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ABSTRACT Recently, compressive sensing (CS) has been applied in synthetic aperture radar (SAR)
imaging, which is increasingly in the focus of study and shows great potential. In CS-based SAR imaging,
motion errors of the moving platform introduce inaccuracies in the observation model, which cause various
degradations in the final images. To accomplish accurate motion compensation during CS-based SAR
imaging, we propose a fast CS-based SAR imaging integrated with motion compensation method. First, CS-
based imaging based on the utilization of inverse observation deduced from the inversion of conventional
imaging procedures is applied, which is much more computational efficient than the exact observation
model. Then, an improved inverse observation model integrated with motion compensation is derived. In the
improved model, spatially variant azimuth phase errors are taken into consideration. Joint SAR imaging and
motion compensation are formulated as a sparse recovery problem and solved in an iterative way, wherein
each iteration both image formation and motion compensation are carried out. The processing of SAR data
shows that the proposed method can obtain better focused images compared with the existing SAR imaging
and motion compensation methods.

INDEX TERMS Radar imaging, synthetic aperture radar.

I. INTRODUCTION
Synthetic aperture radar (SAR) [1], [2] enhances and
improves the capability of information acquisition, which
produces high spatial resolution images from a moving plat-
form. Some theories for SAR image reconstruction have been
developed, such as range-Doppler (RD), chirp-scaling and
back-projection (BP) and so on. The conventional imaging
algorithms are efficient, but the Nyquist sampling theory
requires that the SAR signal should be sampled at a frequency
at least twice its bandwidth to be able to reconstruct it exactly
for both range and azimuth directions. With the resolution
becoming increasingly finer and imaging swath increasingly
larger, SAR system needs more and more measurements and
storage. Unfortunately, however, the current system hardware
always hampers such large-amount and high-dimensional
application.

A newly introduced theory of compressed sensing (CS)
presents that, we can reconstruct a sparse or compressible
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signal accurately from a highly incomplete measurements
utilizing CS theory [4]–[6]. A lot of literatures [7]–[10] were
proposed to apply the CS theory in conventional SAR sys-
tem which can solve the problem of high amount of sam-
pled data. If modeling the data acquisition procedure into
an exact observation, the number of measurements can be
much smaller than the equivalent number of Nyquist rate
samples [11].

In practical applications, due to the effect of platform
vibration, wind field, and turbulence, the platform might
greatly deviate from the ideal straight trajectory [12]–[17],
and therefore, the exact observation models often have
uncertainties. These uncertainties degrade the image qual-
ity drastically during imaging. In principle, it is possible
to correct the uncertainties stemming form motion errors
utilizing the motion measurement data provided by an ancil-
lary instrument such as inertial navigation system (INS)
and global positioning system (GPS). However, measure-
ment uncertainties on the data would limit the accuracy.
Thus, motion compensation based on the raw data, which is
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also called autofocus, should be used to improve the image
quality.

Various studies have been presented on the autofocus prob-
lem [19], [21]–[26]. However, conventional autofocus meth-
ods can not be utilized in the CS-based imaging algorithms
directly. Several CS-based imaging formation methods con-
sidered the motion errors. In [27], a sparsity-driven autofocus
method is proposed to deal with the SAR image formation
from the data corrupted by motion error, but spatial-variance
of the motion errors is neglected. To solve this problem, phase
errors are divided into three subcategories, i.e., 1-D phase,
2-D separable, and 2-D nonseparable errors, and they are cor-
rected by using a nonquadratic regularization approach [28].
The compensation of 2-D separable and 2-D nonseparable
errors can eliminate the range-variance of motion errors.
In [29], the authors focus on the case when the range-variant
phase error arises from the incorrect measurement of the
platform motion parameters.

However, another serious drawback of the CS-based imag-
ing algorithm is that compared with the traditional imaging
methods, the CS-based imaging algorithms need larger com-
putational complexity. In order to deal with such a problem,
instead of exact observation model, some CS-based imaging
algorithms are proposed based on approximation observa-
tion [30], [31]. As the focused SAR image can be viewed
as the output of the imaging operator performed on the SAR
echo, we can use an inverse observation model derived from
the inversion of traditional imaging algorithms to replace
the exact observation. Based on such inverse observation,
the SAR image can be reconstructed in a more efficient way.
The autofocus methods in CS-based SAR imaging mentioned
above cannot be directly utilized integrated with the inverse
observation model imaging algorithms.

In this paper, we propose a novel fast CS-based SAR imag-
ing integrated with motion compensation. Firstly, motion
errors property of the SAR is analyzed, and it can be con-
cluded that only range-variance of the motion errors should
be taken into consideration, and the azimuth-variance can be
neglected. Based on this conclusion, a range-variant autofo-
cus is added into the inverse observation model. After that,
the proposed approach is implemented through SAR image
reconstruction and range-variant phase error estimation by
solving a sparse recovery problem. Note that the motion
compensation and image reconstruction are carried out simul-
taneously in the proposed approach. As motion errors has
been eliminated in the inverse observation, the image quality
will be greatly improved in contrast to the existing methods.
The main contribution of the proposed approach is

1) We propose an improved inverse observation model
combined with a spatially-variant motion compensa-
tion, which has the advantage of greatly increasing the
imaging quality in practical application.

2) Correspondingly, a block coordinate descent scheme
is proposed to solve the estimation problem in the
improved inverse observation model, where motion
errors and the RCS information of the image

scene are estimated simultaneously in the proposed
approach.

The rest of this paper is organized as follows. The fast
CS-based SAR imaging algorithm using inverse observation
and autofocus method is introduced. Section III gives the
motion error model of SAR, and analyzes the motion errors’
spatial-variance property. In section IV, a fast CS-based SAR
imaging integrated with motion compensation method is
derived in detail. Numerical results are given in Section V.
Section VI concludes this paper.

II. RELATED WORK
This section briefly introduces two preceding works,
CS-based SAR imaging using exact observation and fast
CS-based SAR imaging using inverse observation.

A. CS-BASED SAR IMAGING USING EXACT OBSERVATION
In SAR systems, suppose the radar transmits linear frequency
modulated (FM) pulses at a constant rate. Let x and y denote
the range and azimuth position of the reconstructed SAR
image, which be indexed by m = 1, 2, · · · ,Nr and n =
1, 2, · · · ,Na, respectively, where M and N are the sample
number with respect to range and azimuth direction. Suppose
τ and t represent the range and azimuth time, respectively,
and i = 1, 2, · · · , I and q = 1, 2, · · · ,Q index the the range
and azimuth time, where I and Q are the sample number
of range and azimuth time, respectively. Let s0(τi, tq, xm, yn)
represent the received signal of the qth pulse in the ith
sequence from the target located at (xm, yn), and it can be
written as shown in (1).

s0(τi, tq, xm, yn) = δ(xm, yn)ωr (τi) ωa
(
tq
)

· exp

{
−jπkr

(
τi −

r(tq, xm, yn)
c

)2
}

· exp
{
−j4π fc

r(tq, xm, yn)
c

}
. (1)

In (1), ωr and ωa are range and azimuth envelope, δ(xm, yn)
denotes the reflector coefficient for the target located at
(xm, yn), r(tq, xm, yn) is the instantaneous slant range from
image position (xm, yn) to the moving platform, fc is the
carrier frequency, c is the speed of light, and kr is range chirp
FM rate.

Assume the received signal at the qth pulse of the
ith sequence for whole area illuminated by the beam is repre-
sented by s(τi, tq). s(τi, tq) can be written as

s(τi, tq) =
∑
m

∑
n

s0(τi, tq, xm, yn). (2)

By setting

ϕ(τi, tq, xm, yn) = ωr (τi) ωa
(
tq
)

· exp

{
−jπkr

(
τi −

r(tq, xm, yn)
c

)2
}

· exp
{
−j4π fc

r(tq, xm, yn)
c

}
, (3)
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the SAR echo data s(τi, tq) can be rewritten as

s(τi, tq) =
∑
m

∑
n

ϕ(τi, tq, xm, yn)δ(xm, yn). (4)

According to (4), the relationship between the received
echo and reflector coefficients can be rewritten as

y′ = H ′x, (5)

where y′ = vec (s(:, :)) is the vector representation of the
echo, x = vec(δ(:, :)) denotes the vector representation of
the the reflector coefficient, and H is the system matrix (6),
as shown at the bottom of this page. In (6), ai,q is

ai,q =
[
vec

(
ϕ(τi, tq, :, :)

)]H
, (7)

for any i = 1, 2, · · · , I and q = 1, 2, · · · ,Q.
In (5), the received SAR echo y and system matrix H

are known, and we need to recover the reflector coefficient
vector x by solving the linear equations. In conventional SAR
system, the sampling frequencies of both azimuth and range
direction should be twice than the corresponding bandwidths
according to the requirement Nyquist theory, and we usually
have IQ ≥ MN .
However, this requirement needs too many sampling

amount especially in the high resolution and large swath case.
Fortunately, the framework of the CS theory shows that x
is recoverable if x is sparse or compressible. To utilize the
CS-based approaches, random sampling should be employed
on the received data, which is equivalent to performing a
random selection on the uniform sampled data. The random
selection operation can be represented by a 0-1 matrix 4 of
size P× IQ, where P � IQ. By setting H = 4H ′ as the
measurement matrix, we can get the relationship between
the random sampled video SAR echo y and the reflector
coefficient vector to be reconstructed x as

y = Hx. (8)

(8) model the SAR echo acquisition into an exact observation.
If x is sparse, we can recover x from the exact observation by
solving a following minimum l0 optimization problem as

argmin
x
|x|0, s.t. y = Hx, (9)

where |·|0 denotes l0 norm, which returns the number of
nonzero elements in the vector. The optimization problem
in (9) is non-deterministic polynomial (NP) hard. One solu-
tion is to use the greedy strategies like Orthogonal Match
Pursuit (OMP) or some. Another approaches taken in CS are
usually to solve a relaxed version

argmin
x
|x|1, s.t. y = Hx, (10)

where |·|1 denotes a l1 norm, which returns the sum of the
absolute values of all the elements in the vector. The solution
to (9) is often known as Basis Pursuit (BP) [32], which can
be solved by linear programming methods. It has been shown
that under certain conditions on system matrix H and the
sparsity of x, the solution to both and will coincide [33].
In addition to the sparsity of x, another sufficient con-

dition to recover x, is known as the Restricted Isometry
Property (RIP) [4], [34], [35]. The RIP of SAR system has
been verified in some previous literatures [7], [9].

Note that in the practical application, the reflector coef-
ficient vector x is not naturally sparse. But in most cases,
we can find a transform tomakemost of the coefficients in the
transform domain to be zero or very small. In this situation,
we need to use a sparse transform in the CS scheme [36].

B. FAST CS-BASED SAR IMAGING USING
INVERSE OBSERVATION
In the imaging algorithms of SAR processing, it is known that
the computational complexity order of the frequency-domain
imaging methods is lower than it of the CS-based imaging
algorithm using exact observation. Inspired by this, litera-
tures in [30] and [31] tried to combine the CS-based SAR
imaing with traditional frequency-domain imaging algo-
rithms, and accelerate the CS-based SAR imaging procedures
to achieve a comparable (at the same order) complexity with
the frequency-domain imaging methods.

Taking RD algorithm as an example, the flowchart of the
RD algorithm is shown in Fig. 1.

FIGURE 1. Flowchart of the RD imaging algorithm.

The procedure of RD algorithm consists of three main
steps: 1) range compression, 2)residual range cell migration
correction, and 3) azimuth compression. Assuming that M
denotes the matrix representation of the RD algorithm and z
is the vector representation of the final focused SAR image,
the relationship between the SAR echo y and the final focused
SAR image z is

z = My. (11)

In a compact form, the imaging procedure M , operated on
2-D array, can then be expressed as follows

M = FHt PtF
H
τ RFtPτFτ . (12)

where Ft and Fτ denote the Discrete Fourier transform
with respect to azimuth and range directions, respectively,

H ′ =
[
a1,1 a1,2 · · · a1,Q a2,1 a2,2 · · · a2,Q · · · aI ,1 aI ,2 · · · aI ,Q,t

]H (6)
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FHt and FHτ represent the inverse Discrete Fourier transform
with respect to azimuth and range directions,Pt andPτ are the
phase multiplication matrixes of frequency-domain matched
filter operations along azimuth and range, and R denotes the
phase multiplication matrix of the range cell migration cor-
rection, where the specific definitions can be found in [30].

With such concrete procedures in RD algorithm,
the inverse of the RD algorithm can be acquired by taking
the inverse of each procedure. The Discrete Fourier transfor-
mations and the inverse Discrete Fourier transformations can
be easily obtained as they are mutually conjugate transpose to
each other. The inversion of phase multiplication of matrixes
Pt , Pτ , and R is the multiplication of their conjugate phase
matrixes. Then, the inversion of the RD algorithm can be
formulated as the inversion observation model as follows

y = M−1z, (13)

where

M−1 = FHτ P
H
τ F

H
t R

HFτPHt Ft . (14)

FIGURE 2. Flowchart of the inversion of RD imaging algorithm.

The flowchart of the inversion of RD imaging algorithm is
shown in Fig. 2. By employing a random selection process-
ing, (13) is changed into

y = 4M−1z. (15)

Mathematically, the reason why the computational efficiency
of the CS based method using the inversion observation
model is higher than it using the exact observation model
lies in the fact that M−1 is a block diagonal matrix, which
contains a large number of 0 elements. Therefore, usingM−1

to employ the CS based SAR imaging is of less computational
cost than using matrix H , which is a matrix with all elements
not equaling to 0. The relations between exact observation
and inverse observation is shown in Fig. 3.

FIGURE 3. Relations between exact observation and inverse observation.

FIGURE 4. Imaging geometry configuration of SAR.

As the imaging results z is an approximation to the reflector
coefficient vector x, the sparsity or compressibility of z and
x are almost the same. As the RIP property of the inverse
imaging matrix M−1 has been verified in [31], it’s possible
to use the inverse observation model to derive a CS-based
imaging algorithm. The corresponding optimization problem
is formulated as

argmin
z
|z|0, s.t. y = 4M−1z. (16)

The reconstruction problem expressed in (16) can be solved
by a convex program to the relaxed version of l0 norm or
greedy algorithms as well.

III. SPATIAL-VARIANCE PROPERTY OF MOTION ERRORS
In this section, the geometry configuration of the SAR sys-
tem in the presence of motion errors is presented in the
first subsection. Then, based on the geometry configuration,
spatial-variance property of motion errors is analyzed in
the second subsection.

A. GEOMETRY
In the nominal condition without any motion errors,
the geometry configuration of SAR is shown in Fig. 1. Trans-
mitter and receiver are assumed to move along y axis with
the same velocity V . The direction of x axis denotes range,
and the direction of y represents azimuth in this paper. The
azimuth time t is chosen to be zero at the composite beam cen-
ter crossing time of the reference target. The position vector
of the reference target is p0 = [0 0 0]T , and target A is an
arbitrary point target in the imaging area pA = [x y z]T .
In the condition without motion errors, the position vector of
the platform at the azimuth time tq is

p̃ = [xT Vtq + yT zT ]T (17)

Accounting for the trajectory deviations stemming from
motion errors and elevation variation, pT and pR denote the
actual instantaneous position vector of the transmitter and
receiver, respectively. The explicit expressions are

p = p̃+ e, (18)
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FIGURE 5. Spatial-variance of 1rTc (tq; x, y ) in the presence of different cross-track errors. (a)1xT (tq) = 1.2m,
1zT (tq) = −0.8m. (b)1xT (tq) = −0.6m, 1zT (tq) = 1m.

where e represent the motion errors vector of the platform.

e = [1xT (tq) 1yT (tq) 1zT (tq)]T (19)

The actual range history of the target A can be expressed as

r(tq; xm, yn) = ‖p− pA‖ (20)

The nominal range history for target A is

r̃(tq; xm, yn) = r|e=[0 0 0]T (21)

Then, the range history deviations stemming from the motion
errors can be calculated as

1r(tq; xm, yn) = r(tq; xm, yn)− r̃(tq; xm, yn). (22)

B. SPATIAL-VARIANCE PROPERTY OF MOTION ERRORS
The motion errors are three-dimensional, i.e. x, y, z. The
errors in the y-direction account for along-track nominal
velocity changes that are generally compensated via an
on-board adjustment of the pulse repetition frequency or, via
azimuth re-sampling of raw data. Therefore, the effect of
the along-track velocity errors is assumed to be negligible,
and we focus on the property of the motion errors in the
cross-track direction [17].

Range deviations stemming from the cross-track errors is
shown as

1rc(tq; xm, yn) = rc(tq; xm, yn)− r̃(tq; xm, yn), (23)

where rc denotes the range history in the presence of
cross-track motion errors. In (24), as shown at the bottom of
this page, the range- and azimuth-dependent component of
1rc are expressed by 1rc_r and 1rc_a, respectively.
To analyze the spatial-variance properties of 1rc, simula-

tions with two different cases are conducted (considering an

X band system, λ = 0.03m).The initial position vector the
platform is [−8, 0, 10]km.
Fig. 5 give the spatial-variance of range deviation 1rc

at tq with two different cases. The range deviation of the
transmitter 1rc varies with range position linearly, and with
azimuth position quadratically. However, the azimuth-variant
component is much smaller than the range-variant compo-
nent. 1rc_a is within 10−3m for both two cases, and it can
be neglected during imaging processing [37].

From the analyses of the spatial-variance property of
motion errors, it can be concluded that both the azimuth-
and range-variance of range deviation should be taken into
consideration in SAR imaging.

IV. FAST CS-BASED SAR IMAGING INTEGRATED
WITH MOTION COMPENSATION
Based on the conclusion of the spatial-variance property of
the motion errors, a range-variant phase error correction pro-
cedure is added into the inverse observation model. Utilizing
the improved inverse observation, a block coordinate descent
optimization scheme is carried out to realize the estimation of
the range-variant phase errors and final image reconstruction
at the same time.

A. IMPROVED INVERSION MODEL
To cope with the range-variant motion errors, we should
multiply different phase errors in different range gates for
the 2-dimensional time domain data before azimuth com-
pression and after RCM correction. The flowchart of the
RD imaging algorithm with motion compensation is shown
in Fig. 6. Suppose the 2-dimensional time domain data before
azimuth compression and after RCM correction is denoted as
s0(τi, tq), and the data after motion compensation is s1(τi, tq).

{
1rc_r(tq; xm, yn) = 1rc(tq; xm, yn)|yn=0 −1rc(tq; xm, yn)|xm=0,yn=0,
1rc_a(tq; xm, yn) = 1rc(tq; xm, yn)|xm=0 −1rc(tq; xm, yn)|xm=0,yn=0.

(24)
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FIGURE 6. Flowchart of the RD algorithm with motion compensation.

Then,

s1(τi, tq) = s0(τi, tq)ejφ(τi,tq). (25)

In a matrix manner, (25) can rewritten as

v1 = v0ej8, (26)

where v0 and v1 are the vector representation of s0(τi, tq)
and s1(τi, tq), respectively, and8 is the matrix representation
of the correction phase. The concrete definitions of v0 and
v1 are v0 = vec(s0(:, :)), v1 = vec(s1(:, :)), respectively,
and expression of 8 in (27), as shown at the bottom of this
page. Noted that in (27), we need to employ a range-variant
motion compensation, whichmultiplies a correction phase for
each sampling of the SAR data, according to the conclusion
in subsection III.B. In some certain cases, if the imaging
scene is small in width of range direction, or we don’t need
a SAR image with very high quality, we can just use the
spatial-invariant phase correction matrix8′ in (28), as shown
at the bottom of this page. Compared with (27), we reduce
the dimension of phase error correction from IQ to Q, and
increase the computational efficiency in (28). In this paper,
we still treat the phase errors as range-variant, which is more
common in practical application.

Then, the imaging matrixM is changed into

M = FHt PtFte
j8FHt F

H
τ RFtPτFτ . (29)

Accordingly, matrix representation of the inversion of RD
algorithm with range-variant phase error correction is

M−1 = FHτ P
H
τ F

H
t R

HFτFte−j8FHt P
H
t Ft . (30)

The flowchart of the inversion of RD algorithm with motion
compensation is shown in Fig. 7.

It should be noted that in (30), phase error matrix8 can be
calculated bymotionmeasurement data. But in most practical
applications, the accuracy of the motion measurement is not
high enough to meet the requirement of motion compensa-
tion in high-resolution SAR imaging. Therefore, phase error
matrix 8 needs to be estimated as well as the final focused

FIGURE 7. Flowchart of the inversion of RD algorithm with motion
compensation.

Algorithm 1
Input: Initialize p = 0
Repeat
Step 1: ẑp+1 = argmin

z
J
[
8̂p, z

]
.

Step 2: 8̂p+1
= argmin

8

J
[
8, ẑp+1

]
.

p← p+ 1 until e =
∥∥∥ ẑp+1−ẑpẑp

∥∥∥ is less than a predetermined
threshold δ.
In this paper, the value of the threshold δ is chosen as 10−4.

imaging result y in the CS-based imaging process. The imag-
ing problem in (16) is changed into

argmin
z,8

|z|0, s.t. y = M1e−j8M2z, (31)

where M1 = 4FHτ P
H
τ F

H
t R

HFτFt and M2 = FHt P
H
t Ft .

InM1, random sampling have been employed on the received
data as we have multiplied the random selection matrix 4.

B. BLOCK COORDINATE DESCENT OPTIMIZATION
SCHEME
To solve (31), we use the relax version l1 norm to replace l0
norm and pose the optimization problem as the minimization
of the following cost function:

J (z,8) =
∥∥∥y−M1e−j8M2z

∥∥∥2
2
+ λ‖z‖1, (32)

where λ is the regularization parameter, which trades off
the reconstruction precision and the sparsity of the solu-
tions obtained. The regularization parameter has a substantial
impact on the imaging result. Fortunately, as a part of the
regularization theory, the optimally has been resolved in [38],
whenever the problemâĂŸs sparsity is known.

Then, a block coordinate descent optimization scheme
is applied to minimize the cost function F . In an iterative
manner, the imaging result z and phase error8 are estimated
consecutively in each iteration. The algorithm is summarized
as follows.

8 = diag
[
φ(τ1, t1) · · · φ(τI , t1) φ(τ1, t2) · · · φ(τI , t2) · · · φ(τ1, tQ) · · · φ(τI , tQ)

]
(27)

8′ = diag
[
φ(t1) · · · φ(t1)︸ ︷︷ ︸

I

φ(t2) · · · φ(t2)︸ ︷︷ ︸
I

· · · φ(tQ) · · · φ(tQ)︸ ︷︷ ︸
I

]
(28)
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W (z) = diag
[
1+ λ(|z1|2 + β)−

1
2 , 1+ λ(|z2|2 + β)−

1
2 , · · · , 1+ λ(|zD|2 + β)−

1
2

]
. (36)

In the block coordinate descent optimization, p denotes the
iteration number. ẑp and 8̂p represent the estimation of z and
8 in the pth iteration. In the first step of the p+ 1th iteration,
the optimization is

ẑ(p+1) = argmin
z

∥∥∥y−M1e−j8̂
p
M2z

∥∥∥2
2
+ λ‖z‖1. (33)

In (33), a smooth approximation is used to avoid the
non-differentiability of the l1-norm

‖z‖1 ≈
D∑
d=1

(|zd |2 + β)
1
2 , (34)

where d indexes the elements of vector z, D = IQ, and β is a
nonnegative small constant. Here, we choose β = 0.01. In the
first step of the p + 1th iteration, the estimation of imaging
result vector z is obtained as

ẑ(p+1) = W−1(ẑ(p))MH
2 e

j8̂p
MH

1 y, (35)

where explicit expression ofW (z) in (36), shown at the top of
this page.

In the second step of the p + 1th iteration, the estimation
of phase error matrix 8̂(p+1) is

8̂(p+1)
= argmin

8
J , (37)

where J is the cost function to be minimized in the second
step

J =
∥∥∥y−M1e−j8̂

p
M2ẑp+1

∥∥∥2
2
. (38)

To solve the optimization problem in (37), a Newton’smethod
is utilized. The explicit expression of the gradient should be
obtained first

∇J (8) =


∂J
∂81

∂J
∂82

. . .
∂J
∂8D

 . (39)

To calculate the gradient in (39), the key point is to derive
∂J

∂(8b)
for any b = 1, 2, · · · ,D,

∂J
∂8b

=
∂

∂8b
(−2Re{yHM1e−j8M2ẑp+1})

= −Im{
D∑
d=1

jy′be
−j8b (M2)b,d (ẑ

p+1)d }, (40)

where vector y′ is

y′ =
[

D∑
d=1

y∗d (M1)d,1
D∑
d=1

y∗d (M1)d,2 · · ·
D∑
d=1

y∗d (M1)d,D

]
.

(41)

Then, to utilize the Newton’s method, the Hessian matrix
He(8) should be derived. According to (40), we can get that,
if b 6= d ,

∂2J
∂8b∂8d

= 0. (42)

Therefore, He(8) is a diagonal matrix, which can be
written as

He(8) =



∂2J
∂82

1
∂2J
∂82

2
. . .

∂2J
∂82

D

 . (43)

In (43), for any b = 1, 2, · · · ,D, ∂
2J
∂82

b
can be calculated as

∂2J

∂82
b

= Re{
D∑
d=1

jy′be
−j8b (M2)b,d (ẑ

p+1)d }. (44)

According to the theory of Newton’s method [39], [40],
the updating rule of phase error matrix 8 in the p + 1th
iteration is

8̂p+1
= 8̂p

− [He(8̂p)]−1∇J (8̂p). (45)

C. COMPUTATIONAL COMPLEXITY
According to the block coordinate descent optimization
scheme, the proposed method is an iterative approach with
two steps in each iteration. In the estimation of imaging
result vector shown in (35), we need to 3 times of block
diagnose matrix multiplication and a multiplication between
block diagnose matrix with vector. Supposing that Na =
Nr = N , the number of real floating point operations of (35)
is 4N 3. Inspecting (45), we need calculate a diagonal matrix
inversion, a diagonal matrix multiplication and a diagonal
matrix addition in the estimation of the correction phases.
Therefore the number of real floating point operations of (45)
is 3N 2. The total number of real floating point operations
of the proposed method is 4N 3

+ 3N 2, and the computation
complexity of the proposed method is of order O(N 3).

Compared with the conventional frequency domain imag-
ing method such as RD, CS and Omega-K of complexity
order O(N 2log2N ), the proposed method is a little less com-
putational efficient. But comparatively, the proposed method
has the advantage of less sampling amount, super resolution,
sidelobe suppression,. etc. It’s a trade-off.

In the sparsity-driven autofocus method based on the exact
observation model in [27], all the elements of the system
matrix are non-zero. Therefore, the computational complex-
ity of the autofocus method based on exact observation model
is of order O(N 6), which is much larger than the proposed
method.
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D. DISCUSSION
It is worth noting that the proposed imaging and motion
compensation scheme takes the simplest imaging algorithm
RD as an example. Some other imaging algorithms such as
CS, Omega-k also can be utilized in the proposed imaging
and motion compensation scheme. The matrixes M1 and M2
are different, but the other processes stay the same. Therefore,
we can choose the imaging algorithm according to actual
requirement. In addition, the proposed imaging and motion
compensation scheme can be applied in different SAR sys-
tems, such as squinted SAR, Bistatic SAR,. etc, by changing
the imaging algorithm.

V. RESULTS
In this section, processing of simulation and experimental
SAR data is presented to verify the effectiveness of the pro-
posed method. For comparison, the RD imaging algorithm
with map drift (MD) [21], minimum entropy autofocus [23]
and range-dependent phase gradient algorithm (PGA) [13],
the fast CS-based imaging using the inversion of RD algo-
rithm without motion compensation, the CS-based method
using exact observation model with 2-dimensional autofocus
in [27], the sparsity-driven autofocusing in [29] and the pro-
posed method are utilized.

A. SIMULATION
In this subsection, the effectiveness of the proposed method is
verified by simulation results. In the simulation, to simulate
the experimental SAR data, motion errors are added during
SAR echo generation. The relevant geometry and system
parameters are shown in Table 1. To verify the effectiveness
of the proposed CS-driven autofocus method, we perform
a random selection on the uniform sampled data with 60%
sampling rate.

TABLE 1. Simulation parameters.

Fig. 8 shows the imaging results. The imaging results by
the RD imaging algorithm with MD, minimum entropy aut-
ofocus and range-dependent PGA, the fast CS-based imag-
ing using the inversion of RD algorithm without motion
compensation, the sparsity-driven autofocusing in [29],
the CS-based method using exact observation model with
2-dimensional autofocus and the proposed method are illus-
trated in Fig. 8(a)-(g), respectively.

For the imaging result by the conventional RD algorithm
with different autofocus as shown in Fig. 8(a), (b), and (c)

the imaging results are unfocused due to the SAR echo is
randomly sampled. In Fig. 8(d), it can be observed that the
imaging result suffers from severe defocus due to the influ-
ence of motion errors. In Fig. 8(e), the motion errors are
partially removed, and the image quality is slightly improved.
However, due to the high-order terms and the spatial-variance
of the motion errors, the imaging result in Fig. 8(e) is obvi-
ously not well-focused. Comparatively, the imaging result
in Fig. 8(f) is well-focused by the CS-based method using
exact observation model with 2-dimensional autofocus. From
Fig. 8 (f), it can be observed that by using the CS-based
method using exact observation model with 2-dimensional
autofocus, we can eliminate the influence of motion errors
and get the well focused SAR image. The imaging result by
the proposed approach is shown in Fig. 8 (g). We can find
that, by using the proposed approach as well as the CS-based
method using exact observation model with 2-dimensional
autofocus, all the targets in the scene can be well focused.
The range-variant motion errors are accurately corrected.

Then, the imaging qualities of these three methods
are analyzed quantitatively as shown in Table 2. The
target-background ratio (TBR), impulse-response width
(IRW), peak sidelobe ratio (PSLR), and integrated sidelobe
ratio (ISLR) of target A in azimuth direction are utilized to
measure the imaging quality, where target A is a randomly
selected target in Fig. 8 (a)-(g), and its position is shown
in Fig. 8 (f). We define TBR as

TBR = 20log10

 max
zi∈Target

|zi|

(1/Nbg)
∑
|zi|

zi∈Backgroud

 , (46)

whereNbg represents the number of pixels in the background.
As a consequence, we can distinguish the target from the
background more easily with the higher TBR. The imaging
qualities are shown in Table 2.

From Table 2, it can be observed that the TBRs of the
proposed method and CS-based method using exact obser-
vation model with 2-dimensional autofocus are larger than
the other methods. Similar with TBR, other imaging qualities
of these two methods are performed better than the other
methods. In comparison, the proposed method has almost the
same imaging quality as the CS based method using exact
observation model with 2-dimensional autofocus. As ana-
lyzed in [28] and [30], in the CS-based imaging algorithms,
we can have the advantage of side-lobe suppression in the
final imaging results. Accordingly, the IRW, PSLR and ISLR
of the proposed method are much smaller than the theoretical
values, -13.27dB and -10.23dB, respectively.

Then, we compare the CPU time of different methods.
To measure the processing times, the methods have been
implemented in Matlab version R2012 b and on a com-
puter with a 3.10-GHz Intel processor and 4-GB RAM. The
running time of he RD imaging algorithm with MD, mini-
mum entropy autofocus and range-dependent PGA, the fast
CS-based imaging using the inversion of RD algorithm
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FIGURE 8. Imaging results of the simulation. (a) By the RD imaging algorithm with MD. (b) By the RD imaging algorithm with minimum entropy autofocus.
(c) By the RD imaging algorithm with range-dependent PGA. (d) By the fast CS-based imaging using the inversion of RD algorithm without motion
compensation. (e) By the sparsity-driven autofocusing in [29]. (f) By the CS-based method using exact observation model with 2-dimensional autofocus.
(g) By the proposed method.

TABLE 2. Imaging quality of the simulation.

without motion compensation, the sparsity-driven autofo-
cusing in [29], the CS-based method using exact observa-
tion model with 2-dimensional autofocus and the proposed

method are 19.34s, 20.45s, 28.49s, 50.89s, 79.64s, 247.82s,
and 64.24s, respectively. The proposed method is much faster
than the CS based method using exact observation model
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FIGURE 9. RMSE with different sampling rate.

TABLE 3. Parameters for the experiment.

with 2-dimensional autofocus while keeping the imaging
accuracy.

The RMSE of the proposed method varying with sampling
rates is presented in Fig. 9. It can be seen that the proposed

method can obtain highly accurate imaging result when the
sampling rate is larger than 25%, which verifies that the
proposed method has the advantage of not requiring to much
sampling amount compared with the conventional imaging
algorithm.

B. EXPERIMENT
A set of real data, whose geometry resolution is 0.75×0.8m
(range × azimuth), is collected by an X-band SAR system
works in strip-map mode in this subsection. In this experi-
ment, the relevant geometry and system parameters are shown
in Table 3. Similar with the random sampling in the subsec-
tion of simulation, to verify the effectiveness of the proposed
CS-driven autofocus method, we perform a random selection
on the uniform sampled data with 70% sampling rate.

Fig. 10 shows the imaging results of the experimental data.
The horizontal direction is azimuth, and the vertical direction
is range. The imaging results by the RD imaging algorithm
with MD, minimum entropy autofocus and range-dependent
PGA, the fast CS-based imaging using the inversion of RD
algorithm without motion compensation, the sparsity-driven
autofocusing in [29] and the proposed method are illustrated
in Fig. 10(a)-(f), respectively.

Similar to the imaging results in Fig. 8, the experimen-
tal results by the conventional RD algorithm with different
autofocus methods are defocused for the sake of randomly
sampled echo. As shown in Fig.10(d), it can be seen that the
imaging result by the fast CS-based imaging algorithm with-
out motion compensation is defocused. As there is no motion

FIGURE 10. Imaging results of the experiment. (a) By the RD imaging algorithm with MD. (b) By the RD imaging algorithm with minimum entropy
autofocus. (c) By the RD imaging algorithm with range-dependent PGA. (d) By the fast CS-based imaging using the inversion of RD algorithm without
motion compensation. (e) By the sparsity-driven autofocusing in [29]. (f) By the proposed method.
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compensation processing, the appearance of the buildings,
roads and forest are seriously blurred. As shown in Fig. 10(e),
the focusing quality evidently improves by the sparsity-driven
autofocusing in [29]. However, in Fig. 10(e), the building on
the bottom of the image is focused, while the forest area on
the top of the image is unfocused due to the range-variance
and the high-order terms of the motion errors. In Fig.10(f),
the imaging quality using the proposed algorithm is evidently
improved. The details of the buildings, forest and roads in
the whole image are clear. Moreover, the entropies of the
images in Fig. 10 is calculated to evaluate the imaging quality.
The smaller entropy is, the better focused quality we have.
The entropies of Fig. 10(a)-(f) are 13.05, 11.72, 11.38, 11.19,
10.94 and 10.43, respectively. We have the smallest entropy
by using the proposed method. It can be concluded from the
experimental results that compared with the other methods,
the proposed method has a better performance.

VI. CONCLUSION
In this paper, a fast CS-based imaging algorithm inte-
grated with motion error compensation is proposed. Firstly,
the spatial-variance property of motion errors in SAR
system is analyzed, and we can get the conclusion that
range-variance of the motion errors should be taken into
consideration and the azimuth-variance could be neglected.
Then, a CS-based imagingmodel using the inversion observa-
tion of RD algorithm combined with range-variant compen-
sation is established. Accordingly, the imaging and motion
compensation problem is transformed into an optimization
problem. A block coordinate descent scheme is utilized
to solve the optimization problem, and the range-variant
phase errors and imaging results are estimated iteratively.
In contrast to the existing fast CS-based imaging methods,
as the spatially-variant motion errors have been compensated,
the imaging quality of the proposed method has been greatly
improved. Simulation and experimental results verify the
effectiveness of the proposed method.
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[11] M. Cȩtin et al., ‘‘Sparsity-driven synthetic aperture radar imaging:
Reconstruction, autofocusing, moving targets, and compressed sensing,’’
IEEE Signal Process. Mag., vol. 31, no. 4, pp. 27–40, Jul. 2014.

[12] W. Pu, W. Li, J. Wu, Y. Huang, J. Yang, and H. Yang, ‘‘An azimuth-variant
autofocus scheme of bistatic forward-looking synthetic aperture radar,’’
IEEE Geosci. Remote Sens. Lett., vol. 14, no. 5, pp. 689–693, May 2017.

[13] M. Xing, X. Jiang, R. Wu, F. Zhou, and Z. Bao, ‘‘Motion compensation for
UAV SAR based on raw radar data,’’ IEEE Trans. Geosci. Remote Sens.,
vol. 47, no. 8, pp. 2870–2883, Aug. 2009.

[14] A. Moreira and Y. Huang, ‘‘Airborne SAR processing of highly squinted
data using a chirp scaling approach with integrated motion compensa-
tion,’’ IEEE Trans. Geosci. Remote Sens., vol. 32, no. 5, pp. 1029–1040,
Sep. 1994.

[15] W. Pu et al., ‘‘Motion errors and compensation for bistatic forward-looking
SAR with cubic-order processing,’’ IEEE Trans. Geosci. Remote Sens.,
vol. 54, no. 12, pp. 6940–6957, Dec. 2016.

[16] L. Zhang, Z. Qiao, M.-D. Xing, L. Yang, and Z. Bao, ‘‘A robust motion
compensation approach for UAV SAR imagery,’’ IEEE Trans. Geosci.
Remote Sens., vol. 50, no. 8, pp. 3202–3218, Feb. 2012.

[17] W. Pu et al., ‘‘A rise-dimensional modeling and estimation method
for flight trajectory error in bistatic forward-looking SAR,’’ IEEE
J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 10, no. 11,
pp. 5001–5015, Sep. 2017.

[18] W. Pu et al., ‘‘Nonsystematic range cell migration analysis and autofocus
correction for bistatic forward-looking SAR,’’ IEEE Trans. Geosci. Remote
Sens., vol. 56, no. 11, pp. 6556–6570, Nov. 2018.

[19] D. E. Wahl, P. Eichel, D. C. Ghiglia, and C. V. Jakowatz, ‘‘Phase gradient
autofocus-a robust tool for high resolution SAR phase correction,’’ IEEE
Trans. Aerosp. Electron. Syst., vol. 30, no. 3, pp. 827–835, Jul. 1994.

[20] W. Pu, J. Wu, X. Wang, Y. Huang, Y. Zha, and J. Yang, ‘‘Joint
sparsity-based imaging and motion error estimation for BFSAR,’’ IEEE
Trans. Geosci. Remote Sens., vol. 57, no. 3, pp. 1393–1408, Mar. 2019.
doi: 10.1109/TGRS.2018.2866437.

[21] P. Samczynski and K. S. Kulpa, ‘‘Coherent mapdrift technique,’’ IEEE
Trans. Geosci. Remote Sens., vol. 48, no. 3, pp. 1505–1517, Mar. 2010.

[22] Y. Gao, W. Yu, Y. Liu, R. Wang, and C. Shi, ‘‘Sharpness-based autofocus-
ing for stripmap SAR using an adaptive-order polynomial model,’’ IEEE
Geosci. Remote Sens. Lett., vol. 11, no. 6, pp. 1086–1090, Jun. 2014.

[23] T. Xiong, M. Xing, Y. Wang, S. Wang, J. Sheng, and L. Guo, ‘‘Minimum-
entropy-based autofocus algorithm for SAR data using chebyshev approx-
imation and method of series reversion, and its implementation in a
data processor,’’ IEEE Trans. Geosci. Remote Sens., vol. 52, no. 3,
pp. 1719–1728, Mar. 2014.

[24] K. H. Liu and D. C. Munson, ‘‘Fourier-domain multichannel autofocus
for synthetic aperture radar,’’ IEEE Trans. Image Process., vol. 20, no. 12,
pp. 3544–3552, Dec. 2011.

[25] K.-H. Liu, A. Wiesel, and D. C. Munson, ‘‘Synthetic aperture radar aut-
ofocus based on a bilinear model,’’ IEEE Trans. Image Process., vol. 21,
no. 5, pp. 2735–2746, May 2012.

[26] K.-H. Liu, A. Wiesel, and D. C. Munson, ‘‘Synthetic aperture radar auto-
focus via semidefinite relaxation,’’ IEEE Trans. Image Process., vol. 22,
no. 6, pp. 2317–2326, Jun. 2013.

[27] S. Kelly, M. Yaghoobi, and M. Davies, ‘‘Sparsity-based autofocus for
undersampled synthetic aperture radar,’’ IEEE Trans. Aerosp. Electron.
Syst., vol. 50, no. 2, pp. 972–986, Apr. 2014.

[28] N. Ö. Onhon and M. Cetin, ‘‘A sparsity-driven approach for joint SAR
imaging and phase error correction,’’ IEEE Trans. Image Process., vol. 21,
no. 4, pp. 2075–2088, Apr. 2012.

[29] Y.-C. Chen, G. Li, Q. Zhang, Q.-J. Zhang, and X.-G. Xia, ‘‘Motion
compensation for airborne SAR via parametric sparse representation,’’
IEEE Trans. Geosci. Remote Sens., vol. 55, no. 1, pp. 551–562, Jan. 2017.

[30] X. Dong and Y. Zhang, ‘‘A novel compressive sensing algorithm for SAR
imaging,’’ IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7,
no. 2, pp. 708–720, Feb. 2014.

53294 VOLUME 7, 2019

http://dx.doi.org/10.1109/TGRS.2018.2866437


W. Pu et al.: Fast Compressive Sensing-Based SAR Imaging Integrated With Motion Compensation

[31] J. Fang, Z. Xu, B. Zhang, W. Hong, and Y. Wu, ‘‘Fast compressed sensing
SAR imaging based on approximated observation,’’ IEEE J. Sel. Topics
Appl. Earth Observ. Remote Sens., vol. 7, no. 1, pp. 352–363, Jan. 2014.

[32] S. Chen, D. Donoho, and M. Saunders, ‘‘Atomic decomposition by basis
pursuit,’’ SIAM Rev., vol. 43, no. 1, pp. 129–159, 2001.

[33] D. L. Donoho and X. Huo, ‘‘Uncertainty principles and ideal atomic
decomposition,’’ IEEE Trans. Inf. Theory, vol. 47, no. 7, pp. 2845–2862,
Nov. 2001.

[34] E. Candes, J. Romberg, and T. Tao, ‘‘Satble signal recovery from incom-
plete and inaccurate measurements,’’ J. Inst. Math. Sci., vol. 59, no. 8,
pp. 1207–1223, Aug. 2006.

[35] R. G. Baraniuk, ‘‘Compressive sensing,’’ IEEE Signal Process. Mag.,
vol. 24, no. 4, pp. 118–121, Jul. 2007.

[36] Z. M. Wang and W. W. Wang, ‘‘Fast and adaptive method for sar super-
resolution imaging based on point scattering model and optimal basis
selection,’’ IEEE Trans. Image Process., vol. 18, no. 7, pp. 1477–1486,
Jul. 2009.

[37] G. Fornaro, G. Franceschetti, and S. Perna, ‘‘On center-beam approxi-
mation in SAR motion compensation,’’ IEEE Geosci. Remote Sens. Lett.,
vol. 3, no. 2, pp. 276–280, Apr. 2006.

[38] Z. Xu, X. Chang, F. Xu, andH. Zhang, ‘‘L1/2 regularization: A thresholding
representation theory and a fast solver,’’ IEEE Trans. Neural Netw. Learn.
Syst., vol. 23, no. 7, pp. 1013–1027, Jul. 2012.

[39] Y. Sun, S. Zhang, and Z. Cui, ‘‘Group sparsity based imaging algorithm
for TWRI under wall parameter uncertainties,’’ Trans. Inst. Meas. Control,
vol. 40, no. 1, pp. 251–260, 2018. doi: 10.1177/0142331216652467.

[40] H. Raja, W. U. Bajwa, and F. Ahmad, ‘‘Through-the-wall radar imaging
using a distributed quasi-Newton method,’’ in Proc. 51st Asilomar Conf.
Signals, Syst., Comput., Nov. 2017, pp. 85–89.

WEI PU (S’12) received the B.S. degree in elec-
tronic engineering from the University of Elec-
tronic Science and Technology of China, in 2012,
where he is currently pursuing the Ph.D. degree in
bistatic SAR imaging and motion compensation.
His research interests include synthetic aperture
radar and sparse signal processing.

YULIN HUANG (S’06–M’08) received the B.S.
and Ph.D. degrees in electronic engineering from
the University of Electronic Science and Technol-
ogy of China, Chengdu, China, in 2002 and 2008,
respectively, where he is currently a Professor. His
research interests include signal processing and
radar imaging.

JUNJIE WU (S’06–M’13) received the B.S., M.S.,
and Ph.D. degrees in electronic engineering from
the University of Electronic Science and Technol-
ogy of China, Chengdu, China, in 2004, 2007,
and 2013, respectively, where he is currently an
Associate Professor.

HAIGUANG YANG (S’06–M’09) received the
B.S. and Ph.D. degrees in electronic engineering
from the University of Electronic Science and
Technology of China, Chengdu, China, in 2001,
and 2013, respectively, where he is currently an
Associate Professor. His research interests include
signal processing and synthetic aperture radar.

JIANYU YANG (M’06) received the B.S. degree
in electronic engineering from the National Uni-
versity of Defense Technology, Changsha, China,
in 1984, and the M.S. and Ph.D. degrees in elec-
tronic engineering from the University of Elec-
tronic Science and Technology of China (UESTC),
Chengdu, in 1987 and 1991, respectively.

He is currently a Professor with the School
of Electronic Engineering, UESTC. His research
interests include synthetic aperture radar and
statistical signal processing.

VOLUME 7, 2019 53295

http://dx.doi.org/10.1177/0142331216652467

	INTRODUCTION
	RELATED WORK
	CS-BASED SAR IMAGING USING EXACT OBSERVATION
	FAST CS-BASED SAR IMAGING USING INVERSE OBSERVATION

	SPATIAL-VARIANCE PROPERTY OF MOTION ERRORS
	GEOMETRY
	SPATIAL-VARIANCE PROPERTY OF MOTION ERRORS

	FAST CS-BASED SAR IMAGING INTEGRATED WITH MOTION COMPENSATION
	IMPROVED INVERSION MODEL
	BLOCK COORDINATE DESCENT OPTIMIZATION SCHEME
	COMPUTATIONAL COMPLEXITY
	DISCUSSION

	RESULTS
	SIMULATION
	EXPERIMENT

	CONCLUSION
	REFERENCES
	Biographies
	WEI PU
	YULIN HUANG
	JUNJIE WU
	HAIGUANG YANG
	JIANYU YANG


