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ABSTRACT The muscle grading of livestock is a primary component of valuation in the meat industry.
In pigs, the muscularity of a live animal is traditionally estimated by visual and tactile inspection from an
experienced assessor. In addition to being a time-consuming process, scoring of this kind suffers from incon-
sistencies inherent to the subjectivity of human assessment. On the other hand, accurate, computer-driven
methods for carcass composition estimation, such as magnetic resonance imaging (MRI) and computed
tomography scans (CT-scans), are expensive and cumbersome to both the animals and their handlers. In this
paper, we propose a method that is fast, inexpensive, and non-invasive for estimating the muscularity of
live pigs, using RGB-D computer vision and machine learning. We used morphological features extracted
from the depth images of pigs to train a classifier that estimates the muscle scores that are likely to be
given by a human assessor. The depth images were obtained from a Kinect v1 camera which was placed
over an aisle through which the pigs passed freely. The data came from 3246 pigs, each having 20 depth
images, and a muscle score from 1 to 7 (reduced later to 5 scores) assigned by an experienced assessor. The
classification based on morphological features of the pig’s body shape–using a gradient boosted classifier–
resulted in a mean absolute error of 0.65 in tenfold cross-validation. Notably, the majority of the errors
corresponded to pigs being classified as having muscle scores adjacent to the groundtruth labels given by
the assessor. According to the end users of this application, the proposed approach could be used to replace
expert assessors at the farm.

INDEX TERMS Computer vision, RGB-D imaging, precision farming, machine learning.

I. INTRODUCTION
A. BACKGROUND
The value of a commercial pig largely depends on the com-
position of its carcass. Heavier pigs yield more meat in
general, though at the same weight, some pigs are observed
to yield more meat than others. This difference is explained
by muscularity. In order to estimate a pig’s potential econ-
mic value, it is useful to estimate its body coposition, and
mulscularity, in vivo. This can be done using advanced imag-
ing techniques, such as magnetic resonance imaging (MRI),
computed tomography scans (CT-scans), ultrasound, and
dual-energy X-ray absorptiometry (DXA) [1], [2].

The associate editor coordinating the review of this manuscript and
approving it for publication was Alexandros Iosifidis.

Despite the accuracy of those methods in estimating car-
cass related phenotypes, their high cost and complexity pre-
vent them from being deployed on large industrial scales.
Moreover, while these methods are non-invasive, they still
require extensive handling of the animals, and often require
sedation [2]; thus, making them cumbersome to both the pigs
and their handlers.

Alternatively, pigs can be classified into different grades
of muscularity at a lower cost, based on visual and tactile
inspections by experienced human assessors. Contrary to
carcass grading of pigs, these assessments are done while
the pig is still alive to estimate the future value of its
carcass. Naturally, such assessments are subject to human
error and variability from one assessor to another. Addition-
ally, the heuristics based on which the assessors make their
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FIGURE 1. (a) 9 RGB images of a pig as it passed through the aisle and (b) the corresponding depth images.

decisions are not fully known. However, they are still con-
sidered a valuable tool in the meat industry, due to being
affordable and accessible.

In this study, we propose an automated alternative to these
assessments that can have the same utility of approximating
future carcass value, while being faster, cheaper, and more
reliable. We design such an automated system by using fea-
tures extracted from Kinect images of the pigs, and training
a classifier on the muscle scores given by an expert assessor.
The assessor had used an ad-hoc scoring system of muscu-
larity, where each pig was given a score from 1 to 7. The
most extremelymuscled pigs were given a score of 7, whereas
those without any visible muscling were given a score of 1.

B. RGB-D COMPUTER VISION
The Microsoft Kinect is a low-cost, consumer RBG-D sensor
that provides synchronized color and depth images. Orig-
inally introduced as an input device for gaming purposes,
it has since been widely used in computer vision research [3].
Owing to the combination of RGB and depth cameras in
a single low cost device, the Kinect has had an advantage
in some computer vision applications over RGB-only cam-
eras or traditional 3D sensors (e.g. stereo cameras and time-
of-flight cameras) [4].

In this study, we exploit one particular advantage, which
is the ease of isolating the object of interest - a pig’s body,
in this case - from the background. The process is also
known as background subtraction, or foreground detection.
In RGB-based imaging, background subtraction is commonly
achieved with methods that assume a static background and
a moving object in a temporal sequence of images or video
frames [5]. This condition holds in the application of this
study, since multiple images were taken of each pig as it
passed through a static aisle. However, the presence of a
depth sensor makes background subtraction a simpler and
more reliable task [6]. Specifically, the object can be extracted
from a single image if it is known to be at a distance
from the depth sensor that is sufficiently different from
the background and other foreground objects. And unlike
color-based methods, this approach does not suffer from

difficulties due to illumination changes or color camouflage
between the background and the foreground objects.

The rest of paper is structured as follows. In section II-A,
we give a description of the utilized data and how it was
collected. Then, sections II-B and II-C describe the image
pre-processing and feature extraction procedures, respec-
tively. Section III contains the classification results. Finally,
in section IV we discuss both the implications and limitations
of applying the proposed method in practice, followed by
conclusions in section V.

II. DATA, METHODS, AND EXPERIMENTAL SETTINGS
A. DATA DESCRIPTION
The images were captured using a Kinect v1 camera placed
over an aisle through which the pigs passed individually. For
each pig, 20 images (of size 480 × 640 pixels) were cap-
tured to increase the likelihood of obtaining usable images;
defined here as those containing the pig in its entirety, in an
appropriate posture, and without occlusion. Fig. 1 shows the
RGB and depth images of a pig as it passed through the
aisle (9 images out of 20 are shown). In total, we analyzed
data from 3246 pigs, 1487 females, and 1759 males. The
average age of the pigs at the time of capturing the images
and assessing the muscle scores was (169± 5.8) days, while
the average weight was (116.9± 10.9) kg.
An expert assessor used an ad-hoc discrete muscularity

scale to judge each individual pig’s muscularity. The scale
had been designed to roughly forecast the pig’s value. In par-
ticular, the score is meant to reflect the carcass quality, and
the yield of its primal cuts. Each pig had been given a
score from 1 to 7. Besides looking for overall muscularity,
the inspector was instructed to judge muscularity indepen-
dently from size (or weight). In other words, both small and
large pigs could be judged as being muscular, and would thus
be given a high score. Fig. 2 shows RGB images of three pigs
from each muscle score.

Very few pigs were given a score of 1 and 2 (15 and 56
animals, respectively). Therefore, we chose to group the
first 3 scores into a single class, leading to a 5-label classifi-
cation problem instead of 7. According to the end users, this
change does not undermine the applicability of the proposed
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FIGURE 2. Each column of RGB images shows three pigs from one of the muscle score classes, with the least musclar
pigs (score 1) on the leftmost column.

FIGURE 3. A beeswarm plot [7], showing the distribution of the live weight of pigs across the 5 muscle scores.

approach. Fig. 3 shows the distribution of live weights across
the resulting 5muscularity scores. The plot shows that despite
there being a correlation with weight, muscularity is indeed a
different attribute, as pigs of varying weights were judged to
have the same muscularity score.

B. IMAGE PRE-PROCESSING AND SELECTION
For each pig, we applied a series of filters to the 20 depth
images that separate the pig’s body form the background.
We did this in a similar manner to [8]. First, we converted the
gray scale depth image to black and white. Then, we removed
all but the largest connected object in the image. As was
mentioned in section I-B, the fact that the pig’s body and
background are at different distances from the depth sensor
makes the separation simple. Finally, we removed the head
and tail using erosion and dilation with a 40 pixel radius disk
element [9]. Fig. 4 shows these stages for a sample image.

The next step was to automatically select the best out
of 20 images for each pig, and remove from the dataset those
without any usable images. Some of the causes that made
images unusable included occlusion by a farmer, the pig not

being fully within frame, more than one pig being in the
frame, or the pig’s body being contorted. To know if the pig’s
body was contorted, we measured the symmetry of the pig’s
body shape along its longitudinal axis, defined by a symmetry
index (SI). We computed the index by mirroring one half of
the body along its longitudinal axis, then counting the pixel
overlap with the other half, and normalizing by one half of
the total pixel count of the body’s shape (1).

SI =
2Aol
At

(1)

Above, SI is the symmetry index, Aol is the area of the
overlapping pixels when the top half of the pig’s body shape
is mirrored and superimposed on the bottom half,1 and At is
the total area of the pig’s body shape.

Fig. 5 shows a visual description of the the symmetry
evaluation procedure. This is shown with two images of the
same pig; one in which its body is straight (high SI ), and
another where the body is contorted (low SI ). The latter

1If, conversely, the bottom half was mirrored and superimposed on the top
half, the value of SI would not change.
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FIGURE 4. The image processing procedure: (a) the grayscale Kinect depth image before processing, (b) the image after
conversion to binary with an appropriate threshold, (c) the binary image after removing all but the largest connected
object, and (d) the binary image after erosion and dilation.

is rejected based on this criterion. We set a value of 0.92
for the symmetry index, below which images were rejected.
We determined the threshold by visual inspection of the
images and their corresponding SI ’s. We did this to guarantee
that all pigs were compared based on images in which they
stood in a uniform posture. Overall, images were rejected if
one or more of the following conditions held:
• The processing procedure resulted in more than a single
object.

• The contour of the pig’s body was in contact with the
image’s boundaries.

• A symmetry index lower than 0.92.
In cases where multiple images of the same pig were found

acceptable, the image where the pig’s body had its centroid
closest to the center of the image was selected.2

C. FEATURE EXTRACTION
From the pig’s connected body object - the result of process-
ing procedure in section II-B - we extracted 10morphological
features detailed in Table 1.3

We also added as a feature the volume of the object derived
from the depth values. We computed the volume using a
procedure described in [8], which was used in that study to
regress the live weight of the pigs at the time the images
were captured. The procedure works by applying the binary
mask that results from the pre-processing steps to the original
gray scale depth image. Then, the gray scale pixel values are
inverted such that the pixels closest to the sensor have the
highest value. The sum of the inverted pixel values are defined
as the volume.

Finally, we included two additional features to the feature
set that were not derived from the depth images; namely,
the sex of the pig, and its weight and age at the time of the
test. Table 1 shows a list of the features and their definitions.

D. CLASSIFICATION
We treated the prediction of the muscle scores as a classifi-
cation problem with 5 unbalanced class labels. The features
described in section II-C form a feature matrix that we denote
as X ∈ Rn×m, with m = 13, and we denote the muscle
score labels as Y ∈ Rn×1. We peformed the classification

2The contour and centroid of the objects were computed using the
MATLAB function regionprops. MATLAB 2018a was used.

3We obtained the features by applying MATLAB’s regionprops.
MATLAB 2018a was used.

TABLE 1. List of input variables used for classification and their
definitions. Inputs obtained from MATLAB’s regionprops are in single
quotation marks.

using XGBoost, a fast gradient tree boosting classifier [10].
We made this choice to ensure that any possible non-linear
relations between the shape characteristics and the muscle
scores could be modeled. Moreover, the speed of the model
could compensate for the time taken to process the images and
extract their features. This speed advantage becomes relevant
in large-scale implementations of the proposed method, e.g.
if the method is periodically used to assort pigs into groups
based on muscularity at a large farm.

The model parameters we set were the number of
trees (1000), and the learning rate of (0.01). We evaluated
the performance of the classification using stratified 10-fold
cross-validation.

III. RESULTS
Out of the 3246 pigs, we found 414 (12.75%) to have no
usable images after the image processing procedure. The dis-
tribution of muscle scores, from score 1 to 5 of the remaining
2832 pigs was as follows: [206, 686, 983, 650, 307].

We constructed the input feature matrix X by extract-
ing the features described in section II-C from the best
image of each pig. The classification task, performed using
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FIGURE 5. Two images of the same pig with different postures, (a) a straight body posture, (c) a contorted body posture,
and the corresponding processed images for compting the symmetry index in (b) and (d) respectively.

FIGURE 6. An accumulated confusion matrix computed by summing the
confusion matrices of the test folds of 10-fold cross-validation, then
normalizing for each label.

XGBoost in 10-fold cross-validation, yielded amean absolute
error (MAE) equal to 0.65. We computed the MAE because
the classes in this problem are ordered, making it a suitable
evaluationmetric [11]. Fig. 6 shows the accumulated, normal-
ized confusionmatrix from the test sets of the cross-validation
procedure.

We computed the normalized feature importance scores
and show them in Fig. 7. We derived these scores from the
training of the XGBoost model with the entire sample set.
Feature importance in XGBoost is defined as the total number
of times a feature was used to split the data in the tree
ensemble. The input variable ’MinorAxisLength’ is shown to
be the most relevant feature for classifying the target variable.
This feature could have acted as a proxy for the pig’s abdomen
width; a measurement that was computed using a Kinect
camera in [12], and used to regress live weight therein.

IV. DISCUSSION
The confusion matrix in Fig. 6 shows that most classification
errors result from classifying samples in adjacent labels to
the true ones, whereas there were significantly less errors
between distant labels, e.g., muscle scores 1 and 5. This
shows that themodel choice of XGBoost classifiers implicitly
handles the ordinal nature of the output labels without any
customization. This is further shown by the cross-validated
average MAE of 0.65.

FIGURE 7. Relative feature importance scores derived from the XGBoost
model, normalized by the score of the most important feature.

Computer vision technology has been used in several pig
farming applications [13]. Most pertinent to our problem
are attempts to analyze or estimate carcass composition
in-vivo using image-based solutions [1], [2]. In that context,
the authors of [2] highlight the differences between MRI,
CT-scans, Ultrasound, DXA, and visual image analysis
by monitoring (VIA), the latter being a blanket term for
methods of estimating carcass characteristics based on 2D
images or video, using one or more cameras [14]. The main
advantage of MRI, CT-scans, Ultrasound, and DXA is their
ability to take internal images of the animal, potentially
enabling them to estimate the ratios of body’s composing
tissues. On the other hand, VIA methods rely on extracting
a set of external measurements of the animal that could
correlate to its lean mass or muscularity [15], [16].

The solution we propose in this paper is based on a single
Kinect sensor. Kinect sensors have been used in the past for
pig farming applications, namely, for monitoring and detect-
ing pig behaviors in a pen [17], in automated weight estima-
tion [8], [12], and in the assessment of walking patterns [18].
As we have shown, the sensor is capable of extracting the
external shape of the pig, similarly to VIA methods. Unlike
VIA methods, however, the depth sensor of a Kinect is not
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sensitive to illumination conditions. Therefore, special light
installations are not needed [15].

In terms of cost, a Kinect-based approach compares favor-
ably with the other methods. The authors of [2] notably report
the high prices of CT-scanners and MRI machines, with new
units costing upward of e100,000. Following those in cost
are Ultrasound and XDAmachines, which are approximately
an order of magnitude cheaper. For VIA, the cost depends on
the number and type of cameras used, the type of computer,
and the mounting installations. In [19], a portable example of
a VIA system was constructed for e8,000. By comparison,
a ceiling mounted Kinect camera is a relatively inexpensive
solution.4

A thorough discussion of the time requirements of the
preceeding methods is given in [2]. In addition to lengthy
scanning times, methods like DXA, MRI, and CT-scans
require additional time for sedation or anesthesia (which
incur additional costs as well). Ultrasound and VIA, while
not requiring sedation, are more effective when the animal is
stationary, and thus restrained by a human or by a structural
confinement. Our proposed approach requires only that the
animals pass through an aisle in succession, thus making it
the least disruptive solution.

Another important difference between approaches to car-
cass composition analysis is the target variables that they
try to predict. In some studies, the target variables are the
true percentages of different tissues in the carcass (fat, lean
muscle, bones), obtained after the animal is slaughtered, dis-
sected, and its tissues carefully separated and weighed [22].
In other cases, the weights of primal cuts and their composi-
tion are substituted for the true percentages [23].

Conversely, the target variable in this study is a subjectively
determined quantity. The scores given by the inspector are not
guaranteed to directly correspond to any objective measure-
ments, and the groundtruth values are likely to suffer from
human error. Moreover, the inspector gave their assessment
based on a comprehensive view of the pigs, and possibly tac-
tile inspection, whereas the input features to the classification
model consisted only of objective measurements obtained
from a top-view depth image. This dichotomy between how
the groundtruth and the predictions are obtained presents a
challenge in applied machine learning.

Similar scenarios occur, for example, when computer
vision or machine learning are used to replicate the
diagnoses - given by doctors - of various medical condi-
tions [24], [25]. Or when a machine learning model is trained
on objective measurements to learn the subjective assess-
ments of quality in audio [26], video broadcast [27], or vehi-
cle handling [28]. In the latter cases, the subjective
assessments are considered the true benchmarks. Objec-
tive alternatives are developed to approximate the subjec-
tive assessments, and are preferred for their convenience,

4Though the Kinect v1 and v2 have been discontinued, alternative sensors
exist in the market which have been used in RGB-D research, like the
VicoVR [20] and Orbbec devices [21], priced at $239.99 and $149.99 respec-
tively, as of February 2018.

consistency, and low cost. Nevertheless, the subjective assess-
ments are given primacy. On the other hand, in our applica-
tion, and similarly in the case of the aforementioned medical
applications, the subjective quantity is merely a proxy for a
more relevant objective one. In other words, the true condition
of a patient is the relevant quantity, rather than a doctor’s
assessment of it. Similarly, the true muscle mass of a pig and
its carcass tissue composition are the quantities of interest,
rather than a subjective assessment thereof.

In the absence of an objective groundtruthmeasurement for
validation, it is difficult to fully evaluate the performance of
the classification. In particular, it is impossible - under such
limitations - to determine how accurate the groundtruth is.
This is not to be conflated with the kind of overfitting error
that can be remedied with cross-validation or regularization.
In this case, even when the model generalizes well to the
available data, the data itself is not general enough and may
contain errors. The author of [29] proposed a framework for
evaluating different classifiers relative to each other given the
presence of groundtruth errors. However, no guarantees can
be given for the absolute accuracy of a single classifier under
those conditions.

To compensate for this in our application, the performance
of the classifier could be compared to one in which the
same input variables are fit to objective measurements that
correspond to muscularity. Examples of such measurements
are post mortem scan data, or carcass prices. However, even
without the use of those measurements, improvements could
be made. One way to do that is by training a similar classifier
on a larger dataset of pigs, particularly one which includes
the muscle score assessments of multiple independent human
experts. Such a classifier would be more robust and reliable,
as it would model the average expertise of multiple people,
instead of being biased by a single human’s decisions. Similar
measures are typically taken when models are trained to
replace subjective audio and video broadcast quality assess-
ments, where Mean Opinion Scores (MOS) are used as the
prediction target. With these amendments, the proposed clas-
sification system could substitute human assessors at the
farm, with similar or improved outcomes.

V. CONCLUSION
In this paper, we presented a procedure for automatic scoring
of pig muscularity using a Kinect camera. The mean abso-
lute error we achieved was judged by end users and field
experts to be adequate for replacing the human assessors.
Ultimately, an automatic system for muscularity scoring that
reduces human-animal interaction at the farm could lead to
higher welfare for the animals.
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