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ABSTRACT Rotating components are commonly used in industry and their failures may cause unexpected
accidents and economic losses. To prevent these, prognostics and health management of rotating components
attract much attention. The key for prognostics and health management of rotating components is to extract
repetitive transients caused by early faults, which is further used to construct health indicators for describing
rotating component degradation. In the past years, various theories and algorithms were developed to extract
repetitive transients. One of the most famous theories is spectral kurtosis. Moreover, its fast realization is
called fast Kurtogram. Even though several improvements have been made on spectral kurtosis and its fast
realization, the fast Kurtogram is not an optimal filtering. In this paper, flexible Kurtogram is proposed.
First, a flexible filtering framework based on multiple filter banks is constructed. Second, the objective
functions of the flexible Kurtogram based on generalized spectral kurtosis are proposed. Third, optimization
algorithms are introduced to maximize objective functions so as to make the flexible Kurtogram adaptive for
the squared envelope with demodulation analysis. The results showed that the proposed flexible Kurtogram
can be used to automatically find an optimal frequency band for demodulation analysis and it is better than
the fast Kurtogram.

INDEX TERMS Flexible Kurtogram, optimal filtering, prognostics and health management, repetitive

transients, rotating components.

I. INTRODUCTION
Rotating components, such as bearings and gears, are widely
used in various machines in industry. Their health conditions
are of great concern because unexpected failures of rotating
components may cause further damages of other connected
components and even cause failures of a whole transmis-
sion system [1], [2]. Prognostics and health management of
rotating components aim to use monitoring data to timely
determine health conditions of rotating components and make
maintenance plans economic so as to prevent unexpected
accidents and reduce economic losses [3].

Prognostics and health management of rotating compo-
nents includes several steps, such as data collection, data pro-
cessing, prognostic modeling and maintenance modeling [4].

The associate editor coordinating the review of this manuscript and
approving it for publication was Dong Wang.

Among them, data processing is the key for construction of
health indicators for prognostic modeling of rotating com-
ponents. For example, when a bearing in a machine suffers
a fault, repetitive transients are generated by rollers striking
the fault. Because of interruptions of heavy noises and strong
unwanted vibration components, repetitive transients are not
directly observed in practice [5]. Consequently, it is difficult
to directly use statistical parameters to quantify repetitive
transients and reflect health conditions of rotating compo-
nents. Here, statistical parameters can be understood as health
indicators [6], which are used as an input to prognostic
modeling. Simply speaking, health indicators are the basis
of prognostic modeling [7]. In view of this point, extraction
of repetitive transients is crucial to prognostics and health
management of rotating components.

In the past years, in the field of mechanical signal pro-
cessing, many theories and methods for extracting repetitive
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transients were proposed [8]. Among them, spectral kurto-
sis [9] is one of the most famous theories to realize extraction
of repetitive transients. Spectral kurtosis originally proposed
by Antoni and Randall [10] aims to use kurtosis to quantify an
analytical signal constructed by using a band-pass filter and
Hilbert transform. Here, kurtosis is capable of characterizing
the impulsiveness of repetitive transients. Therefore, spectral
kurtosis can be used to extract repetitive transients with an
assumption that there are no impulsive noises embedded in
repetitive transients. Based on the theory of spectral kurtosis,
the fast realization of spectral kurtosis was then proposed by
Antoni and it was called the fast Kurtogram [11].

Following the work of Antoni, many improvements on
spectral kurtosis and its fast realization were proposed [12].
Some examples are given as follows. Li et al. [13] proposed
multiscale clustered grey infogram to reduce the influence of
impulsive noises. Borghesani et al. [14] innovatively revealed
that spectral kurtosis is proportional to the sum of the square
of the squared envelope spectrum. Wang [15] discovered that
spectral kurtosis is a special case of the ratio of Lp norm to
Lg norm when p = 2 and ¢ = 1. Moreover, Wang [15]
connected spectral kurtosis with the reciprocal of spectral
smoothness index [16]. Then, inspired by Gini index [17] and
the work of Miao et al. [18], Wang [19] introduced Gini index
to extract repetitive transients and developed spectral Gini
index. Results showed that spectral Gini index and spectral
smoothness index are less sensitive to impulsive noises. Here,
in the work of Miao et al. [18], they used Gini index instead
of kurtosis in the fast Kurtogram and showed that Gini index
is less sensitive to impulsive noises. Mo et al. [20] discovered
that a cyclic harmonic-to-noise ratio is a special case of the
ratio of Lp norm to Lg norm when p = +oo and ¢ = 1.
Then, they proposed weighted cyclic harmonic-to-noise ratio
to further improve the signal to noise ratio of the cyclic
harmonic-to-noise ratio and made the proposed index more
effective for extracting repetitive transients.

To characterize the cyclo-stationarity of repetitive tran-
sients, Barszcz and JabLorski [21] used kurtosis to quantify
the amplitudes of squared envelope spectrum and then they
proposed the concept of the Protrugram. To expedite the
calculation time of the Protrugram, Wang et al. [22] used kur-
tosis to quantify squared envelope spectra of wavelet packet
coefficients and they called this technique as the enhanced
Kurtogram. Antoni [23] used negative entropy to quantify
squared envelope spectra. Besides, Antoni proposed an inno-
vative idea to simultaneously characterize the impulsiveness
and cyclo-stationarity of repetitive transients by using an
average of negative entropies in time and frequency domains.
Nevertheless, Antoni did not clarify how to set a weight of
negative entropies in time and frequency domains. Wang et al.
used the ratio of L2 norm to L/ norm [24] to quantify bearing
fault frequencies in squared envelope spectra to find the most
informative frequency band excited by bearing faults.

Besides characterizing the impulsiveness and cyclo-
stationarity of repetitive transients, filtering for bearing fault
diagnosis has attract much attention from scholars, which
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is practical realizations of some theories. Qin [25] used a
Laplace wavelet as a mother wavelet to realize sparse rep-
resentation of bearing fault signals. Wang et al. [26] used
variational mode decomposition to extract a trend and then
proposed an adaptive density peaks search algorithm to real-
ize different bearing faults. Miao et al. [27] constructed an
convex optimization based algorithm to identify multiple
states in a bearing degradation process. Miao et al. [28]
constructed multiple filters to retain bearing fault frequencies
to assess cooling fan degradation. Wang et al. [29] combined
computed order tracking and variational mode decomposition
based time frequency representation for realizing bearing
fault diagnosis at variable speeds. Cui et al. [30] used the
sparsogram and Lempel-Ziv to quantify bearing degrada-
tion. Jiang et al. [31] fully discussed initial parameters of
variational mode decomposition for bearing fault diagnosis
and proposed an optimal filtering for extracting bearing fault
features. Feng et al. [32] proposed atomic decomposition and
sparse representation to analyze planetary bearing faults.

In this paper, to further generalize the fast Kurtogram,
flexible Kurtogram is proposed. Firstly, a flexible filtering
framework based on multiple filter banks is constructed.
Secondly, objective functions of the flexible Kurtogram based
on generalized spectral kurtosis are proposed. Thirdly, opti-
mization algorithms are introduced to maximize objective
functions so as to make the flexible Kurtogram adaptive
for squared envelope with demodulation analysis. The main
contribution of this paper is to design adaptive filter banks
used in the flexible Kurtogram, which is better than use pre-
determined filter banks used in the fast Kurtogram.

The rest of this paper is organized as follows.
Section 2 introduces spectral kurtosis and generalized
spectral kurtosis. In Section 3, the flexible Kurtogram for
extracting repetitive transients is proposed. Two illustra-
tive examples are respectively gave in Sections 4 and 5.
Conclusions are drawn at last.

Il. SPECTRAL KURTOSIS AND GENERALIZED SPECTRAL
KURTOSIS

Spectral kurtosis was originally defined by Antoni [9] as
the ratio of the raw 4™ order moment my to the raw 2"
order moment my of an analytical signal x; 5 [n] = x5, [n] +
j - Hilbert {xl,h [n]}, where x; j, [n] is a filtered signal by a
band-pass filter with the lower and upper cut-off frequencies
[, h and Hilbert {-} is the Hilbert transform. Here, the length
of the analytical signal is denoted as N. According to this
definition, spectral kurtosis can be formulated as follows:

o (577 [n]) = m4{|xih[n]‘}2 9 )
(m2 {37 m1[})

Further, Wang [19] decomposed spectral kurtosis as the
square of the ratio of L2 norm to L/ norm of squared envelope
(SE) SE,;;[n] = |m[n]|2. Wang defined spectral L2/LI
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norm as follows [15]:

WM — V2, @)
ISErn (m1]

N N )
Z lxi| and [l = /> |xil". Then,
i=1

Wang [19] thought that the ratio of Lp norm to Lg norm of
SE is more general than the ratio of L2 norm to L/ norm
of SE. Consequently, Wang defined spectral Lp/Lg norm as
follows [19]:

where [, =

ey SE U, gt
[sEtnll, va "1
%Eﬂnhy_ig pog—o @
eV
N HSEz,h [n]
n=1
where the Euler-Mascheroni constant y  equals

to 0.5772156649.

In (3), when p = 1 and g = 0, Wang showed that the ratio
of LI norm to L0 norm of SE equals to the reciprocal of the
smoothness index. Here, the smoothness index was originally
introduced by Bozchalooi and Liang [16]. Moreover, it was
shown that the smoothness index is less sensitive to impulsive
noises than spectral kurtosis and spectral L2/L1 norm. In this
case, the reciprocal of the smoothness index was given as
follows:

Z SE; 1 [n]/
=1.g=0. (@

N l_[ SE; 5 [n]
n=1

Consequently, (3) can be regarded as generalized spectral
kurtosis in a time domain to characterize the impulsiveness
of repetitive transients.

On the other hand, in some cases, impulsive noises may
affect generalized spectral kurtosis in a time domain. Hence,
it is necessary to characterize the cyclo-stationarity of repeti-
tive transients. On this condition, SE needs to be mapped into
a frequency domain by using the fast Fourier transform. The
mapped SE is called SE spectrum (SES). Being similar with
generalized spectral kurtosis in a time domain, generalized
spectral kurtosis in a frequency domain is given as follows:

yp ISESLalnlly, g/t
||SESZ sy, Y
H%&Mﬂh, ! §)

- — p>q=0.
e v
Nl 1_[ SES; ; [n]
n=1

Interestingly, when p and g are chosen as different inte-
gers, (5) are reduced to some specific theories for extracting
repetitive transients. Firstly, when p = 2 and g = 1, (§) is

N'a- p>q=>0
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reduced to the main idea of the Sparsogram developed by
Tse and Wang [33] as follows:

1/2 HSESU! [n] ”Ll

ISESLi 1],

Secondly, Wang et al. [34] clarified the relationship
between the Protrugram and spectral kurtosis and discovered
that the ratio of L2 norm to L/ norm was commonly used
in these theories. Moreover, Wang et al. defined a modified
Protrugram, which is a special case of (5) when p = 2 and
g = 1 and the square operator is applied to the ratio of L2
norm to L/ norm of SES as follows:

H%&Hmm_

" lsesiptl?,

Thirdly, when p = 400 and ¢ = 1, (5) is reduced to a
cyclic harmonic to noise ratio introduced by Mo et al. [20].
Here, L +00 norm means to take the maximum of SES. This is
reasonable because bearing fault frequency and its harmonics
dominate SES when a bearing fault happens.

IsESua ] o
[SEsul,

V2. (6)

)

Ill. FLEXIBLE KURTOGRAM FOR EXTRACTING REPETITIVE
TRANSIENTS

In the past years, lots of algorithms have been developed
to realize a special case of generalized spectral kurtosis,
namely spectral kurtosis. One of the most famous realization
algorithms is the fast Kurtogram [35], which used 1/3-binary
tree filter banks to process a raw vibration signal and then
employed kurtosis to quantify filtered signals. The maxi-
mum of kurtosis values of filtered signals on the paving of
1/3-binary tree filter banks indicates the most informative fre-
quency band for extracting repetitive transients. The paving
of 1/3-binary tree filter banks in the fast Kurtogram is plotted
in Fig. 1.

In view of the paving of 1/3-binary three filter banks used
in the fast Kurtogram, it is not difficult to find that the divi-
sions of frequency bands at different decomposition levels
are pre-determined and they are not adaptively determined,
which indicates that such divisions may not be optimal in
many cases. To solve this problem, in this paper, a flexible
filtering framework is first constructed in Step 1 of the flexi-
ble Kurtogram. The divisions of frequency bands at different
decomposition levels are automatically determined by max-
imizing objective functions in Steps 2 and 3 of the flexible
Kurtogram. All steps of the proposed flexible Kurtogram are
illustrated in the following.

Step 1. (Establish a Filtering Framework of the Flexible
Kurtogram At A Decomposition Level M): Set a decomposi-

tion level of the flexible Kurtogram to M, which means that
M+1
a normalized Fourier support | J A, = [0, ] (according to

m=1
the Shannon criterion, 27 periodicity of a normalized Fourier
axis is limited to w € [0, ]) is divided into M + 1 contiguous
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Level 1/3-binary tree filter banks

Decomposition level

| | | | |

0 18 1/4 38 12
Normalized frequency

FIGURE 1. The paving of 1/3-binary tree filter banks used in the fast
Kurtogram (fs is a sampling frequency).

frequency bands A, = [wn—1, ®y]. The filters adopted in
this paper are exactly the same filters developed by Gilles [36]
as follows in (9) and (10), as shown at the bottom of this
page, where B (w) = o* (35— 84w + 700* — 20w?) and
Yy < miny, (n Z'") to make frequency supports compact.
'm+1
Based on (g) and (10) a signal denoted by f (n) can be
decomposed as follows:
M+1

£ ) = Wp 0,m) % @1 (n) + D Wy (m.n) * Y (n)

m=1

= IFT (FT (W (0,1)) x ¢1 ()

M+1
+ ZFT(Wf(mvn))xwm(w)), (11)

m=1

where Wy (0, 1) and Wy (im, n) are calculated as follows:

Wy (0,m) = (f (n) . $1 ()
=Y f@éix—n

= IFT (FT (f (1)) x ¢1 (0)), (12)

W (m,n) = (f (1) , Y ()
=Y f@YuT—1n)

= IFT (FT (f (1)) X ¥m (®)) , (13)

where FT is the abbreviation of the fast Fourier transform and
IFT is the abbreviation of the inverse Fourier transform; s,
(,) and () are the convolution, the inner product and the
complex conjugate, respectively.

Step 2 (Setting an Objective Function of the Flexible Kur-
togram at a Decomposition Level M): The only problem left

in Step 1 is determination of M 4 1 contiguous frequency
M+1

bands |J A, = [0, 7]. To intelligently determine these fre-
m=1

quency bands, an objective function is needed to constructed.

As introduced in the previous section, generalized spectral
kurtosis (3) or (5) can be used as an objective function.
However, the direct use of (3) or (5) can only determine one

frequency band rather than M 41 contiguous frequency bands
M+1
U Am = [0, ]. Therefore, generalized spectral kurtosis

=1
E’é) or (5) needs to be reformulated. An intuitive idea is to

maximize the sum of generalized spectral kurtosis (3) or (5)
M+1
at M + 1 contiguous frequency bands | J A, = [0, 7]. The

objective functions of the flexible Kur’?(iglram at a decompo-
sition level M can be formulated as (14) or (15).

The objective function of the flexible Kurtogram for char-
acterizing the impulsiveness of repetitive transients is formu-
lated as follows:

2
ZX:::NIM_UPW % =0
[1w; .,
L H|wf<mn>|H R 12—
= (14)

The objective function of the flexible Kurtogram for
characterizing the cyclo-stationarity of repetitive transients is

L lol < (1 =y)on

¢m (w) = | cos %ﬁ (2y — (1= J/)wm)>] (I=y)om < ol < (1 +vy)on )
0 i others,
L (I+y)on <ol < (1 =y) ont
cos %ﬂ (2 (ol =1 - V)wm+1)>:| (I =py)omy1 < ol = (1 +y) Ony

Y (@) = LS pSrem (10)
sin | o - —V)wm)ﬂ (I=y)on <ol = (1 +y)on
0 ) others,
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The Proposed Flexible Kurtogram for Bearing Inner Race Fault Diagnosis
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FIGURE 2. The proposed flexible Kurtogram for processing a bearing inner race fault signal: (a) a bearing inner race fault signal;

(b) frequency spectrum of Fig. 2(a); (c) the optimized filter bank of the flexible Kurtogram at a decomposition level of 1; (d) the
optimized filter bank of the flexible Kurtogram at a decomposition level of 2; (e) the optimized filter bank of the flexible Kurtogram at a
decomposition level of 3; (f) the optimized filter bank of the flexible Kurtogram at a decomposition level of 4; (g) the flexible Kurtogram;
(h) squared envelope of the most informative signal filtered by the flexible Kurtogram; (i) squared envelope spectrum of Fig. 2 (h).

formulated as follows:

Ale/q 1/p H‘FT(‘Wf (m. ) )‘H p! >0
= (weap),
e
— p>q=0.
"R
(15)

Step 3 (Solving an Objective Function of the Flexible
Kurtogram at a Decomposition Level M+-1 by Using an
Metaheuristic Optimization Algorithm): Maximization of
(14) or (15) is an optimization problem. Population-based
metaheuristic optimization algorithms inspired by biologi-
cal evolution can be used to solve the optimization prob-
lem. These metaheuristic optimization algorithms include ant

VOLUME 7, 2019

colony optimization [37], differential evolution [38], genetic
algorithm [39], particle swarm optimization [40], artificial
immune systems [41], a multi-objective genetic local search
algorithm [42], etc. In this paper, particle swarm optimization
is used as a demonstration to maximize (14) or (15).

Firstly, some initial particles/solutions are needed to
be randomly generated. Each particle/solution is a M+1-
dimensional vector. Here, a constraint is made for maximiza-
tion of (14) or (15). The constraintis 0 < w; < ...wyu—1 <
wm < fs / 2. Here, f; is a sampling frequency. The number of
particles in this paper is set to 60.

Secondly, at the k™ epoch, calculate the objective function
(14) or (15) of each particle/solution. If a new objective value
at the current epoch is larger than the largest objective value,
the current position is set to a new personal best position.

Thirdly, a particle with the largest objective value among
all particles is set to the global best particle/solution. Then,
suppose that v; (k) and x; (k) are the velocity and position of
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FIGURE 3. The fast Kurtogram for processing the bearing inner race fault signal: (a) the fast Kurtogram; (b) squared envelope of the
most informative signal filtered by the fast Kurtogram; (c) squared envelope spectrum of Fig. 3 (b).

the j particle/solution at the k™ epoch; pj (k) is the personal
best position of the j™ particle/solution at the k" epoch; g (k)
is the global best position at the kth epoch. (16) and (17) are
used to update the position of each particle/solution at the
k 4+ 1! epoch.

vik +1) = v; (k) + ric1 (pj (k) — x; (k))
+ ey (g (k) — x; (), (16)
xj(k+1) = x; (k) +vj(k+1), (17)

where r; and rp are two random numbers between O to 1;
c1 and ¢, are respectively a cognitive weight and a social
weight. In this paper, ¢c; = ¢; = 2.

Repeat these procedures until a maximum number of
epochs is achieved. In this paper, the maximum number of
epochs is set to 100.

Step 4 (Generate the Flexible Kurtogram at Different
Decomposition Levels): Repeat Steps 1 to 3 to generate the
paving of the flexible Kurtogram from decomposition levels
ltoM + 1.

Step 5: Use the maximum of the flexible Kurtogram as a
criterion to choose the most informative frequency band and
then conduct squared envelope analysis to identify various
bearing fault frequencies.

IV. THE FIRST ILLUSTRATE EXAMPLE

In this section, analyses of an inner race fault at a fan end
of a motor (file name: 277DE of Case Western Reserve
University datasets, a partially successful case [43] suggested
by Smith and Randall; f; = 12000 Hz; a rotation frequency
ag = 28.9 Hz; a bearing inner race fault frequency afan =
142.9 at a fan end of a motor; a bearing inner race fault
frequency a}iri"e = 156.4 at a drive end of a motor) is
used as an example to illustrate the procedure of the flexible
Kurtogram in Fig. 2. Besides, to reduce the length of this
paper, p = 2 and g = 1 (the ratio of L2 norm to L/ norm)

as a special case of (14) is used as an objective function.
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In this example, the difficulty of bearing fault detection is
caused by an accelerometer installed at a drive-end bearing.
In Fig. 2, it is clearly seen that the filter banks used in the
flexible Kurtogram are automatically optimized at different
decomposition levels. Moreover, the most informative fre-
quency band indicated by the flexible Kurtogram results in
a squared envelope spectrum that exhibits the bearing inner
race fault frequency a}ca“ = 142.9 at the fan end and the
bearing inner race fault frequency a}irive = 156.4 at the drive
end, which indicates that the proposed flexible Kurtogram
can simultaneously detect two bearing inner race faults at the
different ends of the motor, which is partially successfully
in [43] by using various fault detection techniques.

Further, to highlight the superiority of the proposed flexible
Kurtogram, a comparison with the fast Kurtogram is con-
ducted. The results obtained by using the fast Kurtogram are
plotted in Fig. 3, where it is found that the fast Kurtogram can
only detect alfan = 142.9 at the fan end. Therefore, the fast
Kurtogram also belongs to one of the partly successful fault
detection techniques.

V. THE SECOND ILLUSTRATE EXAMPLE

The second example is about analyses of a bearing ball
fault signal collected from a motor. The raw bearing ball
fault signal is available in [44]. In the experiment, the shaft
rotation frequency f, = 23.33 Hz, the sampling frequency
fs = 80 kHz; the bearing ball spinning frequency
ap = 64 Hz and the cage frequency ac = 9.7. Firstly,
the flexible Kurtogram is applied to process the bearing
ball fault signal. The results obtained by using the flexible
Kurtogram is shown in Fig. 4, where it is observed that the
flexible Kurtogram can locate the most informative frequency
band at decomposition level 4. The bearing ball spinning fre-
quency, its harmonics and the cage frequency can be clearly
detected in Fig. 4 (i), which are typical fault symptoms for
a bearing ball fault. Therefore, the bearing ball fault can

VOLUME 7, 2019
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FIGURE 4. The proposed flexible Kurtogram for processing a bearing ball fault signal: (a) a bearing ball fault signal; (b) frequency
spectrum of Fig. 4 (a); (c) the optimized filter bank of the flexible Kurtogram at a decomposition level of 1; (d) the optimized filter bank
of the flexible Kurtogram at a decomposition level of 2; (e) the optimized filter bank of the flexible Kurtogram at a decomposition
level of 3; (f) the optimized filter bank of the flexible Kurtogram at a decomposition level of 4; (g) the flexible Kurtogram; (h) squared
envelope of the most informative signal filtered by the flexible Kurtogram; (i) squared envelope spectrum of Fig. 4 (h).
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FIGURE 5. The fast Kurtogram for processing the bearing ball fault signal: (a) the fast Kurtogram; (b) squared envelope of the
most informative signal filtered by the fast Kurtogram; (c) squared envelope spectrum of Fig. 5(b).

be confirmed. For a comparison, the fast Kurtogram is applied where it is indicated that the whole fault signal is the most
to process the same bearing ball fault signal. The results informative. In Fig. 5 (c), the cage frequency is not as clear
obtained by using the fast Kurtogram is shown in Fig. 5, as that shown in Fig. 4 (i). Moreover, the harmonics of the ball
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spinning frequency are not as clear as those shown in Fig. 4(i).
This is because the whole bearing ball fault signal is used
in squared envelope analysis. As shown in Fig. 4(b), many
noises corrupt the frequency spectrum of the bearing ball
fault signal. In contrast, the flexible Kurtogram can find the
optimal band-pass filter to retain bearing ball fault signatures.

VI. CONCLUSION

In this paper, to make the fast Kurtogram adaptive, the flexible
Kurtogram was proposed accordingly. The main idea of the
flexible Kurtogram is to optimize the filter banks. Firstly,
a filtering bank framework at different decomposition levels
was constructed. Secondly, based on generalized spectral
kurtosis in time and frequency domain, two objective func-
tions were respectively designed to characterize the impul-
siveness and the cyclo-stationarity of repetitive transients.
So, maximization of the proposed objective functions can
be used to automatically determine the filter banks at differ-
ent decomposition levels required in the flexible Kurtogram.
Thirdly, evolutionary optimization algorithms were intro-
duced to maximize the proposed objective functions. Two
illustrative examples were provided. In the first illustrative
example, it was found that the proposed flexible Kurtogram
can simultaneously detect two bearing inner race faults at the
two different ends of a motor, while the fast Kurtogram can
only detect one fault. In the second illustrative example, it was
found that the filter bank at decomposition level 4 locates the
most informative frequency band for further squared enve-
lope with demodulation analysis and improve the signal to
noise ratio of squared envelope spectrum for bearing ball
fault diagnosis, while the fast Kurtogram can only indicates
the whole frequency band, resulting in the unclear cage fre-
quency in its corresponding frequency spectrum in Fig. 5(c).
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