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ABSTRACT Knowledge graph (KG) is playing an important role in many artificial intelligence applications.
Representation learning of KGs aims to project both entities and relations into a continuous low-dimensional
space. The representation learning technique based on embedding has been used to implement the KG
completion, which aims to predict potential triples (head, relation, and tail) in KG. Most current methods
concentrate on learning representations based on triple information while ignoring integrating the textual
knowledge and network topology of KG. This leads to ambiguous completions. To address this problem and
implement more accurate KG completion, we propose a new representation learning model, TDN model,
which integratedly embeds the information of triples, text descriptions, and network structure of KG in a
low-dimensional vector space. The framework of TDN is defined and the methodology of implementing
TDN embedding is explored. To verify the effectiveness of the proposed model, we evaluate TDN via the
experiments of link prediction on the real-world datasets. The experimental results confirm the above claims
and show that TDN-based embedding significantly outperforms other baselines.

INDEX TERMS Artificial intelligence, embedding, knowledge graph, knowledge representation.

I. INTRODUCTION
Knowledge graph (KG) is playing an important role in many
artificial intelligence (AI) applications such as intelligent
question answering, web/mobile search, and semantic anal-
ysis, etc [1], [2]. KG is a semantic network consisting of a
large number of triple facts like (head, relation, tail), where
head and tail correspond the entities (nodes) in the net-
work, and relation corresponds to the edge between head
and tail. An important task of KG is completion (KG com-
pletion) which aims at predicting potential facts under the
supervision of existing triples. Knowledge graph completion
is similar to link prediction in social network analysis, but
more challenging. Since KG includes varieties of symbolic
and logical information, the link prediction needs to pre-
dict not only the existence of nodes but also the specific
type and semantics of nodes. For this reason, traditional
approach of link prediction is not capable for KG completion.
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To address this issue, the knowledge representation learn-
ing models based on translation (Trans), called KG embed-
dings [3]–[6] have been proposed, which attempt to embed
components of a KG including entities and relations into
continuous vector spaces [7] to quantitatively implement the
accurate KG completion in the large-scale graphs [8]. In this
paper, we call this mechanism vector embedding. Current
knowledge representation learning models focus only on the
triple-based information [3], while ignoring the integration of
the textual knowledge based on entity descriptions and the
topology information of network. This leads to ambiguous
KG completions. Primarily, most of the knowledge graphs
have some specific description texts for entities [9], and
these descriptions contain important context information. The
absence of context information cannot fine-grainedly analyze
the relations in graphs for accurate reasoning, as the example
shown in Figure 1(a). Furthermore, for a KG, all triples jointly
compose a structured network with specific topology charac-
teristics. In other words, any triple is not isolated but affected
by others, and thus every entity has its own contribution to the
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FIGURE 1. The influence of entity descriptions and topology information
on KG completion. (a) There are two head entities named ‘‘Victoria’’ with
the same relation. According to the traditional Trans model, they would
correspond to the same tail entity. However, with their respective text
descriptions, they can be matched to different tail entities ‘‘Canada’’ and
‘‘Seychelles’’, respectively. (b) Three different tail entities (t1, t2, t3) are
matched to a head entity (h) by the same relation (r ). Note that there are
other different triples besides those triples tied with r , and every triple
(h, r , t) in the KG has the contribution to the network topology rather
than only brings its own structures. This should have helped to
implement KG completion globally and precisely but has been ignored by
the traditional triple-based models.

network topology. But current models ignore this information
when implementing embedding, as shown in Figure 1(b). As a
result, the embedding with some information-loss will affect
the accuracy of KG completion.

To address these problems, this study proposes a new repre-
sentation learning model, called TDN model, to comprehen-
sively handle the triple information (T), entity descriptions
(D), and network structure (N). These features are integrat-
edly embedded in a unified vector space, in which KG can
be computed and analyzed with less ambiguity. The main
contributions of this study are:
• An integrated representation model of KG is proposed,
by which the triple information, entity descriptions, and
network structure are considered jointly, and the KG can
be represented with less ambiguity.

• By expressing the entities and relations with less ambi-
guity, KG completion can be implemented more accu-
rately.

The reminder of this paper is organized as follows. We first
introduce some related work and then profile the architecture
of the TDN model. Next, the methodology for implement-
ing TDN is proposed, and the trained model is presented.
Furthermore, to evaluate the effectiveness of TDN, the KG
completion experiments are conducted. Finally, our work is
concluded and the future work is posed.

II. RELATED WORK
Current representation learning of KG can be broadly clas-
sified into two categories: the triple-based Trans embed-
ding and the extra-information-based Trans embedding. The
former utilizes the symbolic representation of triples only
and the latter takes additional information (text informa-
tion, image information, etc.) into representing the entities.
As a classical Trans embedding based on triple infor-
mation, TransE [3] embeds the entities and relations into
a low-dimensional vector space by a translation process,
by which every triple (h, r, t) is learned by the score function
defined as

E(h, r, t) = ‖h+ r− t‖, (1)

where h, r, t is called the embedding vectors of h, r, t in this
paper, respectively. TransEmodel is very simple and intuitive.
However, because of embedding the entities and relations into
the same vector space, its ability to handle the multi-relation
(such as 1-to-N, N-to-1 and N-to-N relations) triples is
limited [4], [5]. To overcome this drawback, TransH [4] has
been proposed, which implements the embedding by a hyper-
plane of specific relation. TransH projects the head and
tail onto the hyperplane and then completes the translation
between entities. This model can make the same entities play
different roles in different relation hyperplanes and imple-
ment more fine-grained translations for multi-relation cases.
Furthermore, TransR [5] proposes a transformation matrix to
separate entity space from relational space and utilizes the
matrix to map entity pairs onto different relational spaces.
The score function of TransR is defined as

E(h, r, t) = ‖hMr + r− tMr‖. (2)

By the transformation matrix Mr, TransR can provide more
diversified translations. Besides, as an extension of TransR,
TransD [6] uses different transformation matrices for head
and tail which have the same matrix in TransR, to imple-
ment more dynamic embedding in the KGs with lots of
multi-relation triples.

Most existing triple-based Trans models only consider
the triple information but ignore the semantic information
in the text description [9].To make up for this shortcom-
ing, some extra-information-based Trans models have been
explored [10]–[12] to include more semantic information
into the vectors of entities. Utilizing the text descriptions
in Freebase [13], Description-Embedied Knowledge Repre-
sentation Learning (DKRL) [9] encodes each entity descrip-
tion into a text-based vector by using the encoder based on
Convolutional Neural Network (CNN), and then concatenates
this vector and the triple-based embedding vector obtained
by TransE to be the final entity representation vector. The
experiments indicate that DKRL can significantly improve
the performance of KG completion. Besides, a model based
on the Bi-LSTM encoder, A-LSTM [14], has been proposed
to embed the entity descriptions; IKRL [15] takes the image
information into vector embedding to promote the accuracy
on KG completion. Recently, there have also been some
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FIGURE 2. The framework of TDN model. For every entity (head or tail) in a KG, its embedding vector is composed of
three sub-vectors: Triple, text and network vectors. Triple vector may still be obtained from the traditional Trans models
such as TransE. Text vector, mirroring the semantic description of entity, is encoded with the text characteristics by the
DKRL model. Network vector, corresponding to the topology information related with the entity, is obtained from
network embedding.

approaches [16], [17] which utilize the structure information
of entities to improve the embedding. But they usually only
focus on the local structure information around an entity but
do not handle the influences of different locations on each
other, and the text descriptions are ignored.

III. TDN-BASED REPRESENTATION FRAMEWORK
TDN provides a fusion framework which also takes the text
description and structure information of graph in the embed-
ding. According to TDN, the entity embedding is defined as
the following

e = es ⊕ ed ⊕ eg, (3)

where es, ed , eg, are called triple, text, and network vector,
respectively, corresponding to the embeddings of triple infor-
mation, text description and network structure related with an
entity, respectively; ⊕ is the concatenation operator.
In this paper, the embedding strictly following formula 3

is called complete TDN embedding. Besides, the TDNmodel
can have some variants. When ed = 0 or eg = 0, e = es ⊕ eg
and e = es ⊕ ed are called the incomplete TDN-based
embedding.

Figure. 2 shows the architecture of TDN, in which
es, ed , eg need to be computed as follows. Firstly, we employ
the classical Trans models such as TransE [3] and TransR
[5], which regard every triple as a translation from head to
tail by relation in form of real-value vectors, to get triple vec-
tor, es. Secondly, the text descriptions of entity are taken into
consideration. We utilize DKRL model [9], which explores
continuous bag-of-words (CBOW) [18] and convolutional
neural network (CNN) [19] as the text encoders. By using
this approach, the semantic information of entity description
is represented as a vector, ed . Thirdly, the network struc-
ture information of KG can be obtained by the methods of
network/graph embedding [20], by which each vertex in a
graph (network) is represented as a low-dimensional vector,
eg, and the topology information of network is preserved.

Finally, all these representation vectors of KG are integrated
into a unified extended vector space in which KG is computed
and analyzed with less ambiguity.

IV. METHODOLOGY
As discussed above, the TDNmodel includes the embeddings
of triple, text and network vectors. Since we directly employ
the classical Trans models to implement the embedding of
triple vectors, we only introduce in detail the embeddings of
text vectors and network vectors in this section.

A. EMBEDDING OF TEXT VECTORS
In this section, we separately use two models to implement
the embedding of text vectors.

The first used method to represent the word embedding
is continuous bag-of-words (CBOW) [18]. According to this
method, the entity descriptions text is denoted as a word
sequence xi:n = x1, x2, . . . , xn, where xi is the ith word
in the description text. We use the average of all the word
embedding vectors in the sequence as the entity description
embedding:

ed =
1
n

n∑
i=1

xi. (4)

CBOWmodel can capture the key semantic information from
the context [21]. Moreover, we utilize the CNN-based word
embedding to build text vectors. Figure 3 shows this process.
Using the same pre-processing and setting as that of DKRL,
the word embedding of text descriptions is taken as the
input. Two convolution layers are used in this process, and
their outputs are pooled by Max-pooling and Mean-pooling,
respectively. Finally, the model can produce a fixed-length
representation vector for each entity without losing much
information.

B. EMBEDDING OF NETWORK VECTORS
The traditional Trans model only focuses on the local
information of triples, ignoring the topology information of
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FIGURE 3. The process of CNN-based embedding.

different locations. In this study, we consider that the topol-
ogy characteristics between different nodes in KG may affect
each other and can provide more information for entity rep-
resentation. Therefore, we use network embedding [20], [22]
to handle this appearance and effect.

Network embedding is used to project the nodes (entities)
in a graph to a low-dimensional vector space, and use the vec-
tors tomirror the topology information of graph. According to
this idea, the triples in KG can be regarded as an adjacency list
denoting a network, in which the nodes and edges correspond
to the entities and relations, respectively. Then, this network
generated is learned by using network embedding, and the
nodes are projected into the low-dimensional vector space.
The foundation behind this process is that the nodes related
to the similar topology information in the network should
correspond to the vectors close to each other in the vector
space.

DeepWalk [20], a classical network embedding model,
is adopted in this study. DeepWalk generalizes recent
advancements in language modeling and unsupervised fea-
ture learning from sequences of words to graphs. It uses local
information obtained from truncated random walks to learn
latent representations by treating walks as the equivalent of
sentences. Figure 4 shows the learning process of DeepWalk.

By introducing a mapping function 8 : {v} → R|V |×d ,
where V and d denote the set of nodes and the dimension
of vectors, respectively, DeepWalk implements the vector
embedding of an arbitrary node v. Estimating the likeli-
hood of a specific sequence of words appearing in a corpus,
the problem is to estimate the likelihood:

Pr(vi|(8(v1),8(v2), . . . , 8(vi−1))). (5)

However, as the walk length grows, it is hard to directly
compute this conditional probability. To simplify the compu-
tation, DeepWalk uses one word to predict the context instead
of using the context to predict a missing word. In terms
of vertex representation modeling, this yields the following
optimization problem

argmin
8
− logPr({vi−w, . . . , vi+w} \ vi|8(vi)), (6)

where 8(vi) corresponds to the obtained network vector of
node vi.

V. TRAINING MODEL
A. NOTATIONS
Given a KG, let T = {(h, r, t)|h, t ∈ E, r ∈ R} be the
set of triples, where E is the set of entities and R is the set
of relations. E and R can compose a graph G = (E,R),
and they correspond to the sets of nodes and edges of G,
respectively. Correspondingly, the TDN model can be stated
as a parameter set θ = {X,E,R,N} where E, R stand for the
triple vector embeddings of E and R, respectively; X stands
for the text vector embedding of E ; N stands for the network
vector embedding of graph G.

B. TRAINING
According to formula (3), we combine triple, text and net-
work vector as the final entity representation of training
model. The final representation can be got by minimizing the
following margin-based score function [3], [23] as objective
for training:

£ =
∑

(h,r,t)∈T

∑
(ĥ,r̂,t̂)∈T̂

max(γ + f (h, r, t)

− f (ĥ, r̂, t̂), 0), (7)

where γ > 0 is a hyper-parameter mirroring the margin
between correct triples and incorrect triples; T is the set of
correct triples like (h, r, t); T̂ is the set of incorrect (cor-
rupted) triples like (ĥ, r̂, t̂); f (·) is the score function [3]
defined as

f (h, r, t) = ‖h+ r− t‖, (8)

where h, r, t are the embedding vectors of h, r, t , respec-
tively. The set of corrupted triples, T̂ , is constructed according
to

T̂ = {(ĥ, r, t)|ĥ ∈ E} ∪ {(h, r, t̂)|t̂ ∈ E}

∪{(h, r̂, t)|r̂ ∈ R}, (9)

which is composed of training triples with either the head
or tail replaced by a random entity (but not both at the
same time). Loss function (7) favors lower score values for
training triplets than for corrupted triples, and is thus a natural
implementation of the intended criterion. Note that for a
given entity, its embedding vector is the same when the entity
appears as the head or as the tail of a triplet.

C. PROCESS
The training of TDN first needs to be initialized from three
aspects. For the embedding of triple vectors, E and R can be
initialized by the translation-based methods such as TransE.
For the text vectors, X can be initialized by the CBOW or
CNN encoder that embed the entity textual descriptions. For
the network vectors, N can be obtained from the network
embedding model taking the global network of KG as input.
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FIGURE 4. The learning process of network embedding (DeepWalk).
DeepWalk implements network embedding by random walks. These walks
can be regarded as some special language phrases. Starting from one node
in the graph, the random walk method is used to obtain the sequence
representation of node, which can be regarded as a sentence in the language
model. Then the skip-gram model is trained to obtain the low-dimensional
vector representation of each node.

TABLE 1. Statistics of the dataset.

Then, all these initial vectors compose the initial TDN vectors
according to formula (3).

After the initialization, the optimization is enforced by a
standard back propagation using stochastic gradient descent
(SGD). The back propagation will be blocked when meeting
all-zero paddings or the current feature value was not consid-
ered in pooling during forward propagation. Finally, the TDN
embeddings can be taken by minimizing the score function
stated in formula (7).

VI. EXPERIMENTS
A. DATASET
In this study, we employ a dataset extracted from a real-word
large-scale KG Freebase [13], called FB15K [3], to be our
experimental dataset, in which the entity descriptions are
publicly available in DKRL [9]. In the dataset, the average
number of words in descriptions is 69 and the longest descrip-
tion contains 343 words. The training set has 472,860 triples
and 1,341 relations; valid set has 48,991 triples, and test set
has 57,803 triples.

Table 1 lists the statistics of the dataset.

B. TESTED MODELS AND PARAMETER SETTINGS
We test four groups of complete TDN-based embedding and
six groups of incomplete TDN-based variants, which are
explained as follows.
• TDNWE: the complete TDN embedding integrated
with TransE triple vector, CBOW-based text vector and
DeepWalk-based network vector;

• TDNCE: the complete model integrated with TransE
triple vector, CNN-based text vector and
DeepWalk-based network vector;

• TDNW(TE+CBOW): the model integrated with TransE
triple vector and CBOW-based text vector, but ignoring
network vector;

• TDNC(TE+CNN): the model integrated with TransE
triple vector and CNN-based text vector, but ignoring
network vector;

• TDN(TE+NET): the model integrated with TransE
triple vector and DeepWalk-based network vector, but
ignoring text vector;

• TDNWR: the complete model integrated with TransR
triple vector, CBOW-based text vector and
DeepWalk-based network vector;

• TDNCR: the complete model integrated with TransR
triple vector, CNN-based text vector and
DeepWalk-based network vector.

• TDNW(TR+CBOW): themodel integratedwith TransR
triple vector and CBOW-based text vector, but ignoring
network vector;

• TDNC(TR+CNN): the model integrated with TransR
triple vector and CNN-based text vector, but ignoring
network vector;

• TDN(TR+NET): the model integrated with TransR
triple vector and DeepWalk-based network vector, but
ignoring text vector.

We also implement two groups of current models as the
baseline for comparison. The first group includes two clas-
sical Trans-based models: TransE and TransR. The second
group includes DKRL+TransE [9] and A-LSTM [14], which
take entity descriptions text as additional supplementary
information for embedding.

We train those models with the triple vector dimension
ntr in {50, 100, 200, 300}, the text vector dimension ntx
in {50, 100, 200} and the network vector dimension nnt in
{50, 100, 200}. Following most Trans-based models, we use
learning rate λ in {0.0005, 0.001, 0.002}, and margin γ in
{1.0, 2.0}. The parameter settings of CNN-based description
Encoder are consistent with DKRL’s. In our experiments,
The optimal configurations of TDN are: λ = 0.001, γ =
1.0, ntr = 100, ntx = 100, nnt = 100. In other words,
the optimal dimension of the complete TDN embedding (inte-
grated with triple, text and network vectors) is n = ntr +
ntx + nnt = 300; the optimal dimension of the incomplete
TDN-based variant embedding is n = ntr + ntx = 200 or
n = ntr + nnt = 200.

C. LINK PREDICTION
Link prediction is a sub-task of KG completion to complete
a triplet (h, r, t) with h or t missing based on minimizing the
score function. In testing phase, for each test triple (h, r, t),
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TABLE 2. Results on entity prediction.

we replace the entity by all entities in the KG, and rank these
entities in descending order of similarity scores calculated
by score function f defined in formula (8). Following the
Trans-based models, two evaluation protocols proposed by
Trans models are used as follows to evaluate the experimental
results.

1) MeanRank: The average ranking of the correct entities
or relationships in the triples.

2) Hits@10: The proportion of correct entities in top-
10 ranked entities in the triples.

The lower MeanRank or higher Hits@10 corresponds to a
better prediction. Besides, note that corrupted triple may
also exist in KGs, which should also be considered as cor-
rect. This may lead to an evaluation that may underestimate
those corrupted but correct triples. Therefore, we may filter
out these corrupted triples before ranking. Correspondingly,
we name the unfiltered setting as ‘‘Raw’’ and the filtered one
as ‘‘Filter’’.

D. RESULTS AND ANALYSIS
The evaluation results are shown in Table 2, where the top two
optimal results in every column are displayed in bold num-
bers. From the results we observe that: (1) The TDN-based
embedding models significantly outperform other base-
line models including TransE, TransR, DKRL+TransE and
A-LSTM in both MeanRank and Hits@10, and TDNCR is
the optimal model on the whole. This indicates that both
text description information and network structure informa-
tion can remarkably improve the accuracy of link prediction.
(2) Among all the tested TDN-based embedding models,
the complete TDN embedding excels over all the other mod-
els including the incomplete TDN-based embedding on the
whole. This implies that not only text description information
but also network structure information should be paid enough
attention for KG completion. (3) The incomplete TDN-based
embedding with network vector is the suboptimal on the
whole, and which outperforms other models except for the
complete TDN embedding. Especially, it can be seen that
the Hits@10 of TDN(TE+NET) (79.2) is even superior to

the ones of complete TDN embedding. This suggests that
network structure information should play a more important
role in KG completion than text description information.

VII. CONCLUSION
In this paper, we propose a TDN model for the represen-
tation learning of KG with integrated information, includ-
ing triple information (T), text descriptions (D) and net-
work structure (N). By integratedly embedding those factors
in a low-dimensional vector space, TDN aims to improve
the accuracy of KG completion. We give the definition of
TDN-based embedding framework and explore the method-
ology about implementing text description embedding and
network structure embedding. In experiments, we evaluate
the TDN-based embedding on link prediction, and compare
TDN with current models. Experimental results show that
TDN model achieves better performances than other base-
lines on the link-prediction-based KG completion.

Amethod of network embedding is used to handle network
structure information of KGs. By experiments, it suggests
that network structure should affect link prediction more than
other factors. As network embedding can be implemented by
many different methods [24], [25], we need to explore more
kinds of network embeddingmodels to verify this hypothesis.
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