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ABSTRACT Traffic sign recognition(TSR) based on deep learning is rapidly developing. Specifically,
TSR contains two technologies, namely, traffic sign classification (TSC) and traffic sign detection (TSD).
However, the challenge of TSR is to ensure its efficiency, which means adequate accuracy, generalization,
and speed in real-time by a computationally limited platform. In this paper, we will introduce a new efficient
TSC network called ENet (efficient network) and a TSD network called EmdNet (efficient network using
multiscale operation and depthwise separable convolution). We used data mining and multiscale operation to
improve the accuracy and generalization ability and used depthwise separable convolution (DSC) to improve
the speed. The resulting ENet possesses 0.9M parameters (1/15 the parameters of the start-of-the-art method)
while still achieving an accuracy of 98.6 % on the German Traffic Sign Recognition benchmark (GTSRB).
In addition, we design EmdNet’ s backbone network according to the principles of ENet. The EmdNet with
the SDD Framework possesses only 6.3 M parameters, which is similar to MobileNet’s scale.

INDEX TERMS Autonomous driving, convolutional neural network, deep learning, efficient network,
perception, traffic sign recognition.

I. INTRODUCTION
Autonomous driving involves broad technologies including
perception, localization, path-planning, decision-making, etc.
Traffic Sign Recognition (TSR), which is a critical part of
the perception technology, includes TSC and TSD. In recent
years, TSR has increasingly used deep learning technology.
For example, the convolutional neural network is becoming
deeper and larger, its accuracy canmeetmany application sce-
narios. And many end-to-end technologies which are faster
and more convenient, such as one-stage object detection
methods, are also used in TSR.

However, there are still many challenges for real-world
applications. First, Classical methods rely on shape and color
information, which is hard for TSR to work accurately in
the real world. Second, The traditional methods are good at
identifying traffic signs with similar shapes or colors, which
is difficult to maintain a high generalization ability because
of the complexity of practical applications. Third, the net-
works of Object Classification [1]–[4] and TSC [5]–[8] are
becoming deeper and larger in order to obtain higher accuracy
in recent years, which will reduce the speed and increase
the calculation. But the TSR must occur in real time on a

The associate editor coordinating the review of this manuscript and
approving it for publication was Shaohua Wan.

computationally limited platform. Thus, the TSR needs to
be more efficient, which means having adequate accuracy,
generalization, and speed.

In this paper, first, we propose an innovative network
construction method, to build a new efficient TSC network
called ENet which can achieve an accuracy of 98.6% on the
GTSRB. And we build a new efficient TSD network called
EmdNet which can solve the practical problems, such as
partial occlusion, illumination changes, cluttered background
and so on(Just as shown in the fourth part of this paper).

Second, we use the theory of data mining to divide the
validation set and perform data augmentation for ENet, and
use multiscale operation for EmdNet. And the training sam-
ples which include the GTSRB and the LISA US Traffic Sign
Dataset (LISA), are from application scenes. All of these can
improve the generalization ability of network.

Third, in Traffic Sign Classification, the key to con-
structing a network is how to extract and integrate fea-
tures efficiently. Generally, the five networks [9]–[13] all
benefitted from DSC. We construct ENet using two novel
methods of DSC and Shortcuts, which makes the appropri-
ate trade-off between accuracy and speed. ENet has 0.9M
parameters, and spends only 0.62 ms to identify a sam-
ple. In Traffic Sign Detection, there are two approaches:
the two-stage and one-stage methods. The latter adopted by
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EmdNet is faster and needs fewer resource. And EmdNet
uses the improved multiscale and DSC. Based on modified
SDD framework, Deeplab-VGG possesses 33.1M parame-
ters, Inception V2 has 13.7M [14], and EmdNet which has
6.3M is slightly smaller than MobileNet [9].

In addition, there is a close connection between ENet and
EmdNet. They both aim to improve the efficiency to build
a network. The Shortcut used by ENet and the multiscale
convolution adopted by EmdNet are similar in form and
function, and the two networks use the DSC. And we design
EmdNet’ s backbone network according to the principles of
ENet.

Our major contributions are as follows.
(1) An innovative network construction method is pro-

posed. We use two famous networks to choose the network
size that meets the task, adopt and evaluate various deep
learning techniques in four scale samples. And design six
networks for comparison to select the best.

(2)We use the theory of datamining to divide the validation
set and perform data augmentation.We analyze the datasets in
order to perform a more reasonable division of the validation
set and effective data augmentation, which will enhance the
generalization ability of the network.

(3) We have built a new efficient TSC network. We have
provided two versions to meet the different needs of practical
applications.

(4) We have built a new efficient TSD network. This net-
work can be adapted to different application scenes in a real-
time embedded platform.

This paper is organized as follows: Section 2 describes the
related work, Section 3 introduces the methodologies of TSC
and TSD, Section 4 is the discussions and evaluations, and
section 5 concludes the current work and introduces future
work.

II. RELATED WORD
Traffic Sign Recognition (TSR) involves two technologies:
TSC and TSD. And TSC is a specific application of Object
Classification. The relationship between TSD and Object
Detection is similar to this.

A. OBJECT CLASSIFICATION
In recent years, there have been many classic networks
related to Object Classification, such as AlexNet [1] (2012),
VGG [2] (2014), GoogLeNet [3]–[16] (2015, 2015,
2015, 2016), ResNet [4] (2016), SqueezeNet [17] (2016),
Xception [18] (2016), MobileNet [9], [10] (2017)(2018, 1),
ShufficNet [11], [12] (2017)(2018, 7), SE-Net [19] (2017),
DenseNet [20] (2017), CondenseNet [13] (2017), Res-
NeXt [21] (2017), and the automatic neutral architecture
search [22]–[24]. At first, the convolutional neural network
was deepened and enlarged to obtain higher accuracy. How-
ever, in recent years, the networks have become smaller and
more effective. To achieve accuracy comparable to VGG
on ImageNet, ResNets reduces the amount of computations

to 1/5 the amount, DenseNets to 1/10 the amount, and
MobileNets and ShuffleNets to 1/25 the amount. How to
make the network more efficient has become a new research
focus.

There are three methods to construct an efficient net-
work: using quantized weights [5], [6], [25], pruning redun-
dant connections [26]–[29], or using new and more efficient
networks [4]–[20]. In recent years, there are many new
networks with high efficiency. SqueezeNet (2016) created
a Fire module that included a squeeze and expand layer
to reduce the filter quantity and input channel. Xcep-
tion (2016) learned from DSC to improve Inception-V3.
MobileNet-V1 (2017.04) used DSC instead of traditional
convolutions to reduce the parameters and enhance the
speed. The DSC factorizes a standard convolution into
two convolutions called depthwise and pointwise convo-
lution. About two months later, ShufficNet-V1 (2017.06)
used group convolution instead of MobileNet’ s depth-
wise convolution, and used the channel shuffle operation
instead ofMobileNet’ s pointwise convolutionwhich requires
more calculations. In that case, ShufficNet-V1 is faster than
MobileNet-V1.

SE-Net (2017) introduced the SE block that contained
the Squeeze and Excitation operation. CondenseNet(2017)
learned from DenseNet’ s jump connection and ShuffleNet’
s channel shuffle operation, and invented the learned group
convolution.

MobileNet-V2 (2018,1) applied DSC to residual blocks,
which used Inverted Residuals and Linear Bottlenecks. The
Inverted Residuals extracted more features than the resid-
ual block. In addition, Linear Bottlenecks are used behind
‘‘compression’’ instead of Relu to decrease the feature losses.
ShuffleNet-V2 (2018,7) derives four practical guidelines for
efficient network architecture design: using balanced convo-
lutions, considering group convolutions, reducing the degree
of fragmentation and elementwise operations.

To sum up, the primary differences between these afore-
mentioned networks lie in how to extract and integrate fea-
tures efficiently. To extract features, MobileNet-V1 used
depth wise convolutions, ShufficNet-V1 used group con-
volutions, CondenseNet used learned group convolutions,
MobileNet-V2 used depthwise convolutions with an added
1 × 1 ‘‘expansion’’ layer before, and ShuffleNet-V2 used
Channel Split. To integrate features, MobileNet-V1 and
V2 used pointwise convolution, ShufficNet-V1 (2017) and
CondenseNet used Channel Shuffle, and ShuffleNet-V2 [12]
(2018.7) used Channel Split. On classification, the accuracy
rank of the methods [12] is ShuffleNet-V2 ≥ MobileNet-
V2>ShufficNet-V1>Xception>MobileNet-V1. Furthermore,
we can find that the five networks are all benefitted from
depthwise separable convolutions.

Traffic Sign Classification [5]–[8] is a specific application
of Object Classification. [6] and [5] used the Spatial Trans-
former Network (SPN) to achieve state-of-the-art results on
the GTSRB.
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FIGURE 1. The right is the workflow of the full text, the middle is eight steps of building ENet,and the left is the data flow of ENet.

B. OBJECT DETECTION
Object Detection related to deep learning has two approaches:
the two-stage and one-stage methods.

The two-stage method is based on region proposal. The
R-CNN [25] (2014) obviously improved the average pre-
cision for Object Detection. The R-CNN included four
steps: A, it generated 2K region proposal using selective
search; B, each region proposal was scaled to the same
size; C, each region proposal extracted its respective fea-
tures using a CNN; and D, it used a classifier to predict
the classes of objects and used regressors to predict the
positions of detection boxes. Later, there have been many
better ideas to improve the R-CNN. SPP Net [30] (2014)
improved the B and C steps of the R-CNN. B caused data
loss or geometric distortion, so SPP Net added the spatial
pyramid to CNN to achieve multiscale data input. C was
inefficient, so SPP Net only tried to perform convolutions on
the original image to get feature map of the whole image.
The Fast R-CNN [31] (2015) adopted the SPP Net method to
improve the R-CNN. The Faster R-CNN [26] (2015) added

the Region Proposal Network (RPN) to extract edges instead
of A, which achieved better performance. In addition, the
Mask R-CNN [27] (2018) only added a Mask Prediction
Branch to the Faster R-CNN and proposed ROI Alignment
instead of ROI Pooling.

The one-stage method is based on the regression method,
which is an end-to-end technology. YOLO [28] (2016) and
YOLO-V2 [29] (2017) integrated object detection and classi-
fication into a single convolutional network, thereby increas-
ing the speed but decreasing the accuracy. YOLO V3 [32]
(2018.3) used Darknet-53 to replace Darknet-19 as the back-
bone network and used Multiscale prediction. SSD [33]
(2016.5) was faster than YOLO, and had almost the same
accuracy as the Faster R-CNN. SSD invented the Multiscale
feature map and used convolutional predictors for detection.
The Tiny-SSD [34] (2018.2) used Squeeze-Net to replace
VGG-16 as the backbone network.

Traffic Sign Detection is a specific application area of
Object Detection. Classic traffic sign detection methods rely
on shape and color information [35]–[37]. In recent years,
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FIGURE 2. The regularity of the train set. The X-axis represents each image and the Y-axis represents the Euclidean distance of the two adjacent
graphs of four classes.

FIGURE 3. The consecutive images of three lasses of the training set. We can see clearly that 30 consecutive images taken in one place are similar.

FIGURE 4. The regularity of four classes of the test set.

deep learning-based methods [6], [38]–[44] became preva-
lent after the emergence of AlexNet(2012). [45]–[47] directly
focused on Chinese Traffic SignDetection based on the CNN.

In general, the challenge of TSR is to ensure efficiency.
Increasing the depth and complexity can improve the accu-
racy, but it also reduces the speed and increases the calcu-
lation. Therefore, we have built two new efficient networks
called ENet and EmdNet, which balanced the two aspects
(accuracy and speed) while maintaining a high generalization
ability.

III. DATASETS AND SETUP
A. DATASETS TO TRAIN TSC
The German Traffic Sign Recognition benchmark database
(GTSRB) includes real-time scenes captured by video cam-
eras, and it was first provided by the International Federa-
tion of Neural Networks in 2011. The cameras continuously
shot in each scene and each class included multiple scenes.
Because the cameras were gradually closer to the targets,
the resolution of objects was in the range of 15 × 15 to
250 × 250. The GTSRB includes 43 class and contains
39209 training set samples and 12630 test sets.

The training set distribution is shown in Appendix
(FIGURE 12).

B. DATASETS TO TRAIN TSD
The dataset here is the LISA US dataset, which is the
acronym for the Laboratory for Intelligent and Safe Auto-
mobiles at UCSD. The dataset consists of 7855 annotations
on 6610 images. It contains 47 classes, which are listed in
appendix(TABLE 6) along with the number of instances for
each type.

The original image sizes of LISA vary from 640 × 480
to 1024 × 522 pixels. We have converted the input image
to 400 × 260, and used a dynamic scaling factor based on
the dimensions of the feature map relative to original image
dimensions.

C. SETUP
Two Intel R Xeon(R) CPU X5650 @ 2.67 GHz with the
Ubuntu 17.10 operating system is used to run this program to
recognize traffic signs. The prototype is developed within the
TensorFlow environment. The codes are programmed with
Python 3.5, Jupyter notebook, Pickle, and OpenCV-Python.
And we also run the program of TSD on a GTX 2080 with
i7-8700 as a comparison. And we also run the program of
TSD on a GTX 2080 with i7-8700 as a comparison. And we
also run the program of TSD on a GTX 2080 with i7-8700 as
a comparison.
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FIGURE 5. (a): 3 × 3 kernel (b): 5 × 5 kernel (c): 7 × 7 kernel.

IV. METHODOLOGY
The workflow and data flow diagram of the full text is shown
in Figure 1.

A. METHODOLOGY OF TSC
1) DATA MINING
In order to improve the efficiency of the algorithm, we can
analyze the characteristics of the dataset, which is also a kind
of data mining. We can divide the validation set and conduct
data augmentation more reasonable and effective through
data mining.

a: DIVISION OF VALIDATION SET
We can analyze the characteristics of the dataset firstly. The
initial 5 pictures of the preceding three classes of the training
set are shown in Appendix(FIGURE 13). We found that
the adjacent images of each class were similar because the

dataset was taken continuously by the camera in each scene,
and these adjacent photos should be taken in the same scene.
Finally, we use the Euclidean Distance to find out how many
photos had been taken in each scene.

We used the Euclidean Distance to represent the similarity
the between two images, which is calculated as follows:

dist(Xi,Xi+1) =

√∑n

i=1
(Xi − Xi+1)2

Xi is the image which has been flattened. Xi+1 represents
the image adjacent to Xi, dist(Xi, Xi+1) is the Euclidean Dis-
tance of the two adjacent graphs. The smaller the Euclidean
Distance, the more similar the two adjacent images are.

In addition, we can find the regularity of the training set,
which is shown in Figure 2, where the X-axis on the graph
represents each image and theY-axis represents the Euclidean
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FIGURE 6. (a) ENet (Mixed Kernel). The network structure of step 6. The mixed Kernel reduced the loss and improved the accuracy, although the
prediction time increased. (b) ENet-V1.The network structure of step 7. Shortcut reduced the loss and the improved accuracy, although the
prediction time increased. This structure is the most accurate model, which is called ENet-V1. (c)ENet-V2.The network structure of step 8. The
depthwise separable convolutions obviously reduced the prediction time, although the loss increased and the accuracy was reduced. This
structure, which is called ENet-V2, is the most efficient model.

Distance of the two adjacent graphs of four classes. The lower
the curve, the more similar the adjacent images are.

We find that the curve changes considerably every 30
images, which means a camera continuously took 30 images
in the same scene. And because of the similar lighting and
other conditions, the images taken in one scene are similar.
Just as is shown in Figure 3, We can see clearly that 30 con-
secutive images taken in one place are similar.

In this paper, we first shuffled training set. Then the val-
idation set was randomly selected in 0.2 ratio from training
set, which called ‘‘SHUFFLE’’ operation.

In contrast, as is shown in Figure 4, we find that Y index of
the testing set is much higher than training set’ s on average,
which means the consecutive images of the testing set are
very different.

b: DATA AUGMENTATION
We can also analyze the characteristics of the dataset firstly,
to conduct data augmentation more effective.

As is shown in appendix(Figure 12), the distribution of the
training set is not uniform and traffic signs of some classes
are too few, which will influence the recognition ability of
the network. In this paper, we will generate two datasets
called the Equaled Set and the Enlarged Set through data
augmentation.

Equaled Set: This set is balanced across classes using data
augmentation. Each class has 30,000 samples, which contain
the original training set.

Enlarged Set: This set which is expanded through data
augmentation contains 30× more data than the origi-
nal one. The data augmentation technologies we used
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FIGURE 7. Illustration of the eight steps of building ENet. The dotted box represents an unselected option. The corresponding
structures are shown in Figures 5 and 6, and the data curves are shown in appendix(FIGURE 14–17).

TABLE 1. The data of the eight steps of building ENet, The data in Bold Fonts is the best result. We can find that the 3 × 3 kernel works slightly better than
5 × 5 kernel.

included the rotation, reflection, and horizontal/vertical
flip.

2) THE CONSTRUCTION PROCESS OF ENET
We use the GTSRB database to train ENet, and adopt the soft-
max cross-entropy loss function using the Adam optimizer.

The following gives the specific experimental processes.
Figure 7 shows the eight steps to build ENet.

1. Step 1. Experimental Objective: Choosing the size of the
network.

a. Method: We chose a sample set from the GTSRB to
get results more efficiently. Then, we trained VGG16 and
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FIGURE 8. EmdNet based on the modified SDD framework, which mainly uses depth wise separable convolutions and multiscale
operations.

TABLE 2. The results of the ENet-V1 and ENet-V2.

TABLE 3. Numbers of parameters and top-1 accuracy results of ENet on
GTSRB. The results of several state-of the-art traffic sign classification are
provided for comparison purposes.

LeNet, both of which were classic networks, using the
sample set.

b. Data: VGG16: test accuracy = 0.059, and test time =
645.935s. LeNet: test accuracy = 0.907, and test time =
4.376s.

c. Conclusion: We could find that LeNet was faster and
more accurate than VGG16 in this case. It was more appro-
priate to choose a network similar to LeNet.

2. Step 2. Experimental Objective: Choosing the size of the
convolution kernel by comparing the 3× 3, 5× 5, and 7× 7
kernels.

a. Method: We used only one of three kernels to build
the network, and used the color sample set for train-
ing. The corresponding network structures are presented
in Figure 5.

Based on the conclusion of the first step, we chose three
networks of similar size to LeNet. In order to ensure that the

TABLE 4. The parameters of EmdNet and several famous models.

TABLE 5. The speed of models under different computer configurations.

computations of networks are similar, the larger the kernel,
the fewer the network layers. Thererfore, the network of 3×3
kernel has 8 layers, the network of 5× 5 kernel and 7× 7 has
6 layers.

b. Data: The 3 × 3 kernel: time = 3.535s, loss = 1.3376,
and accuracy = 0.8575; 5× 5 kernel: time = 3.663s, loss =
2.3480, and accuracy= 0.7827; and the 7× 7 kernel: time=
4.189s, loss = 2.1726, and accuracy = 0.8052. The curves
are shown in Appendix(FIGURE 14).

c. Conclusion: The 7× 7 kernel produced the worst result,
and the 3× 3 model was a little better than the 5× 5 model.
We run the 3 × 3 and 5 × 5 models side by side in the 3 to
5 steps with the networks shown in Figure 5.

3. Step 3. Experimental Objective: Judging whether
Grayscale has the function of optimization.

a. Method: The 3× 3 and 5× 5 models were respectively
trained using the Full Set to compare the results before and
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FIGURE 9. a, b, and c taken continuously on the same camera, are the results of detection with partial occlusion and different distances,
and a’, b’, and c’ are the amplifications of traffic signs (pedestrian crossing).

FIGURE 10. This is the result of detection with illumination changes.

after grayscaling. The Full Set includes all the original data
of the GTSRB. We used the Full Set instead of the Sample
Set to improve the generalization ability.

b. Data: The 3 × 3 model before grayscaling: time =
5.537s, loss = 1.6287 and accuracy = 0.8789; and after
grayscaling: time = 5.206s, loss = 1.2634 and accuracy =
0.9192. The 5× 5 model before grayscaling: time = 6.365s,
loss= 2.0055 and accuracy= 0.8849; and after grayscaling:
time = 5.315s, loss = 1.1573,and accuracy = 0.9298. The
curves are shown in Appendix(FIGURE 15).

c. Conclusion: The two models obtained better results after
grayscaling. The time and loss decreased, and the accuracy
improved. Once again, the 3 × 3 model was more accu-
rate than the 5 × 5 one. We could see that both models’
validation loss increased as the training accuracy improved.
This strongly implied that overfitting was occurring.

4. Step 4. Experimental Objective: Judging whether nor-
malization has the function of optimization.

a. Method: The 3× 3 and 5× 5 models were respectively
trained using the Full Set to compare the results before and
after normalization.

b. Data: The 3 × 3 model after normalization: time =
5.102s, loss = 0.6503 and accuracy = 0.9421; and the
5 × 5 model after normalization: time = 5.272s, loss =
0.9083 and accuracy = 0.9295. The curves are shown in
appendix(FIGURE 16).

c. Conclusion: The 3×3 model had more erratic behavior,
which was hard to explain at this stage. Overall, it performed
slightly better. Sadly, none of the two models reached 95%
test accuracy. Next, we focus on the dropout.

5. Step 5. Experimental Objective: Judging whether
Dropout has the function of optimization.
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FIGURE 11. This is the result of detection with cluttered background.

FIGURE 12. The distribution of the training data set.

a. Method: The 3× 3 and 5× 5 models were respectively
trained using the Full Set to compare the results before and
after Dropout.

b. Data(1): The dropout value was 0.9 for the convolution
layer and 0.75 for the fully connected layer (p-conv = 0.9,
p-fc= 0.75). The 3×3 model: time= 5.205s, loss= 0.1933
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FIGURE 13. The initial 5 pictures of the preceding three classes of the
training set.

and accuracy= 0.9706; and the 5× 5 model: time= 5.277s,
loss = 0.1929 and accuracy = 0.9700..
b. Data(2): p-conv= 0.9, and p-fc= 0.50. The 3×3model:

time = 5.013s, loss = 0.1146, accuracy = 0.9740; and the
5 × 5 model: time = 5.242s, loss = 0.1384, accuracy =
0.9732.The curves are shown in appendix(FIGURE 17)

c. Conclusion (1): Once again, both the 3×3 and 5×5 vari-
ants were very close. Interestingly, the 3× 3 model achieved
lower loss but also lower accuracy than its counterpart 3× 3
model on color images. In the future, we should do more runs
of those models to determine which one performs better over
the long run. Nevertheless, we believe that we did not need to
go that far.We could use evenmore aggressive dropout values
to obtain better results in the next step.

c. Conclusion (2): Both models resulted in smooth, satis-
factory curves. The 3 × 3 model clearly seemed to perform
the best. While we were able to reach above 98% accuracy on
the validation set, we had not been able to break through this
barrier yet on the test set. Furthermore, we could find that the
loss obviously decreased after dropout.

6. Step 6. Experimental Objective: Judging whether
Mixed Kernel and Data Augmentation have the function of
optimization.

a. Method(1): We built a network containing 3 × 3 and
5× 5 kernels, as is shown in Figure 6(a). We also used Data
Enhancement, as described in section IV-A-1.

b. Data: time = 7.316s, loss = 0.1002 and accuracy =
0.9769.

c. Conclusion: The Mixed Kernel reduced the loss
and improved the accuracy, although the prediction time
increased.

7. Step 7. Experimental Objective: Judging whether Short-
cut has the function of optimization.

a. Method: We added three shortcuts from each convolu-
tion layer to the fully connected layer, which is illustrated
in Figure 6(b).

b. Data: time = 7.794s, loss = 0.0634 and accuracy =
0.9869.

c. Conclusion: Obviously, Shortcut reduced the loss and
improved the accuracy, although the prediction time was
increased. This structure was the most accurate model, which
was called ENet-V1.

8. Step 8. Experimental Objective: Judging whether Depth-
wise Separable Convolution has the function of optimization.

a. Method: We added Depthwise Separable Convolutions
to the network structure, which is shown in Figure 6(c).
Depthwise Separable Convolution already has had an existing
function in TensorFlow.

b. Data: time = 3.090s, loss = 0.2642, and accuracy =
0.9678.

c. Conclusion: Obviously, the Depthwise Separable Con-
volutions reduced the prediction time, although the loss
increased and the accuracy decreased. In addition, this struc-
ture was the fastest model, which was called ENet-V2.
ENet-V1 and ENet-V2, which are efficient networks, can be
selected according to our different needs.

Figure 7 shows the eight steps to building ENet. The first
and second steps are implemented using the Sample Set,
which was part of the raw data, because reducing quantity can
save training time. The third to fifth steps were implemented
on the Full Set, which was all of the raw data. The sixth
to eighth steps are implemented on the Equaled Set and the

FIGURE 14. Data of step 2.
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FIGURE 15. Data of step 3.

FIGURE 16. Data of step 4.

Enlarged Set, which were the enhancements of the original
data(As mentioned in the previous section).

The corresponding network structures are shown in
Figures 5 and 6, and the experimental data is shown in
Figure 7 and Table 1. In order to ensure that the computations

of networks are similar, the networks of step 6 and step 7 have
8 layers, and the network of step 8 has 10 layers.

We designed six networks for comparison, to select the
best. At last, we can get two networks called ENet-V1
and ENet-V2. ENet-V1 is more accurate than ENet-V2,
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FIGURE 17. Data of step 5.

TABLE 6. The content of the LISA traffic Sign dataset broken down by sign type.

and ENet-V2 is faster than ENet-V1. Both of them are effi-
cient networks for mobile devices, which can be selected
according to the different application requirements.

B. METHODOLOGY OF TSD
1) DESIGN PRINCIPLE OF EMDNET
As mentioned in the section IV-A-2(step 2, etc.), we should
give priority to the 3× 3 kernel instead of the 5× 5 and 7× 7
kernels, which should be placed in shallow layers to extract
the features through a larger window.

As mentioned in section IV-A-2(step 7), Shortcut reduced
the loss and the improved accuracy, although the predic-
tion time increased. EmdNet has 9 shortcuts, which is
called the multiscale operation. In addition, as mentioned
in section IV-A-2 (step 8), the depthwise separable convolu-
tions obviously reduced the prediction time, although the loss

increased and the accuracy decreased. Thus, EmdNet mainly
combines depthwise separable convolutions and multiscale
operations, which has made an appropriate trade-off between
the accuracy and speed.

Furthermore, as mentioned in sections I and II, the one-
stage method, which is suitable for mobile devices such
as self-driving cars, is faster and needs fewer resources.
So the EmdNet based on the modified SSD framework is the
one-stage method.

2) THE STRUCTURE OF EMDNET
We use the LISA US Traffic Sign Dataset (LISA) to train
EmdNet, which uses a revised end-to-end technology for
real-time embedded Traffic Sign Detection. EmdNet, which
is based on the modified SSD framework, mainly uses
depth wise separable convolutions and multiscale operations.
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FIGURE 18. Five new german traffic signs taken from the network to test the recognition effect of ENet.

EmdNet has 42 levels including the output layer, which are
presented in Figure 8. The parameters and configuration of
EmdNet are shown in Appendix(TABLE 7).

The 5th to 26th levels of EmdNet adopt the depth wise
separable convolution is backbone network, to extract fea-
tures. And the depth wise separable convolutions can improve
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TABLE 7. The parameters and configurations of EmdNet. EmdNet has 42 layer including the output layer. The 5st to 26th levels of EmdNet mainly adopt
the depth wise separable convolution is backbone network, to extract features. And the depth wise separable convolutions can improve the network
efficiency. EmdNet has 9 shortcuts, which are called multiscale operations, to produce the high-level feature representations that are amenable to
classification early on. This construction principle is similar to ENet.

the network efficiency. EmdNet has 9 shortcuts, which are
called multiscale operations, to produce the high-level feature
representations that are amenable to classification early on.
This construction principle is similar to ENet.

V. DISCUSSIONS AND EVALUATION
A. DISCUSSIONS AND EVALUATION OF TSC
1) DISCUSSION OF ENET
As is shown in Table 2, ENet-V1 is more accurate, although
it is slower and larger. The test set has 12630 samples, which
means that ENet cannot identify 166 samples. ENet spent
7.794S identifying the test set, whichmeans that every sample
took on average 0.62 ms. ENet-V2 is less accurate, but is
faster and smaller. ENet-V2’ s size is only 1/3 of ENet-V1.
And each sample took on average 0.24 ms.

Table 3 shows the numbers of parameters and Top-1 accu-
racy results of ENet on the GTSRB. The results of several

famous traffic sign classifications are provided for compari-
son purposes. The resulting ENet-V1 possesses 0.9M param-
eters, which is 1/15 the parameters of the start-of-the-art
method.

2) TESTING USING NEW DATASET
The generalization ability of the optimized ENet is obviously
improved. In this section, we will collect five new German
traffic signs from the network to test the recognition effect of
ENet. The results show that all new data can be identified,
which means that ENet has a strong generalization ability.
This is shown in Appendix(FIGURE 18).

B. DISCUSSIONS OF TSD
1) THE RESULT OF EMDNET
As is shown in Table 4, EmdNet possesses 6.3M parame-
ters, which is 1/5 the parameters of Deeplab-VGG, 1/22 the
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parameters of Inception V2, and slightly smaller than
MobileNet, all with the SSD framework.

On two Intel R Xeon(R) CPU X5650 @ 2.67 GHz,
the neural network inference time of EmdNet is about
130.9ms(7.64 fps), the sum of inference and Non-Maximum
Suppression(NMS) times is 187.7 ms (5.33 fps). And on
GTX 2080 with an Intel Core i7 8700, the neural network
inference time is about 15.4ms(64.82fps), the sum of infer-
ence andNon-MaximumSuppression(NMS) times is 33.0ms
(30.28 fps), which is a better performance. As is shown
in Table 5, we find that the one-stage method used GPU
can improve the speed, and EmdNet can achieve real-time
detection.

The detection efficiency of EndNet on LISA is shown
in Figure 9 to 11. We can find the following aspects.

1. Our network has enough discrimination ability to
detect when under partial occlusion (as is shown in
Figures 9(a and b), except for c).

2. The traffic sign in Figure 9(a) is closer than the one
in Figure 9(b), but the former’ s confidence is higher. So the
Object Confidence is not only determined by the distance
or size of the target, as is shown in Figures 9(a’ and b’).
Sometimes a large target is difficult to find, which also proves
the importance of multiscale feature extraction.

3. EmdNet can identify objects well, regardless of whether
they are colored or not, as is shown in Figure 10.

4. Our network has enough discrimination ability to detect
when under illumination changes(as is shown in Figure 10)
and cluttered background(as is shown in Figure 11).

VI. CONCLUSIONS AND FUTURE WORKS
In this paper, we introduce a TSC network called ENet and
a TSD network called EmdNet. We show the experimental
process of building ENet’s structure. The resulting ENet pos-
sesses 0.9M parameters (1/15 the parameters of the start-of-
the-art method) while still achieving an accuracy of 98.6%
on the GTSRB. Furthermore, we design EmdNet’s backbone
network according the principle of the ENet. The result-
ing EmdNet, which is similar to MobileNet with the SDD
Framework, possesses 6.3M parameters.These experimental
results show that an efficient neural network architecture,
which has adequate accuracy, generalization, and speed, can
be designed for real-time embedded traffic sign recognition.

In the future, our works will mainly include three objec-
tives. One is to improve the performance, especially for TSD.
The second is to use videos instead of images as the input of
the network for further practical validation. The third is to
research multitask learning and improve the generalization
ability and commercialization of the network.

APPENDIX
See FIGURES 12–18 and TABLES 6 and 7.
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