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ABSTRACT To overcome the IMM algorithm is easy divergence and low tracking accuracy when dealing
with complex maneuvering situations, this paper proposes an improved interactive multiple model strong
tracking square room cubature Kalman filter (IIMM-STSRCKF) algorithm under the idea of real-time
dynamic adjustment of gain matrix and transition probability matrix. The algorithm has been improved
in two aspects: on the one hand, the algorithm uses the idea of a strong tracking filter to deduce a new
method for time-varying fading factor and introduce it into the square root of the state error covariance
matrix of the SRCKF, which improves the tracking accuracy for strong maneuver; on the other hand,
the probability difference between two consecutive time points in the IMM submodel is used to adjust
the Markov probability transfer matrix to adaptively improve the switching speed of the submodel and the
rationality of the allocation. By comparing with IMM-CKEF algorithm by maneuvering target tracking case
and results show that the IMM-STSRCKEF algorithm has better tracking performance in nonmaneuvering,

weak maneuvering, and strong maneuvering cases.

INDEX TERMS Complex maneuvering, IMM, SRCKEF, strong tracking filter.

I. INTRODUCTION

Maneuvering target tracking is a typical nonlinear filtering
process and has become a major area of interest in the field of
state estimation and information fusion, having been widely
used in radar tracking, navigation control, guidance and other
fields [1]. Difficulties in this field primarily arise from two
aspects: the design of the tracking model and the selection of
a nonlinear filter [2].

The tracking model problem primarily studies whether the
state model of the tracking system conforms to the real-time
motion model of the target. Due to the complexity and ran-
domness of target motion, it is difficult to completely describe
different maneuvering situations in a single model, which
leads to a mismatch between the state model and the actual
movement of the target. Therefore, the tracking effect is
unsatisfactory. The interactive multiple model IMM) [3], [5]
can solve this problem; it maps the target motion model into a
number of known model sets, with each model filter working
in parallel. A Markov probability transfer matrix is used to
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obtain interactions and switching among different submodels.
Finally, the algorithm performs data fusion on the target state
filter estimation obtained by each model filter to obtain the
system parameter estimation [6], [7].

[8] studies the stability of IMM algorithm from the math-
ematical theorem, and proposes the exponential stability for
a class of Markov jump linear systems. It proves that IMM
algorithm has good performance in various low-cost com-
puting application. IMM filter based on steady-state filter is
proposed, and filter uses adaptive algorithm to determine the
target revisit time, which improves the prediction accuracy
and reduces the computational load [3]. [9] constructs a posi-
tion estimation algorithm by using the basic IMM of a jump
Markov system with two independent switching parameters,
and prove the effectiveness of the IMM algorithm in the field
of target tracking.

The Markov transition probability matrix determines the
interaction and switching between models; thus, it strongly
affects the tracking performance of the IMM algorithm [10].
In the standard IMM algorithm, the Markov probability
transfer matrix is artificially set to a fixed diagonally dom-
inant matrix. However, due to the strong randomness and
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high dynamics of maneuvering targets, as well as the
uncertainty of prior knowledge, the fixed diagonally dom-
inant matrix often leads to a lag in the algorithm model
switching, which leads to the deterioration of the track-
ing effect [11]. Therefore, a method for adaptively adjust-
ing the Markov transition probability matrix online is a key
issue for improving the tracking performance of the IMM
algorithm [12].

Filter selection is another key factor in the IMM algorithm.
The performance of the filter directly affects the tracking
effect of the IMM algorithm. The Kalman filter (KF) is a clas-
sical linear filtering method [13], [14] that has been applied
to signal processing and target tracking. Even though the
measurement model of the maneuvering target tracking tends
to have strong nonlinearity and its state space has obvious
nonlinearity, the KF can only deal with a linear time-invariant
system; thus, it is necessary to select an appropriate nonlinear
filter. The extended Kalman filter (EKF) [15], [16] solves the
nonlinear filtering problem by locally linearizing the nonlin-
ear problem through a Taylor expansion. The approximate
accuracy of the EKF for a nonlinear function is first order,
and the Jacobian matrix must be calculated, which leads
to unsatisfactory filtering accuracy. Juiler et al. proposed a
deterministic sampling approximate Gaussian filtering algo-
rithm based on an unscented transform (UT)—unscented KF
(UKF) algorithm [17], which does not require the Jacobian
matrix to be solved, has no derivative requirement for the
state transfer function or the measurement function of non-
linear systems, and whose accuracy can reach at least the
third order. However, when dealing with high-dimensional
systems, the algorithm must select reasonable parameters to
achieve a higher precision.

Arasaratnam I et al. proposed the cubature KF (CKF)
algorithm [18], which uses spherical-radial information to
obtain the cubature criterion and approximates the probability
integral via Bayesian filtering. The CKF algorithm further
optimizes the sampling point selection method and weight
distribution strategy in the UKF algorithm and solves the
problem in which the filtering effect of the UKF algorithm
is unsatisfied in high-dimensional systems. Therefore, the
nonlinear approximation of the CKF algorithm is better than
that of the UKF.

CKF not only overcomes the application limitations of
EKF and UKF in strong nonlinear system, but also has
higher filtering accuracy than central difference Kalman fil-
ter (CDCKF) and particle filtering [19], further, the error
covariance non-positive and asymmetry problems caused
by rounding errors and other factors are further solved.
Reference [20] proposes the apply the matrix QR decompo-
sition to the update error covariance matrix, thus forming
the SRCKF algorithm. SRCKF was widely used in naviga-
tion and positioning [21], target tracking [22], robotics [23],
aerospace positioning [24] and other fields.

Chen et al. [9], [25] proposed combining the IMM with the
CKEF to design an algorithm for maneuvering target tracking
and demonstrated that the IMM-CKF has a better tracking
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effect than the IMM-UKEF algorithm, but the CKF algorithm
can appear asymmetric or have nonpositive values in the
covariance matrix in the process of iteration, which causes the
estimation accuracy to decline and interrupts the iteration pro-
cess. CKF is limited by the influence of the third-order vol-
ume rule, and the estimation accuracy is still limited in some
filtering problems. In order to improve the filter precision
of CKF, Swati and Shovan [26] are based on the spherical-
phase diameter rule and the Gauss-Laguerre quadrature rule
(CQKF), and analyze the relationship between CQKF and
CKEF. It is pointed out that CKF is a special form of CQKF
in the selection of first-order Gauss-Laguerre integration
points [27]. Jia and Xin [28], [31] from Columbia University
—Missouri State University analyzed the volume rule that
can obtain the accuracy of arbitrary order estimation, and
proposed a high-order Cuban Kalman Filter (HCKF) method
with more volume points. Meanwhile, They focus on the
fifth-order volume Kalman filter and show the filter accuracy
is similar to the Gaussian Hermititian filter (GHQF) [32].
Although the calculation is much smaller that GHQF, but it
is much larger that CKF, so it is not conducive to tracking
high-speed target [28].

The strong tracking filter is an improved extended EKF,
which can significantly improve the speed of convergence
and tracking when large and sudden maneuver changes occur
while the measurement error is unknown. STF also reduces
sensitivity to initial conditions [19], [33].To improve the fil-
tering effect of the CKF, Arasaratban and Haykin [18] further
proposed a square root CKF (SRCKF) to ensure the advan-
tages of a positive covariance matrix. However, the CKF and
SRCKEF both have poor robustness, precision and tracking
effects when the target state mutation or the model matching
is not accurate.

Aimed at the above problems, this paper proposes an
Improved IMM strong tracking SRCKF (IIMM-STSRCKF)
maneuvering target tracking algorithm [19], [20] based on
the IMM algorithm and a strong tracking filter (STF). The
algorithm deduces a new equivalent method for evaluat-
ing the time-varying fading factor, which is introduced into
the square root of the state prediction error covariance
matrix. This approach improves the tracking ability of the
SRCKEF algorithm for a maneuvering target with state muta-
tion. In addition, the Markov probability transfer matrix
is adjusted in real time using posterior information on the
difference in conditional probability between two consecu-
tive time points in the model, which effectively improves
the filtering accuracy. Simulation results show that the pro-
posed IIMM-STSRCKEF algorithm has a superior tracking
performance.

The remainder of this paper is organized as follows.
Section 2 and Section3 provides a brief overview of the
principles and structure of the SRCKF and IMM-SRCKF
respectively. Section 4 details the working methodology of
the Adaptive STSRCKF algorithm. Section 5 introduces the
Modified Markov probability matrix of the IMM algorithm
in detail. Section 6 describes the simulation experiments.
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Section 7 summarizes the paper and describes directions for
future research.

Il. SRCKF ALGORITHM
The SRCFK algorithm is based on the idea of the square
root in the KF. QR decomposition is introduced in the CKF
algorithm, and the square root of the covariance matrix is
used instead of the covariance matrix to recursively update the
algorithm; hence, this method reduces the complexity of the
original operation and improves the filter efficiency. Mean-
while, the numerical instability caused by rounding errors is
avoided, and the filter accuracy and stability are improved.
The QR decomposition process in the SRCKF algorithm is
as follows:

The error covariance matrix is P = AAT, and the QR
decomposition is introduced. Then AT = QR, where Q is
the orthogonal matrix, and R is the upper triangular matrix.

P =AAT = (QR)"QR =RTQ"QR =R"R =SST (1)

where S = Tria [A] is the square root of the error covariance,
which can be obtained by Cholesky decomposition.

Sg and Sg are defined as the square root of the pro-
cess noise and measurement noise variance, respectively. For
a constant speed tracking model, the specific steps of the
SRCKEF algorithm are summarized as follows:

Step 1: Initialization

The state initial mean is X 0, the error covariance is P, and
Py is decomposed by Cholesky decomposition to obtain the
following the square root:

So = chol(Po)" )
Step 2: Time update
Evaluate the cubature points (i = 1,2, --- , m)
Xiko1=Si1&+ X 3)

Evaluate the propagated cubature points
X1 = Prk—1Xi k-1 4)

Estimate the predicted state
m

Xijk—1 = ZwiX}k,k‘k_l (5)
i=1

Calculate the square root of the state prediction error
covariance

Stik—1 = Tria ([ X{x_1 Sok-1]) (6)
where
Q1 = S0.k-180 k-1 )
Xklk—1 = ﬁ I:XT,klkfl — X -1 X3 sy

—f(k|k—1~-~an,k|k,1 —ffkuc—l] (8
Tria (-) indicates the QR decomposition of the matrix.

VOLUME 7, 2019

Step 3: Measurement update

Evaluate the cubature points (i = 1,2, --- , m)
X, k-1 = Stpe—1€; + Xpp1 &)
Evaluate the propagated cubature points
Zijk-1=h (Xixk-1) (10)
Estimate the measurements
m
Zijr =Y oiZi kg1 (In
i=1
Evaluate the state error variance matrix square root
Szz.kik—1 = Tria ([ Neg—1 Srx ]) (12)
where
Ri = SriSkx (13)

1 ~
[Zl,k|k—l — Zijk—122 kjk—1

Ngik—1 = ﬁ
_Zk|k—1 L k-1 — Zk|k—1] (14)

Calculate the cross covariance matrix

Pxz k-1 = Xklk—lﬂl{\k—l (15)

Determine the Kalman gain
K= (PXZ,k\k—l/ng,k‘k_J SzZ klk—1 (16)
Update the state value
X = Xy + Ky (Zk —Zklk—l) (17)
Update the state covariance square root

Sk = Tria ([ Xek—1 — Kigk—1 KiSrx ]) (18)

Ill. IMM-SRCKF ALGORITHM

The IMM algorithm is a tracking algorithm based on the gen-
eralized pseudo-Bayesian algorithm, using the Markov prob-
ability matrix to accurately switch from one model to another.
This algorithm was designed as a model set that contains a
finite number of different types of motion submodels, each
of which has a corresponding filter. Each filter operates in
parallel, and the models are switched between one another by
Markov chains. During the tracking process, the system will
judge the matching degree between the model and the current
target maneuver according to the probability of each model
being assigned. The matching degree with the actual target
maneuver is higher when the model probability is greater, and
vice versa. Furthermore, the interactive operation between
models is performed according to this principle, and finally,
the outputted results of the estimated values of all of the
submodels are fused. Because the algorithm does not need to
detect the target maneuver and has a certain self-adjustment,
it has a better tracking effect in maneuvering target tracking.
Fig. 1 presents a schematic diagram of the IMM algorithm for
the multimodel.
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FIGURE 1. IMM-SRCKF algorithm flow chart.

The steps of the IMM algorithm are summarized as fol-
lows:

Step 1 Input interaction

Let us consider N tracking models. When the motion match
modelis M, ,i_l attime k—1 and Mi at time k, the model mixed

probability is ¢}/’ |, which is defined as follows:
M;C/Jl = P(Mli—l/Mi’Zk—O

1 . , ,
= =P (MM Zior ) P (M /i)

1

= SPijti-1, Li=1-N (19)

where p;; represents the Markov transition probability of the
model fromitok attime k—1, “2—1 represents the probability
of model i as the matching model at time k — 1, and disa
normalized constant as follows:

N
d=>"pyjui_y. j=1-N (20)
i=1
Step 2 Mode interaction

. . . oi .
Using the initial estimate X, _; of the model i to calculate
the initial condition of the model j

A 0f .
X1 =E (Xk—llMi,qu)

ZXk il hj=1,N 21)

- i  0f
k | = Z“l/j [P;c—l+<Xk—1_Xk—1)
50i \T ..
(Xk =X)L =N @)

Step 3 Model filter

x t—1 and P _| obtained in step 2 are used as the initial
inputs and are comblned with the specific measurement Z
to filter j = 1, --- N parallel models. The estimates of the
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corresponding state and error covariance matrix are )A(Jk and

P;, respectively. The commonly used filter algorithms are

EKF, UKEF, CKEF, etc.; here, the SRCKF algorithm is used.
Step 4 Update model probability

a) Calculate the likelihood of the jth model
N, = P(2/M. 27" ) =N [y 0.8]

S — [_% (y]k>T (Sf,;)f1 (y’,;)} (23)

A

where the residual covariance matrix Si =P k-1

b) Calculate the condition probability
1, = (M’ /Zk) Af & (24)

N .
where ¢ = Y A} is a naturalization constant.

j=1
Step 5 Output interaction

N .
X, = foku’k (25)
j=1
N
Pe=S [P+ (% -%
k= Zﬂk [Aan X — Xk
j=1

x()?i—fk)T}, j=1.-N (26

IV. ADAPTIVE STSRCKF ALGORITHM

The SRCKEF algorithm has a simple structure and high track-
ing precision, but its ability to adapt to sudden changes in
the maneuvering target state is poor. This paper combines
the algorithm with the STF and proposes the STSRCKF
algorithm. The main idea of the algorithm is to introduce a
fading factor into the square root of the state prediction error
variance matrix of the SRCKF algorithm, dynamically adjust
the gain matrix and compel the output residual sequences to
be orthogonal to one another, to extract as much useful infor-
mation as possible from the residual, and further improve the
adaptive tracking ability of the algorithm.

To overcome the poor stability of the EKF algorithm for an
uncertain model, the UKF combined with the STF algorithm
in [21] is used. It is noted that the filter has strong tracking
characteristics; thus, the following two conditions must be
satisfied:

1. ET(X]( —)A(k> (Xk —f(k>Tj| = min
2.E(yrayi)=0 k=0,1,2...,j=12,...

where yjy; represents the output residual. case 1 is the index
for which the filter achieves the optimal estimation perfor-
mance, which is the optimal estimate with the minimum
mean square error. Orthogonality is required by case 2, which
means that the output residual sequences at different times
must be kept orthogonal [22].
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The principle of orthogonality has been described in detail.
When a system model is in a stable state, the output residual
should be a white Gaussian noise sequence that is statistically
independent under optimal filtering.

G:E(ykﬂy,{)zo, k=0,1,2...,j=1,2,... 27
where
Gox =E (nnl) = HePow—H] + R (28)

Q will increase when the state of the system changes suddenly
as follows:

Goi > HkPk|k—1H,Z + Ry (29)

The strong tracking filter solves the above formula, which
aims to increase the error covariance prediction matrix, forc-
ing the residual sequence of the output to be orthogonal.
Hence, the left and right sides of the inequality are equal, thus
suppressing the filter divergence.

Gy =Hy (kkaPmk—lF;{ +Qk—1>H]Z +Rr  (30)

A time-varying fading factor Ar4; is introduced in the
equation, and Py is multiplied by Ax;i to ensure the
optimality of the filter.

In previous engineering applications, the STF primarily
uses a time-varying suboptimal fading factor to reduce the
influence of the previous time point on the current filter
and to make the current filter value more time-sensitive. The
selection method is generally as follows:

1 ir [N

= Cr, ck > o= 7 [Ni] 31)
1, cr <1 tr My

Ni = Gy — BRy —HQ;_H| (32)

M; = H, 9P ®"H (33)

where tr [-] represents the operand of the matrix trace and
B > 1 is a fading factor, which is intended to make the state
estimation smoother. The value of the fading factor can be
selected empirically. DH Zhou et al. studied the specific value
of the filter and proved that when the measurement dimension
is more than 5, a 8 value of 3 can ensure the optimal filtering
effect [23]. H} is a linearized matrix of the measurement
equation, which can be obtained by solving the Jacobian
matrix, and Gy is the covariance of the actual output residual
sequence, which can be obtained by the following approxi-
mation.

yivi, k=1
pGr—1 + v ¥} ke 1 (34)
1+p ’

where y 1 is the theoretical output residual sequence; accord-
ing to [24], 0 < p < 1 is the forgetting factor and is usually
given as p = 0.95.

According to the above description, the traditional method
for obtaining the fading factor is based on the EKF algo-
rithm; thus, the complicated Jacobian matrix H needs to be

Gy =
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calculated. The SRCKF algorithm is a quadrature Gaussian
filter algorithm, and the measurement matrix H is not deter-
mined in the calculation process; hence, it cannot be directly
obtained by the algorithm, and the method of the fading factor
cannot be directly applied to the SRCKF. Therefore, to avoid
solving the Jacobian matrix, a new method for finding the
fading factor under the SRCKEF algorithm is derived.

With P,(f‘)kf] s Pi? Klk—1° and P)(Clz) klk—1 85 the state prediction
covariance matrix, the output prediction covariance matrix
and the cross covariance matrix before the time-varying fad-
ing factor is introduced, respectively, so obtain

Pl(cl\)k—l =E |:(Xk —f(kuc—l) (Xk _Xklk—l)T] (35)

A N T
ZZ klk—1 = E |:(Zk _Zk|k—1) (Zk —Zk|k_1) }

. . T
= HE [(Xk —Xk\kq) (Xk _Xk\k71> }H;f

!
= HP})_\H] (36)

. . T
P;)Z,k\k—l =E |:<Xk _Xk|k—1> (Zk —Zk|k—1) }

R . b -
=E |:<Xk —Xk|k—1> (Xk —Xk|k—1) ]Hk
=P\ H] 37)

(37) transforms into

—1 T 1 T
_|(p® o) _(p® )
Hy= |:(Pk|kl) PXZ,ka—l] - (Pk\k7]> (PXZ,k\k—1>

Substituting (38) into (39), (40) is
Ny = Gy — Ry — HyQy_ H},
= G — Ry — (P;)Z,klk—l)T (Pl(f\)kfl)
XQ_1 (PI(<I|)I<—1)71 Pg)l,kvc—l (39)
My = H,®P; ®"H]
= Hy (Pl(cl\)k—l - Qk—l)Hl{
= HkP1(<1|)k—1H/{ - Hkale/{
= HP{)_\H] + N — G + Ry
=Py iy — Ri+Ni — G+ BRy
= P(Zl%,k\kfl + Nk —Gi — (1 = B) Ry (40)

-1

Since the SRCKF algorithm introduces the idea of matrix
QR decomposition, the state prediction covariance matrix
'P1(<l|)k—1 and the output prediction covariance ma'trix P(Zg Klk—1
in the above equation are calculated by the their correspond-
ing square roots S,((l‘)k_l and S(Zg Klk—1°"

) O] (O
Piii—1 = Skik—15kjk—1 41
) _ e ) T
Pz k-1 = S22 kik—1522 kjk—1 (42)
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Under the SRCKF algorithm, N and M are expressed as
follows:

-1
) 0] O\ T
Ny =Gy — BRy — (sz klk— 1) (Sklkflsklkfl )

() O T ()
Qi1 (Sk|k—lsk\k—l ) Py Klk—1 (43)
My = S(Zg,ldk—lsg)l,kvc—lT +Niy =G — (1 - B)R, (44)

Given P,({ll)k I P(Zl% Klk—1 and PXZ klk—1° the time-varying
fading factor can be obtained by expressions (41), (42), (43)
and (44) under the SRCKF algorithm.

V. MODIFIED MARKOV PROBABILITY MATRIX

According to the IMM algorithm analysis, if the probabil-
ity of a motion submodel is greater at a certain moment,
the matching degree between the model and the real motion
pattern of the target is higher; thereby, the probability of the
other submodels moving towards this model is greater. For
the Nth motion submodel, if the conditional probabilities of
submodel j at time k — 1 and k are &, and u, respectively,

then the probability difference (,ufk — ,u]k_l) of the model at
consecutive time points directly reflects the change in match-
ing degree between the model and the real moving target.
Thus, this paper uses this posterior information to correct the
transition probability between models. Due to the nonnega-
tivity of the transfer probability value, and considering the
nonnegative monotonicity of the exponential function,

, ay
¢ = e(”k “k—l), j=1,---N (45)

where ;,i represents the probability change rate of model
J- ;,{ > 1 when the model j probability becomes larger
(MJ,; - /,LJ];_1> > 1. Similarly, when the probability of the
model decreases or remains constant, the corresponding prob-
ability change rate is ;,{ < 1lor C,ﬁ = 1, respectively.
Therefore, {,{ can be used as the correction coefficient of each
element in the transition probability matrix to complete the
adaptive adjustment of the transition probability as follows:

Pijk = & -pyk-1, ij=1,---N (46)
where p;; 11 represents the row i and column j element of the
transition probability matrix at time k — 1 and p;; x represents
the transition probability at the modified time k. At the same
time, the elements in the transition probability matrix are non-
negative, and the sum of all elements in each row is equal to
1 due to the properties of time-homogeneous Markov chains.

05plj§19 i’j=17”.N

al (47)
2 pi=1

j=1
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where p; is normalized as follows:
Ty
(i)
AT

S

J=1

~ J
Pijk S Pijk—1

Pijk = 7 N
Z Ck * Pijk—1
Jj=1

> Dijk
=1

(48)

where p;; 1 represents the transfer probability of the final-
modified moment k. According to (48), if the probability
of submodel j increases at time k, the j column element pZ
of the modified transition probability matrix also increases;
thus, the proportion of model j as the matching model in the
filtering estimation will further increase in the model mixed
interaction of the next algorithm time point. Conversely, pZ
decreases and the proportion of model j as a nonmatching
model in the filter estimation will be further reduced when
the probability of submodel j decreases at time k. Therefore,
this online real-time adjustment of the model transfer prob-
ability can restrict the use of nonmatched information while
expanding the advantages of matching information. In model
switching, the role of the matching model is increased, while
the influence of the nonmatching model is reduced, and the
switching speed and filtering accuracy of the algorithm model
are improved.

VI. EXPERIMENTS AND RESULTS

The root mean square error (RMSE) is used to evaluate the
tracking results of the algorithms. The position RMSE is
defined as follows:

1 M
I Z [(X;Cn -
m=1

RMSE (k) = P4 O -3 (49)

ARMSE = ! iRMSE(K) (50)
- N n=1

where (x", y;') and (%", 3}") are the true position coordinates
and estimated coordinates of the target at the k — th moment
in the m — th simulation, respectively. The speed RMSE can

be similarly obtained.

A. MEASUREMENT AND TRACKING MODEL

For target tracking in a two-dimensional plane, the spatial
measurement information selects azimuth S and its change
rate B at time k. The frequency domain measurement infor-

mation selects the Doppler frequency change rate fz at time
k.

Xk
Br = arctan <y—k> (29
. XiYk — XiVk
= — 52
Bk o (52)
. . 2
fae = L () = -1 (z"y = x;‘3y/"2) (53)
N

where fr is the signal frequency emitted by the target, c is
the propagation speed of the electromagnetic wave, and the
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radial distance between the target and the observation station

. . / s o AT
attimekis ry = x,f + y%. Leth(Xy) = [ﬂk Br fak ] ; then,
the system observation equation is as follows:

Zi =h(Xp)+ Vi (54)

T . . .
where Vi = [Uﬁk g Oy ] is the observation noise and
OBi> Of, and oj, are the zero, mean and independent white

Gaussian noise, respectively, with the covariance matrix
2

R} = diag [Uék ng % ]

In the actual tracking process, target maneuvers are
highly dynamic and stochastic, and a single model cannot
cover everything. However, each complex maneuver can be
regarded as a simple weighting of several models, so it is
necessary to establish a basic target model. This paper uses
the constant velocity (CV) model and coordinated turn (CT)
model to model the target.

Uniform circular motion is also called a CT. With this type
of motion, the direction of velocity is constantly changing
during the entire process, while the speed and angular veloc-
ity remain unchanged. Similarly, taking X = X7 — Xp =
[xXx%yy y]T as the state vector, experiment assume that
the target radiation source exhibits uniform circular motion
in a two-dimensional plane; then, the model state equation
can be written as follows:

X = ®Xj—1 + Twy

sinwT ST —1
1 » 0 Cosac)u
10 coswT 0 —sinwT %
= 0 1 —coswT sinwT k=1
S w
0 sin wT 0 coswT
T2
— 0
7
+ 72 Wi (55)
0 -
2
0 T

where w represents the known turn rate of target movement;
o > 0 represents a left turn, and v < 0 represents a right
turn. wy is two-dimensional white Gaussian noise with a zero
mean. O, = E [l"wkw,{l"T] is the state noise covariance
matrix.

‘When the system model is the discrete CV model, the rela-
tive state vector Xy = X — X = [xk Xk Xr Yk Vk Yk ]T of
the target emitter and the observation platform is taken as the
state variable. Therefore, the equation of state of the system
can be obtained as follows:

Xi=f Xk—1) +Twg = X1+ Twy (56)

I, TI, | . .. . .
where ® = 2 2 | is the state transition matrix, T is
oI, I,
the measurement interval, I, is the 2 x 2 identity matrix;
TZ
r = |: 2 121| is the state noise transfer matrix;
2
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FIGURE 2. True trajectory of the maneuvering target.

wie = [wy wy]T is the system disturbance noise; w, and
wy are zero-mean and independent white Gaussian noise,
respectively; and @, = E [Twyw/T7] is the state noise
covariance matrix.

B. SIMULATION AND ANALYSIS

To assume that the reconnaissance platform is fixed at the
origin (0, 0) of the two-dimensional coordinate system, and
the initial state of the target radiation source is Xg =
[20km 180m/s Om/s? 25km 200m /s Om/s>]" . Nonmaneuver-
ing, weak maneuvering and strong maneuvering motions of
the target are simulated by using two movements of uniform
speed and a CT. The specific motion process is uniform linear
motion at the initial speed for the first 20 s, a slow, weak
turn occurs to the right from 21 s-80 s, with a turning rate
of w = 0.9rad /s, and uniform linear motion is recovered
from 81 s-100 s. Att = 101 s, the target makes a strong turn
to the left at a turning rate of @ = —3.6rad /s. After 60 s of
continuous movement, the movement state changes again at
t = 161 s, and the target returns to uniform linear motion until
the end of the simulation. Fig. 2 presents the true trajectory
of the maneuvering target.

It should be noted that in order to compare the performance
of the two algorithms, a discussion of the model set selection
is neglected. It is assumed that the selected submodel can
completely cover the entire process of movement. One CV
model and two CT models with the same turning rate for
real motion conditions, CT1 (w = 0.9rad/s) and CT2 (w =
—3.6rad /s), are employed to describe the actual motion of
the target. The initial Markov transition probability matrix

095 0.025 0.025
issetas | 0.025 0.95 0.025 |; the initial probability
0.025 0.025 095

of each submodel is [0.2, 0.4, 0.4], for which the CV model
probability is 0.2; the initial value of the state error covariance
matrix Py = diag[500050]; the observation period is T =
Ls; the observation time is N = 200s; the target radiation
frequency is fr = 10GHz; and the measurement accuracy of
the azimuth angle, azimuth angle change rate and Doppler
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FIGURE 5. Comparison of the velocity RMSE in the Y direction.

frequency change rate are 10mrad, 0.2mrad /s and 0.6Hz/s,
respectively.

The simulation results in Fig. 3~Fig. 6 show that the
improved IMM algorithm has a higher tracking accuracy
throughout the entire motion process. Compared with nonma-
neuver and weak maneuver motion, the improved algorithm
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has more tracking advantages during abrupt maneuvering
mutation. From the perspective of the filter algorithm, these
results occur because the covariance of the actual output
residual sequence of the STSRCKEF algorithm is extremely
small in the nonmaneuver and weak maneuver cases, causing
the time-varying fading factor to approach 1, which leads the
STSRCKF algorithm to degenerate into the standard SRCKF
algorithm. However, the advantages of the fading factor in
the STSRCKF algorithm can be fully reflected when a strong
maneuver leads to a rapid increase in the filtering residual.
In the algorithm, the dynamic change of the fading factor
increases with an increase in the predicted residual, and the
square root of the error covariance is adjusted online. Then,
the gain matrices of the system are adjusted to one another,
and the residual sequences are forced to be orthogonal to
one another; thus, the system’s adaptive tracking and tracking
performance abilities are improved.

From Fig. 7~ Fig. 9, it can be seen that the improved
IMM algorithm is more reasonable in the allocation of each
submodel, with a faster switching speed. When the four target
states of 21 s, 81 s, 101 s and 161 s change, the original
algorithm model has a slow switching speed, and the three
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submodels have a large difference from the ideal transition
probability curve; thus, the matching degree with the real
model is low. In comparison, the improved IMM algorithm
makes full use of the posterior information of the con-
ditional probability difference and can quickly switch to
match the real motion when the state changes, thus complet-
ing the rational allocation of different submodels and making
the probability curves of each model very close to the ideal
transition probability curve. Therefore, the tracking effect of
the improved IMM algorithm is superior.

To more fully illustrate the advantages of the IIMM-
STSRCKF algorithm. The algorithm is compared to
the standard IMM, STSRCKF, STCKF and STFQM.
Table 1 shows the SRMSE values of the filter. The accu-
racy of IIMM-STSRCKEF is significantly improved and the
tracking stability is relatively stable. STSRCKF is better
that SRCKF in accuracy and stability. these findings suggest
that the strong tracking filter has a good effect on complex
maneuvering target. The equivalent solution method of the
new time-varying fading factor improves the filtering preci-
sion of the IMM algorithm.
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TABLE 1. ARMSE for position and acceleration.

Performance X Y- X- Y-
(ARMSE) position position velocity velocity
(m) (m) (m/s) (m/s)
Stﬁ\‘;[‘]j\‘/‘[rd 8.4 68.6 7.9 88.7
STSRCKF 10.5 80.4 124 80.3
STHS]\I/{]E/[I_{F 42 48 5.1 50.3
SRCKF 15.7 72.1 8.5 87.4
STFQM 9.3 70.1 6.9 60.3

VIl. CONCLUSIONS

In this paper, an IMM-STSRCKEF algorithm is proposed for
complex strong maneuvers. Based on the IMM, this algorithm
uses strong tracking to deduce a new equivalent method for
evaluating the time-varying fading factor, which is introduced
into the square root of the state error covariance matrix of
the SRCKF algorithm, thus giving the STSRCKF algorithm
the ability to track strong maneuvers. Furthermore, adap-
tive adjustment of the Markov probability transfer matrix
is achieved by using the probability difference between
two consecutive time points in the IMM algorithm, which
improves the switching speed and the rationality of the sub-
model. Compared with the traditional IMM algorithm model,
the IIMM-STSRCKEF algorithm exhibits greatly improved
tracking accuracy, model switching speed and computation.
Methods for further improving the real-time performance of
the algorithm for tracking complex maneuvering targets will
be investigated in future research.
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