when to turn on CAMS in a risky
situation. In this simulation, reachable region limit (Slim) is
set to the distance of a change of one traffic lane (= 3.6 m)
in a collision situation. The CAMS final time (tf) is acquired
with Slim andµg through Eq. (21). The value tf is expressed as

tf =

√
4 · Sylim ·

1
µg

(31)

To safely escape during tf seconds, the CAMS must be
activated at least tf seconds before the predicted collision.
Therefore, the risk threshold is as follows

Riskthreshold = 1/tf (32)

The lane risk is a tuning parameter indicating the prefer-
ence for longitudinal and lateral avoidance motion. The lane
risk is 1/3, which is the condition for lateral avoidance only
in a situation in which longitudinal avoidance in inevitable.
The detailed simulation settings are expressed in Table 2.

B. COLLISION SCENARIOS FOR SIMULATION
The scenarios for simulation were designed for side colli-
sion and backward collision scenarios. The two scenarios are
collision threat situations due to the carelessness of nearby
vehicles, and are not caused by the ego vehicle. To simulate
the multi-vehicle collision scenario, vehicles were placed
in positions where it would be easy for the ego vehicle to
maneuver to avoid collision.

In the scenario that considers side collision, vehicle from
one side abruptly enters the lane where ego vehicle is located,
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TABLE 2. Simulation settings.

and another vehicle is also present in the opposite lane. The
ego vehicle is travelling at a velocity of 22.2m/s, and obstacle
vehicles O1 and O2 in both opposing lanes are travelling at
identical velocity. Obstacle vehicle O1 is approaching the ego
vehicle with a lateral velocity of 1.5m/s. Typically, the ego
vehicle can avoid collision by changing to the opposing lane,
away from O1. However, in this special case, obstacle vehicle
O2 is present in the opposing lane. Therefore, the CAMS
motion is observed another safe route.

In the second scenario, which considers backward col-
lision, a vehicle located at the rear of the ego vehicle is
approaching and it is also not decelerating. There have been
many incidents where vehicles collide with a lead vehicle
due to driver’s drowsiness or negligence about surroundings.
Similar to the first scenario, the ego vehicle is travelling at
a velocity of 22.2m/s, and vehicle O1, located 20m behind
the ego vehicle, is approaching at a velocity of 33.3m/s.
Also, vehicle O2 is 20m in front of the ego vehicle, which
is cruising at a velocity of 11.1m/s. This scenario has been
designed to observe that vehicle with proposed algorithm can
successfully detect fast approaching vehicle from the rear and
avoid collision by changing lanes. Each scenario is illustrated
in Fig. 12.

C. SIMULATION RESULTS
The simulation results for both ‘side collision’ and ‘backward
collision’ are presented at Fig. 13 and Fig. 14, respectively.
Figs. 13(a) and 14(a) illustrate the local position after CAMS
has been turned on for 0 seconds, 0.5 seconds, 1.0 sec-
ond, and 1.5 seconds. Figs. 13(b) and 14(b) show POM
for each situation. Figs. 13(c) and 14(c) show graphs that
compare the risk of each trajectory once CAMS is ON.
Finally, Figs. 13(d) and 14(d) show the calculated lateral and
longitudinal acceleration based on selected trajectory.

In first scenario result at the 0 second mark is shown
in Fig. 13 (b); the right vehiclemoves left, and risk of collision
increases. As ego vehicle notices the danger of collision,
it assesses the risk of 12 pre-determined trajectories as shown
in Fig. 13(c), and selects trajectory 7, which has the lowest
mean value. Trajectory 7 will only activate the brakes of
the vehicle, and thus it can be observed that longitudinal
acceleration decreases, as shown in Fig. 13(d). The vehicle

FIGURE 12. Collision simulation scenarios. (a) Side collision scenario,
(b) backward collision scenario.

decelerated to 7.2m/s2, and reduced velocity to 12.1m/s at
1.4 seconds, which is the time at which CAMS deactivated.
When observing each state at 0.5 seconds, 1.0 second, and
1.5 seconds, as shown in Fig. 13(a), it can be verified that the
vehicle successfully decelerated within the controllable limit
and avoided the right-side vehicle approaching the lane.

At the 0 second mark of the second scenario, shown
in Fig. 14(b), the POM for the front and rear positions of
the ego vehicle generate high risk of collision. The twelve
pre-determined trajectories are compared again, as shown
in Fig. 14(c), and trajectories 4 and 10, with the lowest mean
values, are selected. In this case, trajectory 10 is randomly
selected because of the mean values of risk of trajectories
4 and 10 are the same. Trajectory 10 maintains the ego
vehicle’s velocity while increasing the lateral acceleration
towards the right, as illustrated in Fig. 14(d). It can be
observed that maximum lateral acceleration to one side is
generated, and then lateral acceleration of the opposite side
is generated once reaching the halfway point. The vehicle
generated a maximum lateral velocity of 5.0m/s while mov-
ing 3.6m to the right and reached lateral velocity of 0 m/s
at 1.4 seconds, which is when CAMS deactivated. As ego
vehicle avoided collision, it can be observed that obsta-
cle vehicle O1 and O2 have collided. While this is not an
ideal case, it shows a worst-case scenario. When a similar
situation occurs in the real-world environment, the vehicle
located at the rear will have enough time to react with
the ego vehicle out of the way, and thus collision will be
avoided.

Through the two scenarios, the operation of the proposed
algorithm has been verified. By assessing collision risks
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FIGURE 13. Simulation results of side collision scenario. (a) Time series
vehicle position (0sec, 0.5sec, 1.0sec, 1.5sec), (b) POM of each time (0sec,
0.5sec, 1.0sec, 1.5sec), (c) Comparison of trajectory candidate risk when
CAMS starts, (d) Planned longitudinal and lateral acceleration profile
when CAMS starts.

FIGURE 14. Simulation results of backward collision scenario. (a) time
series vehicle position (0sec, 0.5sec, 1.0sec, 1.5sec), (b) POM of each time
(0sec, 0.5sec, 1.0sec, 1.5sec), (c) Comparison of trajectory candidate risk
when CAMS starts, (d) Planned longitudinal and lateral acceleration
profile when CAMS starts.
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within the vehicle’ surroundings and generating a time-
dependent map, the vehicle was able to perform evasive
maneuvers and avoid collision within the 1.4 second time
frame. Furthermore, the proposed algorithm generates its
trajectory by calculating acceleration based on the sensors
equipped on the ego vehicle. Thus, it can successfully gen-
erate avoidance trajectories without relying on global coor-
dinate way points provided through localization map or
accurate GPS.

VI. CONCLUSION
This paper proposes a novel algorithm that determines poten-
tial risks based another vehicle’s sudden unexpected maneu-
ver; it does not focus only on the ego vehicle. To observe
future potential risks of collision, a POM has been devel-
oped that identifies the surroundings in spatial and temporal
space. Through the POM, potential risks of collision with
multiple vehicles can be determined simultaneously, and risk
affiliated with each position based on time can be identified,
allowing intuitive identification of the safest space for the
ego vehicle. Through the POM, the safest avoidance trajec-
tory can be selected after analytically comparing multiple
trajectory candidates. The surrounding trajectory candidates
were generated based on vehicle acceleration limit, which
allowed simultaneous planning of the trajectory and velocity
profile. The operation feasibility of the proposed algorithm
was verified through two simulation scenarios as the ego
vehicle successfully avoided a potential collision.

Through this study, the safety of autonomous vehicles can
be further improved by providing an avoidance trajectory
focused on surrounding vehicles, rather than focusing on the
ego vehicle itself. The current scenarios used in the simula-
tion have only focused on straight roads, andwill be evaluated
for curved roads in future research.
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