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ABSTRACT In this paper, we proposed an enhanced secure scheme for the wireless communication system
threatened by an intelligent attacker, which can work in eavesdropping, jamming, and spoofing modes. The
conventional secure scheme is to apply Q-learning-based algorithm to reach a Nash equilibrium (NE) in the
framework of a zero-sum game between the transmitter and attacker, which, however, requires the number
of antennas at the transmitter to be much larger than that at the attacker. To overcome this limitation, we first
consider the scenario where the attacker can flexibly increase the number of antennas in order to increase the
attack rate. By adaptively setting the number of antennas at the transmitter and the legitimate receiver equal
to that at the attacker, we then apply the beamforming at the transmitter to suppress the eavesdropping and
use the filtering at the receiver to prevent the jamming and spoofing. By incorporating the beamforming and
filtering, the benefits of the attacker in this game are efficiently restricted. Furthermore, theQ-learning-based
power control strategy is used to reach a new NE. The simulation results have been demonstrated to show
that the proposed scheme can suppress the intelligent attack efficiently, which outperforms the conventional
scheme in the secrecy performance.

INDEX TERMS Reinforcement learning, model-free, beamforming, zero-sum game.

I. INTRODUCTION
In recent years, the demands on the wireless data rate have
been explosively increasing [1]–[4], and many wireless tech-
niques have been proposed to meet the requirements [5]–[8].
As a rapidly developing technology, artificial intelligence has
been applied in various fields, such as face recognition [9]
and observationwater levels [10]. The application of artificial
intelligence into wireless communication in [11], [12] has
gained much attention recently. Many researchers have used
the technique of deep learning network proposed in [13], [14]
for channel estimation [15], resource allocation [16] and
non-orthogonal multiple access [17], [18]. In many cases,
an intelligent agent is not just to identify and classify, it still
needs to respond to the current state of environment and take
appropriate actions adaptively. The reinforcement learning is
proposed in [19] to enable the agents to learn a self-adapting
strategy. The task of reinforcement learning is often described
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as a Markov decision process: the agent executes an action at
the current state, and meanwhile the environment feeds back
a reward to the agent according to the reward function. After
continuous trial-error and exploration in the environment,
the agent can obtain a learning-based policy which can max-
imize the long-term reward. However, in practical situations,
it is difficult for the agent to detect the state space of the envi-
ronment and the state transition probability. In order to solve
the problem, the authors in [20] have proposed a model-free
reinforcement learning algorithm, named Q-learning, which
is more suitable for the secure wireless transmission.

Secure wireless transmission is of vital importance for
the future mobile communication networks [21], [22]. Intel-
ligent attacker with reinforcement learning ability seriously
threatens the security of wireless communication [23], [24].
It is difficult for the transmitter to detect the channel status
information (CSI) [25] between the transmitter and receiver,
and the transmitter is even unable to predict the action of
the intelligent attacker. In the complex radio environment,
the transmitter can only adaptively control its transmit power
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and the number of antennas. Hence it is particularly impor-
tant for the wireless communication systems to adopt the
secure transmission scheme. A power control policy has been
proposed in [26] for the wireless communication systems,
which works well under a single attack mode. To tackle the
challenge of multiple attack modes, the attacker in [27] freely
works in eavesdropping, jamming, and spoofing modes. The
conventional power control schemes can only work well
for the secure communication game with fixed number of
antennas, where the number of antennas at the transmitter
is much larger than that at the attacker [27]. In the practi-
cal communication scenarios, the number of antennas at the
transmitter is maybe equal to that at the attacker, in which
the conventional power control scheme fails to work. This
motivates the research in this paper.

In this paper, we consider a rivalry wireless communication
system where an intelligent attacker exists, which reduces
the secrecy data rate of the system by flexibly working in
eavesdropping, jamming, and spoofing modes. Moreover,
the attacker can flexibly increase the number of antennas in
order to enhance its attack ability. To deal with the attack,
we firstly set the number of antennas at the transmitter and
receiver adaptively equal to that at the attacker. We then
apply the beamforming at the transmitter to suppress the
eavesdropping, and adopt the filtering at the receiver to
prevent the jamming and spoofing. We further propose an
enhanced secure transmission policy based on theQ-learning,
where the transmitter and attacker are considered as two play-
ers in a noncooperative zero-sum game framework. In such
a game, the attacker chooses to execute one attack mode
among eavesdropping, jamming or spoofing, which changes
the radio environment of the transmitter from one state to
another. Meanwhile, the transmitter computes the secrecy
data rate as the feedback reward. By combining the Monte
Carlo and dynamic programming methods, the transmitter
finally acquires the optimal transmit power to maximize the
average secrecy data rate. By incorporating the beamform-
ing and filtering we proposed, the reward of the attacker is
efficiently restricted when the attacking modes are executed.
Furthermore, we deduce a new Nash equilibrium (NE) of the
game. From the simulation results, we find that the secure
transmission policy approaches to the NE, and the proposed
scheme outperforms the conventional ones significantly.

The main contributions of this paper are summarized as
follows:
• We propose an enhanced secure transmission system
against the intelligent attacker, which can work in
eavesdropping, jamming, and spoofing modes. More-
over, we consider the attacker can flexibly increase
the number of antennas in order to increase the attack
probability.

• We apply the beamforming at the transmitter to suppress
the eavesdropping, and use the filtering at the receiver to
prevent the jamming and spoofing.

• We adopt a Q-learning based algorithm for the secure
transmission to optimize the power control scheme, and

FIGURE 1. System model of a rivalry communication system with an
intelligent attacker.

we derive a new NE solution, which is proven to be
optimal for the secure transmission game.

II. BEAMFORMING AND FILTERING PROCESS
To discuss the beamforming and filtering process in the
rivalry game, we need to first introduce the system model,
which is depicted in Fig. 1. This system consists of an
intelligent transmitter Alice and a smart attacker Eve. The
Eve is equipped with multiple antennas, and it can flexibly
select some of them to attack the secure communication.
In addition, Eve can select to execute several modes of attack,
and we use m to denote the attack type. If the beamforming
is not used, the Eve has better opportunity to overhear the
secure message from the Alice. If the filtering is not used,
the Eve has better opportunity to perform jamming or spoof-
ing. Specifically, m = 0, 1, 2 and 3 represent the silent,
eavesdropping, jamming and spoofing modes at the Eve,
respectively. To prevent the smart attack, the intelligent trans-
mitter Alice executes in a rivalry way, by adaptively adjusting
its number of antennas to that used at the Eve, and meanwhile
consciously changing its transmit power pt . The value of pt
varies in the range of [0,Pmax], where Pmax is the maximum
transmit power at the Alice.

As both the Alice and Eve are intelligent which have
the reinforcement learning ability, the rivalry of them in the
process of transmission can be formulated as a secure game.
In such a game, the Eve can flexibly increase the number
of used antennas to help strengthen the attack. To tackle
this problem, the beamforming at the Alice and the fil-
tering at the Bob are adopted in this work to prevent the
attack. Specifically, let LA, LB and LE denote the number
of used antennas at the Alice, Bob and Eve, respectively,
where LE can be flexibly increased to help strengthen the
attack. We use HAB ∼ CN (0, αI), HAE ∼ CN (0, βI) and
HEB ∼ CN (0, εI) to represent the channel parameters of the
Alice-Bob, Alice-Eve and Eve-Bob links, respectively.

Moreover, we usewA andwB to represent the beamforming
and filtering vectors, respectively. Note that these two vectors
are maybe not optimal. Then, the Alice chooses a value for
the transmit power pt to send the beamformed signal wAsA,
where sA is normalized to unity. After that, the received signal
at the Bob is input to the filter, and the resultant signal is

ym,B = wH
BHABwA

√
ptsA + wH

B nB, (1)
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where m = 0 and 1 indicate the silent and eavesdropping
modes, respectively. The term nB ∼ CN (0, σ 2I) is the addi-
tive white Gaussian noise (AWGN) at the Bob. The details
about the noise effect on the wireless communication systems
can be found in [28]–[30].Whenm = 1 holds, the eavesdrop-
ping signal at the Eve is

yE = HAEwA
√
ptsA + nE , (2)

where nE ∼ CN (0, σ 2I) is the AWGN at the Eve. When
the Eve selects to send a jamming signal sJ with m = 2,
the output signal of the filter at the Bob becomes

ym,B = wH
BHABwA

√
ptsA + wH

BHEB
√
pJ sJ + wH

B nB, (3)

where pJ is the jamming power at the Eve. When m = 3
holds, the Alice does not transmit while the Eve transmits the
spoofing signal sS . The output signal of the filter at the Bob
becomes

ym,B = wH
BHEB

√
pS sS + wH

B nB, (4)

where pS is the spoofing power at the Eve.
We now turn to solve the beamforming and filtering vec-

tors wA and wB. To this end, we use the singular value
decomposition (SVD) to decompose HAB = U3VH , where
U = [u1,u2, . . .uLB ] and V = [v1, v2, . . . vLA ] are two
unitary matrices, and 3 = diag[λ1,λ2, . . .λmin(LA,LB)] is
the singular matrix in which the singular values are ordered
in a descender order. Similarly, HEB is decomposed as
HBE = UE3EVH

E , where UE = [uE,1,uE,2, . . .uE,LB ]
and VE = [vE,1, vE,2, . . . vE,LE ] are two unitary matrices,
and 3E = diag[λE,1,λE,2, . . .λE,min(LE ,LB)] is the singular
matrix in which the singular values are ordered in a descender
order. From these two decompositions, we can setwA andwB
as

wA = v1, (5)

wB = uE,LB , (6)

in which (5) can maximize the equivalent channel gain
of the main link, while (6) can minimize the equivalent
channel gain of the jamming and spoofing links. There are
some more efficient beamforming and filtering schemes in
the literature [31]–[33], which will be studied in our future
works.

The secrecy data rate of the system is denoted by
C0,C1,C2 and C3, for m = 0, 1, 2 and 3, respectively. From
(1)-(6), the secrecy data rate is given by

C0 = log2(1+ p̃t |w
H
BHABwA|

2), (7a)

C1 = C0 − log2(1+ p̃t (HAEwA)H (HAEwA)), (7b)

C2 = log2(1+
p̃t |wH

BHABwA|
2

1+ p̃J (wH
BHEB)(wH

BHEB)H
), (7c)

C3 = C0 − ζ log2(1+ p̃S (w
H
BHEB)(wH

BHEB)H ), (7d)

where p̃t = pt/σ 2, p̃J = pJ/σ 2 and p̃S = pS/σ 2 are
the transmit, jamming and spoofing power normalized by the
average noise power. In addition, ζ ∈ (0, 1) in (7d) is the

probability of the influence of spoofing message. Note that in
eqs. (7c) and (7d), we only list the secrecy data rate expression
of all possible attacker modes. In practice, the system need
not know the transmission power and modes of the Eve. The
proposed Q-learning based algorithm can protect the secure
communication from the smart attacker which can arbitrarily
change its mode and transmit power. Moreover, when m = 3
holds, the Alice does not transmit any signal, and then the
attacker selects to perform spoofing. The secure data rate in
eq. (7d) is used to characterize how the spoofing signal looks
like to actual useful signal from the Alice. In other words,
eq. (7d) expresses the similarity between the spoofing signal
and the actual useful signal from the Alice. The details about
eq. (7d) can be found in the literature, such as Ref. [27].

III. POLICY OF SECURE COMMUNICATION GAME
In this work, both the Alice and Eve have the reinforcement
learning ability, and hence the rivalry of them in the transmis-
sion process is formulated as a secure communication game.
In such a game, one agent’s environment is the result of the
other’s action, i.e., the Alice and Eve determine their actions
by observing the rival’s behaviors. The process of the game is
performed in a time sequence, and for each time slot, the two
agents choose an action according to the state of the current
moment and obtain a reward gain. Specifically, the Alice
chooses a transmit power pt and adaptivity adjusts the number
of transmit antennas LA, while the Eve selects to perform the
action mode m ∈ {0, 1, 2, 3} with variable LE . The target
of the Alice and Eve is to select some optimal action in
order to maximize their holistic reward after many time tests.
After some interval, the Eve checks the probability of keeping
silent. If the silent probability is higher than a given threshold,
then the Eve will select to increase the number of antennas by
one, in order to break the equilibrium and increase the attack
rate. In accordance with LE , the Alice adaptively adjusts its
antenna number LA equivalent to LE . Note that the system can
estimate the channel parameters of the Eve when it is active
in the network. By analyzing the dimension of the channel
matrix, the system can know the antenna numbers of the Eve.

We repeat the above game for many times, and the two
agents will learn the corresponding optimal policy (p∗t ,m

∗).
Nash equilibrium of this game is a set that satisfies the two
agents’ policy, which is defined as

RA(p∗t ,m
∗) ≥ RA(pt ,m∗) ∀0 ≤ pt ≤ Pmax, (8)

RE (p∗t ,m
∗) ≥ RE (p∗t ,m) ∀m = 0, 1, 2, 3, (9)

whereRA andRE denote the reward functions of the Alice and
Eve, respectively. We can compute RA based on the secrecy
date rate and the transmission cost. Note that the increase
in the number of antennas will cause more cost, and we set
the total transmission cost of Alice to ptLAµ, where µ is the
cost of unit power. Accordingly, we can compute the reward
function of Alice, RA(pt ,m), as

RA(pt ,m) = ln 2Cm − ptLAµ, (10)
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where Cm is the secrecy data rate when the Eve selects
to perform the m-th action mode. The logarithmic basis in
eq. (10) is the natural basis, instead of the basis of 2. This can
facilitate the partial operation in the subsequent derivation
process. In the practical scenarios, we expect that only the
Alice can win in this confrontation between the Alice and
Bob. Therefore, we consider the secure communication game
as a zero-sum game, where the reward value function of Eve
RE (pt ,m) can be given by

RE (pt ,m) = − ln 2Cm − LEνm, (11)

where νm is the cost of a single antenna at the Eve to execute
the action modem. Similarly, the logarithmic basis in eq. (10)
is the natural basis, instead of the basis of 2. This can facilitate
the partial operation in the subsequent derivation process.

We next derive the Nash equilibrium (NE) solution of
the secure communication game based on RA(pt ,m) and
RE (pt ,m). According to the definition of NE, if one player
between the Alice and Eve keeps adopting the NE policy,
the other one cannot obtain more reward gain by changing
its policy. We find that it is most beneficial for the Eve to
keep silent when the Alice transmits a signal with power x.
Therefore, we show the NE solution (x, 0) in the following
Lemma 1.
Lemma 1: The secure communication game has one NE

policy = (x, 0), i.e., Eve chooses the no-attack policy when
Alice uses the optimal transmit power x, which is computed
by

x =
|wH

BHABwA|
2
− LAµ

LAµ|wH
BHABwA|

2
∃0 ≤ x ≤ Pmax, (12)

if the following conditions are satisfied:

1

LA/|wH
BHABwA|

2 + PmaxLA
< µ <

wH
BHABwA

LA
(13a)

ν1 ≥
ln(1+ x(HAEwA)H (HAEwA))

LE
(13b)

ν2 ≥

ln(1+ p̃J x|wHB HABwA|2(wHB HEB)(wHB HEB)H

1+x|wHB HABwA|2+̃pj(wHB HEB)(wHB HEB)H
)

LE
(13c)

ν3 ≥ ζ ln(1+ p̃s(wH
BHEB)(wH

BHEB)H )/LE (13d)

Proof: According to (10), when m = 0 holds, we take
the partial derivative of RA(pt ,m) with respect to pt , and have

∂RA(pt , 0)
∂pt

=
1

pt + 1/|wH
BHABwA|

2
− LAµ, (14)

from which we easily find

∂R2A(pt , 0)

∂p2t
= −(

1

pt + 1/|wH
BHABwA|

2
)2 < 0. (15)

The above equation shows that RA(pt , 0) is a convex function.
We solve the following equation when (pt , 0) = (x, 0) holds

∂RA(x, 0)
∂x

=
1

x + 1/|wH
BHABwA|

2
− LAµ = 0, (16)

from which we have

x =
|wH

BHABwA|
2
− LAµ

LAµ|wH
BHABwA|

2
0 ≤ pt ≤ Pmax. (17)

Hence, RA(pt , 0) achieves the local maximum value when
(pt , 0) = (x, 0). By letting the following two equations hold,

∂RA(pt , 0)
∂pt

|pt=0 =
1

pt + 1/|wH
BHABwA|

2
− LAµ > 0,

(18)
∂RA(pt , 0)
∂pt

|pt=Pmax =
1

pt + 1/|wH
BHABwA|

2
− LAµ < 0,

(19)

we find that the inequality in (13a) is a tenable condition
where RA(pt , 0) achieves the global maximum value. Hence,
it has been proven that (x, 0) satisfies (8).

Then, we can write the following inequalities from (11) as

RE (x, 0)− RE (x, 1)

= LEν1 − ln(1+ x(HAEwA)H (HAEwA)) ≥ 0,

RE (x, 0)− RE (x, 2)

= LEν2−ln(1+
p̃J x|wH

BHABwA|
2(wH

BHEB)(wH
BHEB)H

1+x|wH
BHABwA|

2+p̃j(wH
BHEB)(wH

BHEB)H
)

≥ 0,

RE (x, 0)− RE (x, 3)

= LEν3 − ζ ln(1+ p̃s(wH
BHEB)(wH

BHEB)H ) ≥ 0.

Thus, the inequalities in (13b)-(13d) are the tenable condi-
tions where (x, 0) satisfies (9).

In summary, (x, 0) is the strict NE policy of the secure
communication game. The details about the NE policy can be
found in the literature, such as the works in [34]–[36]. In this
way, the proof of Lemma 1 is completed.

IV. POWER CONTROL ALGORITHM
We employ a power control algorithm for the Alice based
on Q-learning, which is widely used in artificial intelli-
gent filed as a typical and powerful model-free reinforce-
ment learning method. The main motivation of adopting the
Q-learning is that it is difficult for the Alice to detect the
channel state information and the state transition probability.
To solve this problem, Q-learning is used for the Alice to
control the transmit power, in order to achieve the optimal
policy and action.

The power control algorithm is based on the temporal-
difference in essence, and it is a combination of the Monte
Carlo and dynamic programming. Overall, the feature of
the temporal-difference algorithm is that we use many times
of test to perform the attack and protection. By using the
temporal-difference process, the algorithm can find the best
awards for both sides. During the process, the test results of
previous time slots are saved in a table, based on which the
current state is updated. Firstly, we randomly initialize the
Q-tableQ(s, a), which consists of the state-action pairs (s, a).
At each episode of training, Alice explores the environment
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from an initial state s to the terminal state. At time t , the action
mode of Eve ism, which can be regarded as the state of Alice,
denoted by st = m. The Alice then chooses an action at1

according to the state st , and meanwhile acquires the state
of the next time st+1 and the reward gain RA. We jointly use
the reward value RA and action-value function of the next
state Q(st+1, a) to update the Q-table, and we can write the
process as

Q(st , at )← Q(st , at )+ θ [RA + γmaxaQ(st+1, a)

− Q(st , at )], (20)

where θ ∈ (0, 1] is the learning rate, and it determines
the speed of policy update. The larger of θ , the greater the
weight of the retaining current experience. The discount
factor γ ∈ [0, 1] represents the probability that Alice attaches
importance to the reward in memory. We do not know the
state transition probability of Alice, so we need to take many
episodes to get the expected action-value function, just like
the idea of Monte Carlo. After enough experiments, the
learning based Q-table approaches to the optimal Q∗-table.
However, if the Alice exploits the current optimal action
in the Q-table every time, it will probably approach to a
local optimal policy. In order to obtain the global optimal
policy, we employ the ε-greedy policy where the Alice
selects an action in this algorithm to reach a tradeoff between
the exploration and exploitation, i.e., the Alice exploits the
current optimal action with probability ε, or randomly selects
an action with probability (1 − ε). After some interval,
the Eve checks the probability of keeping silent. If the silent
probability is higher than a given threshold, then the Eve
will increase the number of antenna to strengthen the attack
ability. To deal with this problem, the Alice adaptively adjusts
its antennas number LA equal to LE .
As summarized above, Alice can learn the optimal policy

and action according to the power control algorithm, which
is given in the following algorithm,

V. SIMULATION RESULTS
In this section, the power control algorithm we proposed
for the secure communication game was evaluated via
simulation. According to the tenable conditions of NE in
(13a) − (13d), we set the system parameters as: {α, β, ε} =
{1.2, 0.5, 2}, µ = 0.1, νm={0,1,2,3} = {0, 2.5, 3.2, 3}, ζ =
0.5, pj = 3.2 and ps = 3. To make the results more clear,
we simply assume that the Eve observes the silent probability
every 10000 time slots throughout the whole process, and
increases one antenna at every turn if the silent probability is
higher than 90%. Therefore, the whole process which consists
of 40000 time slots is divided into four phases.

Fig. 2 illustrates the mode probabilities of the Eve versus
the time slot varying from 0 to 40000, where the number of

1In our work, the Alice chooses an action a among all possible values of
transmit power. To simplify the selection, we the transmit power into limited
levels. Then, the Alice can choose an action a among the limited levels of
transmit power.

Algorithm 1 Power Control Algorithm
1: Input parameters: θ , γ , ε
2: Initialize Q(s, a), for all s ∈ 0, 1, 2, 3, a ∈ [0,Pmax] at

random
3: Loop for each episode:
4: Initialize s
5: loop for each time slot of episode:
6: Choose at from st using policy derived from

Q(ε − greedy)
7: Take action a, observe RA, st+1
8: Q(st , at )← Q(st , at )+ θ [RA + γmaxaQ(st+1, a)

−Q(st , at )]
9: st ← st+1
10: Observe Eve’s antennas LE , and set LA = LE
11: until s is terminal

FIGURE 2. The mode probabilities of the Eve with variable number of
antennas.

the used antennas at the Eve adaptively increases from 1 to 4.
In the first phase, the average silent probability sharply rises
up to 90% from 0 to about 3000 time slots. From 3000 to
6000 time slots, the silent probability grows up very slowly,
and it approaches to a steady level of 91% after 6000 time
slots. This indicates that a balance is almost achieved between
the attack and protection. On the contrary, the eavesdropping,
jamming and spoofing probabilities sharply fall below 5%.
Then, at the point of 10000 time slot, the Eve checks the silent
probability. If the probability is higher than 90%, the Eve
increases the number of antennas by one. The Alice and Bob
adaptively set the number of antennas equal to that at the
Eve. For the second phase with the time slot in the range
of [10000, 20000], the mode probability becomes convergent
much more quickly. This also indicates that a balance is
almost achieved between the attack and protection. Further-
more, the silent probability is higher than that in the first
phase. These observations also hold for the third and fourth
phases.

Fig. 3 shows the secrecy data rate of the secure transmis-
sion system versus the time slot varying from 0 to 40000,
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FIGURE 3. The secrecy data rate of the proposed secure communication
policy with variable number of antennas.

FIGURE 4. The average reward of the proposed secure communication
policy with variable number of antennas.

where the number of the used antennas at the Eve adap-
tively increases from 1 to 4. In the first phase, we find that
the average secrecy data rate sharply increases from 0 to
3000 time slots. From 3000 to 6000 time slots, the secrecy
data rate rises up very slowly, and it approaches to a steady
level after 6000 time slot. This indicates that a balance is
almost achieved between the attack and protection. At the
point of 10000 time slot, both the Eve and Alice increase
the number of antennas by one. For the second phase with
the time slot in the range of [10000, 20000], the secrecy data
rate dramatically rises up, and it becomes convergent more
quickly compared with the first phase. These observations
also hold for the third and fourth phases.

In Fig. 4, the two curves show the average reward val-
ues of the Alice and Eve versus the time slot varying from
0 to 40000, where the number of the used antennas at the
Eve adaptively increases from 1 to 4. In the first phase,

FIGURE 5. The average transmit power of the proposed secure
communication policy with variable number of antennas.

the reward values of the Alice and Eve grow up quickly, and
they both approach to a steady level, which indicates that a
balance is almost achieved between the attack and protection.
In the second phase, for the reason of the increasing number
of antennas by one, the reward of the Alice rapidly increases
by 100%, and meanwhile the reward of the Eve decreases
by 100%. For the subsequent phases, the convergent reward
value of the Alice becomes much higher when the number of
the antennas increases.

Fig. 5 illustrates the transmit power of the Alice versus the
time slot varying from 0 to 40000, where the number of the
used antennas at the Eve adaptively increases from 1 to 4.
It is apparent that the transmit power of the Alice gradually
grows up when the time slot increases from 0 to 10000, and it
approaches to the peak value of 5.5, where a balance is almost
achieved between the attack and protection. For the second
phase with the time slot in the range of [10000, 20000],
the transmit power of Alice falls to a temporary value of
4.8 at the point of 10000 time slot because of the increasing
number of the antennas, and then it gradually rises to 5.4.
These similar observations also hold for the third and fourth
phases.

By summarizing the above analysis, we can conclude that
the secure transmission policy we proposed can enable the
Alice to approach to the learning based optimal policy, and it
can efficiently enhance the secrecy data rate and meanwhile
reduce the attack probabilities, irrespective of the number of
the used antennas at the Eve.

VI. CONCLUSIONS
In this paper, we presented the enhanced secure transmission
against the attacker which flexibly increased the number of
antennas in order to help strength the attack. In the trans-
mission process, the number of antennas at the transmitter
and legitimate receiver was adaptively set equal to that at
the attacker. Then, the beamforming at the transmitter was
employed to suppress the eavesdropping, and the filtering at
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the receiver was used to prevent the jamming and spoofing.
In this way, the benefits of the attacker were efficiently
restricted, and a new NE was reached by the Q-learning
based power control strategy. By simulation, we confirmed
that the performance of the proposed scheme incorporating
the beamforming and filtering could outperform the con-
ventional schemes. In the future works, we will incorporate
some other wireless transmission techniques such as resource
allocation [37]–[40] and IOT techniques [41]–[44] to further
enhance the security of the considered system.
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