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ABSTRACT This paper investigates an issue for optimizing community shuttle network linked with metro
stations. Considering a set of trip demands originating from several bus stops within a large community
area, a mixed integer optimization model is formulated to obtain the optimized shuttle route network and the
frequency of each route simultaneously, to minimize the total transit system cost, including user and supplier
costs. To solve the problem, a solution framework consisting of three primary components is proposed: an
initial route network scheme is developed to ensure that any generated network is feasible; a network analysis
procedure is performed that assigns the demand of each stop to a set of paths on the generated network
according to a certain proportion; a heuristic algorithm is proposed to optimize the service frequency of
each route; a genetic algorithm consisting of a set of specifically designed operators is proposed to guide
the solution population evolving process. A real-life study is tested successfully using the proposed solution
framework. The related sensitivity analysis and impacts of some important variables on the solution are
performed.

INDEX TERMS Community shuttle, route network optimization, metro station, genetic algorithm.

I. INTRODUCTION
Owing to the rapid development of metros in urban and
suburban areas currently, bus suppliers are required to adjust
the bus route network constantly to co-operate with the
metro smoothly, and more community shuttle routes linked
with metro services have appeared, especially in the sub-
urbs. However, many community shuttle routes are designed
empirically and lack of theoretical foundation. Therefore,
we focus on optimizing the community shuttle network from
the theoretical level to improve their feeding role and achieve
the complementary advantages of these two transit modes,
thus enhancing the service level of the transit microcircula-
tion system.

In the last few decades, many scholars have per-
formed numerous investigations regarding the optimal transit
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network design. The route network and frequency setting
problems are two primary problems in transit system opti-
mization [1], [2]. Some have optimized the bus route net-
work considering both problems simultaneously [3]–[6]. For
example, [5] developed a solution for the optimal routing
design problem to minimize the total cost, including user and
supplier costs; [4] investigated the transit network of a suburb
in Hong Kong to address both problems. They formulated a
mixed integer optimization model, and obtained the optimal
layout of the route network and the optimal frequency setting
plan simultaneously.

In terms of model formulation, the factors and determina-
tion of the objective function considered by the researchers
are different, such as maximizing the passenger attrac-
tion [7], minimizing the total travel time [8], maximiz-
ing the total scope of transit stops [9], and minimizing
the route length [10]. Most studies had considered both
user and supplier costs, and set their sum as the objective
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function [4], [11], [12]. Particularly, [4] used the weighted
mixed integer optimization model that expressed the diverse
weights between passenger cost and supplier cost to represent
the relationship between passengers and suppliers in different
cases.

In terms of algorithm design, researchers have proposed
numerous heuristic or metaheuristic algorithms to solve
feeder bus network optimization problems, such as simulated
annealing algorithm [13], genetic algorithm [4], [14], hybrid
enhanced artificial bee colony algorithm [6], and a complex
two-phase heuristic algorithm [11]. Reference [11] proposed
a two-phase heuristic algorithm to optimize the route net-
work design and frequency setting problems. Reference [4]
proposed a genetic algorithm with two types of crossover
operators and four types of mutation operators. Reference [6]
proposed a hybrid enhanced artificial bee colony algorithm to
solve the same problem.

This paper focuses on the community shuttle route network
design problem to minimize the sum of the user and sup-
plier costs. To solve the problem, we first developed a route
network generation scheme to generate a feasible solution
consisting of a set of shuttle routes randomly; and subse-
quently, a genetic algorithm (GA) is designed to guide the
solution population evolving process and obtain an optimized
solution. Our major contributions are the following: (1) in the
model formulation, we stipulated that all the bus stops must
be passed through by at least one route to provide a more
convenient service for residents living in different locations
in an area. (2) A newfleet size adjustment process is proposed
to determine the fleet size of each route precisely by an
analytical approach, considering both the overall fleet size
constraint of the system and the vehicle capacity constraint.
(3) a set of crossover, mutation, and repair operators are
designed to enable genetic manipulation to solve the problem
smoothly.

The remainder of this paper is organized as follows:
Section 2 describes the community shuttle network opti-
mization problem and a mixed integer optimization model
is formulated. In Section 3, a solution generating method is
addressed to ensure that any randomly generated route net-
work passes through all the stops and passengers are assigned
by a logit model. Further, a heuristic algorithm is proposed to
adjust the total fleet size. Section 4 demonstrates the proposed
genetic algorithm to solve the specific problem. A real-life
example is presented in Section 5, along with the computa-
tional results and numerical analysis. Finally, conclusions and
future work are presented in Section 6.

II. MODEL FORMULATION
A. PROBLEM DESCRIPTION
The problem is to design an optimized shuttle route network
in a certain large community area to transport the residents
living in different locations to the metro stations nearby more
efficiently and conveniently, while considering the supplier
cost of the bus operator. Owing to the specific characteris-
tics of the community shuttle, the route can be shorter and

slightly circuitous compared to the conventional bus routes.
Therefore, we added a constraint that all the stops in the
area must be passed through by at least one route to ensure
the accessibility of the network, whereas the passengers’ in-
vehicle time may be increased by some unnecessary detours.
Meanwhile, a high service frequency of a route will reduce
the waiting cost of passengers, whereas the operator cost will
increase with a larger fleet size. Consequently, it is necessary
to solve the problem from the perspective of minimizing the
total cost in the transit microcirculation system, including
the passengers’ in-vehicle cost, waiting cost, and supplier
cost. By solving the problem, an optimized layout of the
route network and the service frequency of each route can
be obtained simultaneously.

Some assumptions for developing themodel are as follows:
(1) everyOD trip in the area starts at a bus stop, and terminates
at a metro station; (2) each route originates from a bus depot
and terminates at a metro station, that is, each shuttle route
is connected to at least one metro station; (3) all the routes
are serviced by a homogenous fleet of vehicles, and the
vehicle speed and dwell time at each stop are constant; (4) the
numbers of passengers arriving at the bus stops are randomly
distributed during the study period for each OD pair.

B. OBJECTIVE FUNCTION
The objective function in this study consists of two primary
components: the user cost and the_supplier cost. It can be
expressed as follows:

CT = CS +CU (1)

where CT = the total cost; CS = the supplier cost; CU =
the user cost.

The supplier cost is related to both the route and service
frequency. Therefore, it can be formed as follows:

CS = γS ·
∑
k∈R

Fk (2)

Fk =
2 (L + Tk ·Nk · Vb)

Hk ·Vb
(3)

where γS = the cost of unit vehicle; R = the set of routes;
Fk = the fleet size of route k , L = the length of route k
(one way); Tk = the dwell time at the stops of route k; Nk =
the number of stops on route k; Vb = the bus speed; Hk =
the headway of route k .

The user cost can be further divided into two components:
the in-vehicle cost CI and the waiting cost CW :

CU = CI +CW (4)

The in-vehicle cost is related to the route layout, and in this
research, route-based trip assignment can be utilized since all
the bus stops are covered by at least one route. However, for
anODpair, the route passes through the origin node (bus stop)
may not via the real destination node (metro station) since
more than onemetro station is considered in ourmodel.When
this case happens, we assume that the passengers transfer
at the metro station the route passing through to their real
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destination node. Therefore, the in-vehicle time on the metro
needs to be considered when calculating the in-vehicle time
on route k for this OD pair. The in-vehicle cost thus can be
expressed as follows:

CI =
∑
i∈O

∑
j∈D

γI ·
∑
k∈R

M k
ij · D

k
ij

Vb
(5)

M k
ij =

e−tIk∑
k∈Ri

e−tIk
·Mij (6)

where i, j = the origin and destination nodes of each trip (a
bus stop or a metro station); Dkij = the travel distance along
route k from i to j; M k

ij = the number of passengers from i
to j on route k; Mij = the total number of passengers from
i toj; γI = the in-vehicle time value of passengers; tIk =
the in-vehicle travel time on route k(maybe includes the
in-vehicle time on the metro);O,D = the set of all the origin
and destination nodes; Ri = the set of routes passing through
i.

The waiting cost CW is only related to the bus headway,
and can be expressed as follows:

CW = γW ·
∑
i∈O

∑
j∈D

∑
k∈R

Hk
2
·M k

ij (7)

where γW = the waiting time of passengers.
As stated above, only CW and CS are related to the head-

way. By taking the first derivative of CT on both sides with
respect toHk and setting it to 0, we can obtain the correspond-
ing headway Hk1 as follows:

Hk1 =

√√√√2 · γS · (Lk + Tk · Nk · Vb)

γW · Vb ·
∑
i∈O

∑
j∈D

M k
ij

(8)

The Hk1 obtained through the formula above ensures the
minimized total cost for each route. However, it neglects the
segment loading factor, that is, the loading on some route
segments may exceed the vehicle capacity if we used the
obtained Hk1. For solving this problem, we use the method
proposed by [5] and [15], and set an upper limit of the
headway of route k , Hk2, as follows:

Hk2 =
P

max
{
dki1i2 · x

k
i1i2

} (9)

where P = the vehicle capacity; dki1i2 = the segment loading
of route k between node i1 and i2 per hour. If i1 and i2 are
adjacent stops on route k , xki1i2 = 1; otherwise, xki1i2 = 0. The
fleet size of route k is determined by (10):

Hk = min {Hk1,Hk2} (10)

C. CONSTRAINTS
The constraints of the problem are given as follows:∑

k∈R

∑
j∈S

xk0j = 1 (11)

∑
k∈R

∑
i∈S

∑
s∈S0

xkis = 1 (12)∑
k∈R

∑
i∈S

xkij =
∑
k∈R

∑
i∈S

xkji (∀j ∈ S) (13)∑
j∈S

xkij ≤ 1(∀i ∈ S,∀k ∈ R) (14)

∑
k∈R

∑
j∈S

xkij ≥ 1(∀i ∈ S) (15)

Lmin ≤ Lk ≤ Lmax(∀k ∈ R) (16)∑
k∈R

Fk ≤ Fmax (17)

Constraints (11) and (12) are route constraints; they con-
straint that the origin of each route is the depot, and the des-
tination is one of the metro stations. Constraint (13) ensures
that any node on an available route has one preceding node
and one following node (except for the origin and destination
nodes). Constraint (14) prevents a cyclic route or sub-route in
the solution. Constraint (15) ensures that all the stops exist in
the solution. Constraint (16) ensures that the length of each
route is within a reasonable interval. Constraint (17) ensures
that the total fleet size cannot exceed its upper limit.

III. ROUTE NETWORK GENERATION AND ANALYSIS
PROCEDURE
A. ROUTE NETWORK GENERATION
The route network generation is constructed to yield a feasi-
ble route network satisfying the constraint that all the stops
appear in the network. Additionally, a feasible solution con-
sisting of a set of feasible routes is randomly generated based
on the topological structure of the road network. Let S0, S,
M indicate the depot, set of bus stops, and set of metro sta-
tions, respectively. We define Solution as the current solution
found, Route as the current route generated, and CS as the
set of bus stops that have been covered. We define D =
min{maxDm ,m ∈ M}, and maxDm is the maximal distance
from the metro station m to the nodes that can be connected
tom directly on the topological structure of the road network.
The specific steps are as Algorithm 1:

When a set of feasible routes is generated using the above
method, a trip assignment method is utilized to assign each
OD pair to a set of routes passing through the origin node
by (5). Based on it, the optimal fleet size and the corre-
sponding headway of each route are determined by (8). How-
ever, the total fleet size constraint is not considered during
this process. That means the total fleet size may exceed its
upper limit when the optimal headways corresponding to the
minimized total cost of the routes are applied. For solving
this problem, a fleet size adjustment process is developed to
ensure that the total fleet size constraint can be satisfied with
the consideration of the segment loading factor.

B. FLEET SIZE ADJUSTMENT
As stated above, when the total fleet size of the route network
is given, the sum of the optimal fleet size corresponding
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TABLE 1. Route network generation algorithm.

to the minimized total cost of each route may exceed this
given limit.When this situation occurs, a fleet size adjustment
process needs to be carried out to make the total fleet size
constraint be satisfied by reducing the fleet size of some
certain routes. This process may cause overloading on some
segments, especially for the routes with ‘Hk = Hk2’. To solve
this problem, we added an overloading penalty to the original
objective function. Before solving the penalty, we define a
penalty function of the vehicle capacity, g(x) = ω(αx − 1),
where ω and α are coefficients (ω > 0, α > 1); x is the
segment loading. By adjusting ω and α, g(x) can become
close to 0 when 0 ≤ x ≤ P, and increase significantly when
x > P. Hence, the overloading penalty can be described as:

CP =
∑
k∈R

∑
i1∈O

∑
i2∈O∪D

g(dki1i2 ·Hk ) · x
k
i1i2 (18)

This process aims at minimizing the increase of the waiting
cost and overloading penalty due to the reduction of the
fleet size as much as possible. The detailed procedures are
described as follows:

FIGURE 1. Genetic algorithm process.

IV. GENETIC ALGORITHM
In this section, we design a set of suitable operators to
ensure that the GA can conduct smoothly for solving the
specific problem. The input variables include an initial set
of individuals, crossover probability (Pc), mutation prob-
ability (Pm), the maximum number of iterations (MAX-
GEN). Roulette selection is applied to select a sub-set of
individuals according to the fitness functions. The param-
eters Pc, Pm control the probability of implementing the
crossover and mutation operators. A solution repair process
needs to be added after the crossover and mutation pro-
cedures to ensure all the new generated solutions feasible.
The whole algorithm terminates when the current iteration
(gen) exceeds MAXGEN. Detailed procedures are shown
in Fig.1.

A. FITNESS FUNCTION AND SELECTION
In the iterative process of the GA, the algorithm selects the
individuals with large fitness values to create new individuals
continuously. Here we use the reciprocal of the objective
function as the fitness function of the algorithm, that is,
f = 1/CT .
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TABLE 2. Fleet size adjustment algorithm.

The selected probability of an individual is based on the
fitness f . The probability of selecting the ith individual, Pi,
can be formulated as:

Pi =
fi∑
fi
(i ∈ NIND) (19)

where NIND = the population size, and fi = the fitness
value of the ith individual. NIND′(= NIND × GGAP) indi-
viduals will be selected from the population in each gen-
eration; GGAP = the generation gap. A roulette wheel is
used to select the individuals according to their probabili-
ties. Two individuals are selected to perform the crossover
operator.

B. CROSSOVER
A crossover operator is crucial for searching an optimized
solution. In this study, we design a crossover operator through
changing the route structure.

The crossover operator aims to exchange the sequences
of some intermediate stops of two routes with the same
destination in different solutions, where the sequences of the
intermediate stops are regarded as the smaller blocks. The
scheme is shown in Fig.2. This operation is to explore better
route structures with the same destination to reduce the total
cost.

It is worth noticing that when the crossover operator is con-
ducted, new connections between two nodes that cannot be
connected directly according to the topology network may be
generated. When this situation occurs, we use the Dijkstra’s
Algorithm to obtain the shortest path between the two nodes,
and replace the two nodes on the route with the shortest path
(represented by a series of nodes). Detailed procedures are as
Algorithm 3:

It’s also worth noticing that the new generated routes may
not satisfy the route length constraint. If a new route is shorter
than the lower limit or exceed the upper limit of length,
a length penalty will be added to the objective function.
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FIGURE 2. Representation scheme of the crossover operator.

FIGURE 3. Representation scheme of the mutation operator.

C. MUTATION
The mutation operator is required to facilitate exploration
in the large space when we use the GA. For the specific
solution structure of the problem, a mutation operator based
on removing some nodes is proposed for the GA, which
is described in Fig.3. For a selected route, we first calcu-
late the travel distance along the route between every two
nodes, and subsequently verify whether it is equal to the
shortest distance between the two nodes based on the Dijk-
stra’s algorithm. If not, the current path between the two
nodes may be replaced with the shortest path according to
a certain preset probability. Detailed procedures are given in
Algorithm 4.

When implementing the mutation operator above, a solu-
tion may not be changed if the path between every two nodes
on the selected route is the shortest one. When this situation
occurs, another route in this solutionwill be selected to imple-
ment the above process. The whole process repeats until a
path replacement implemented successfully or the maximum
number n of attempts of selecting routes reached.

After the path replacement process, we also need to check
the subloop and the length constraint. The related operation
is the same as the ones in the crossover operator.

D. REPAIR OPERATION
After the genetic operators, some offsprings may violate
the constraint of covering all the stops. Therefore, a repair
operator is proposed to repair these infeasible solutions. First,
stops that do not appear in the solution as set C are identified.
Next, select a node in C randomly to be inserted into a route
at a certain position. If the node cannot be inserted directly
at the position, the Dijkstra’s algorithm will be used to obtain
the shortest path, and the path will be inserted at that position.

TABLE 3. Crossover operator.

The route and position selected to conduct the repair oper-
ator must satisfy the following requirements: (1) any node
on the route will not appear more than once; (2) the route
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TABLE 4. Mutation operator.

length will not exceed the upper limit after the node or the
corresponding path is inserted. If we have exhausted all the
possible situations but cannot obtain a feasible route or a
position to insert, a new route will be established to cover
the corresponding node in set C .
Finally, remove the node from set C and verify whether

C = 8; if not, repeat the process above until C = 8.

V. A REAL-LIFE EXAMPLE AND NUMERICAL ANALYSIS
The real-life network presented in our experiment is the
Tiantongyuan Community in Beijing. Using IC card data,
we can obtain the passenger data at each stop for one hour
during the early peak hours. To conduct our experiment,
we use Matlab 2016a to code the program.

A. REAL-LIFE EXAMPLE
The study area, with the size of 2.6 km × 2.0 km, is shown
in Fig.4 (a). In Fig.4 (b), Twenty nodes, including a bus
depot (node 0), seventeen bus stops (nodes 1–17), and two
metro stations (nodes 18,19) are included in the topology
network. The realistic solution, including five routes, can be
seen in Fig.5 and the corresponding trip demand data of the
two directions are presented in Table 5 and Table 6. The

FIGURE 4. (a) The road network of the study area. (b) The corresponding
topology network (km).

FIGURE 5. Realistic route network.

realistic solution, with the total fleet size of 13 vehicles and
the headway of 6–12min, can meet the demand from each
stop to each metro station in some certain degree. The total
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TABLE 5. The demands from the stops to the metro stations.

TABLE 6. The demands from the metro stations to the stops.

TABLE 7. Data of optimized solution.

TABLE 8. Data of optimized solution.

cost of the realistic solution is 8.85 × 103$/h, with detailed
cost shown in Table 7.

Then we optimize the route network in this area according
to the trip demand in Table 5 and Table 6. Some related
parameters are set as follows: Vb = 30 km/h; γW = 4 $/h;
γI = 3 $/h; γS = 300 $/h; TS = 1/90 h; P = 45 pass;
ω = 0.14; α = 1.08; Lmax = 10 km; Lmin = 2 km;
Fmax = 13 (equals to the real case). Some parameters in
GA are set as follows: population size = 20; gap = 0.9;
MAXGEN = 2000; Pc = 0.8; Pm = 0.03.
The crossover probability and the mutation probability

are important parameters that influence the whole evolving
process. Generally, a higher crossover probability or mutation
operator may make the optimal solution more likely to be
found since the expansion of the discovered solution space.
However, it will also cost more CPU time definitely. For

determining these two parameters, we change Pc from 0.5 to
0.9, and change Pm from 0.01 to 0.05 respectively. Results
of the repeated experiments show that the total cost of the
optimized solution tends to stable when Pc, Pm falling into
the range of 0.8-0.9, 0.03-0.05, respectively. For saving the
CPU time, we thus set Pc, Pm as 0.8, 0.03.

The convergence process of the experiment is shown
in Fig.6. We can see the curve of the total cost keep stable
after 950 generations. The final optimized solution, with the
total cost of 5.63× 103 $/h, is found in this experiment. The
detailed results are presented in Table 8. The corresponding
route network includes four routes, as shown in Fig.7. Com-
pared with realistic solution, the optimized solution we’ve
found decreases the total cost by 36.38% (the supplier cost,
the waiting cost, the in-vehicle cost and the overloading
penalty are decreased by 30.77%, 30.77%, 54.45%, 47.94%,
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FIGURE 6. Convergence process.

FIGURE 7. Optimized route network.

respectively). All the routes in both of the current solution and
the optimized solution can meet the route length constraint,
so there is no length penalty in both solutions.

We need to clarify that as ameta-heuristicmethod, GAmay
not find out the optimal solution theoretically. However,
GA has been proved to be an effective method for solving
the optimal routing or network design problem by lots of
researchers. For example, [5] designs a GA and a Depth-first
Search algorithm to find the optimized solution and the exact
best solution respectively. The results indicate that GA can
find out the best solution at most of the times. Therefore,
we have reasons to believe that GA is effective and can be
applied in solving the route network design problem.

B. NUMBERICAL ANALYSIS
We perform some analyses regarding to the relationship
between the average route length of a solution and each

element of the total cost and average headway. For each
newly found feasible solution during the evolving process,
we record the average route length, related costs, and average
headway. Subsequently, we constructed a set of scatter plots,
as shown in Fig 8. The increase in average route length can
cause the increase of headway, which can be confirmed by
(8). The waiting cost has a linear positive correlation with the
headway of the corresponding route; therefore, an increase
in the headway results in an increase in the waiting cost.
The change in the in-vehicle cost is slight compared to that
in the average route length. The user cost also increases
with the average route length, because the waiting cost is its
primary influence factor. The supplier cost increases because
the increase in average route length results in the increase
in operating time, which is also confirmed by (3). Finally,
the total cost also increases with the average route length in
general.

C. ALGORITHM COMPARISON
The algorithm designed in this study can solve the route
network design and the frequency setting problem simulta-
neously. For evaluating the performance, we make a brief
comparison of our algorithm with the ones proposed in [4]
and [15].

For the trip assignment, we all use the method of the
shortest path. In the frequency setting, our study determines
an initial set of service frequencies through a theoretical
method. Then if the total fleet sizes exceed its upper limit,
we repeat removing a fleet according to the principle of the
least impact on the total cost until the total fleet size constraint
is satisfied. Reference [4] randomly assigns the fleet to each
route first, then a heuristic of adjusting the fleet is used until
the end condition is met. Actually, this internal heuristic is an
ergodic process, which may consume more CPU time than
ours because of more iterations. Reference [15] determines
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FIGURE 8. Different costs trend of average route length.

frequencies through a theoretical method without considering
the total fleet size constraint. That may make the actual
supplier cost exceed the investment of the supplier. Therefore,
we believe that fleet size determination algorithm proposed in
our study is efficient in dealing with the frequencies setting
problem while maintaining the preciseness.

For the crossover operator, we first try to find a certain
position for crossover operator rather than choosing positions
randomly. It is helpful in avoiding infeasible solutions and
make the runs of repair operation reduced, and the CPU time
can be also saved. Reference [4] proposes a stop crossover
operator that chooses two positions randomly, then swaps the
middle part of the routes. The randomness of the operators
may lead to the CPU time increasing because of a degree of
blindness in the improving process. The crossover proposed
in [15] swaps two routes at an identical stop, which may
consume extra runs in searching routes with common stops.
Based on the analysis above, we believe that the operators
designed in our GA are more efficient and effective in solving
the route network optimization problem compared with some
previous works.

VI. CONCLUSION
In this study, we develop an optimal route network design
problem for a community shuttle linked with metro service,
and formulate a mixed integer model to minimize the total
cost, considering a series of constraints such as the route
length and all the bus stops are covered. A trip assign-
ment method based on the logistic function and a fleet size

adjustment heuristic are embedded in the model formula-
tion to make the network analyze procedure be conducted
smoothly. For solving this problem, we propose a GA consist-
ing of some specifically designed operators. Finally, a real-
life study is presented to test the algorithm followed by
analysis. The key conclusions are summarized as follows:

(1) The proposed GA performed well in solving real-life
problems. A significant decrease by 36.38% in the total cost
and a clear convergence trend are shown during the evolving
process of 2000 iterations. The optimized network and the
corresponding headway of each route are obtained simulta-
neously.

(2) Through the numerical analysis, the average route
length demonstrates a positive effect on the average headway,
the waiting cost, the user cost, the supplier cost, and the total
cost, while the change of the in-vehicle cost is not obvious.

Future research could be performed from the following
aspects:

(1) Using a single crossover operator may not be effective
in solving this problem. The design of multiple crossover and
mutation operators can be enhanced to improve the efficiency
and effectiveness of the GA.

(2) In this study, the passengers’ access cost and the
bus stop service distance were not considered. In the future
research, these factors can be incorporated into the model to
make the problem more realistic.
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