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ABSTRACT Accurately predicting the temperature characteristics of a dynamic discharge process in
different transportation conditions can improve the performance of reciprocating multiphase pumps in
practice. However, an accurate model for the description of the complicated behavior is not available because
of the unknown interphase interaction mechanisms and infeasible experiments. A probabilistic modeling
method of automatically selecting prediction models is proposed for the dynamic discharge process. First,
candidate computational fluid dynamics (CFD) models are empirically utilized to provide the training data
for candidate Gaussian process models (GPMs). Then, a posterior probability index is proposed to assess the
uncertainty of trainedGPMswhen the actual values are not available.With this information, themost suitable
GPM and CFD models are selected sequentially for each new sample. Consequently, the developed special
GPM (SGPM) can capture the main temperature characteristics. Moreover, the selection results of prediction
models can provide useful information for the recognition of complicated flow patterns. The advantages of
the proposed SGPM are demonstrated using a reciprocating multiphase pump under different transportation
conditions.

INDEX TERMS Probabilistic modeling, gaussian process model, computational fluid dynamics, multiphase
pump.

I. INTRODUCTION
Multiphase pumps, as the key facilities of close-line trans-
portation systems, can efficiently increase oil and gas pro-
ductions in the crude oil drilling [1]–[6]. Generally, under
multiphase transportation conditions, the heat is generated
during the gas compression, backflow, and mechanical fric-
tion processes [7]–[12]. The fluid temperature of the pump
cavity will rise in the discharge process, especially for those
conditions with smaller suction pressure and higher gas vol-
ume fraction [12]. A higher temperature will cause pump
damages for the heat deformation of pump parts and the
failure of sealing components [1]. Therefore, the temperature
characteristics in different multiphase transportation condi-
tions should be described for the reliability of multiphase
pumps.

The associate editor coordinating the review of this manuscript and
approving it for publication was Guoqi Xie.

A. MOTIVATION
Previously, several mechanism models for describing the
thermodynamic characteristics of multiphase pumps were
proposed, based on mass and energy conservation equations,
and variable mass thermodynamic law [9]–[12]. Unfortu-
nately, they are not enough to describe the complex behavior
of multi-component unstable flows, and the coupling phe-
nomenon of heat andmass transfer. Additionally, it is difficult
to accurately explain the interphase interaction including the
resistance of bubble or particle, heat and mass transfer, etc.
It is not easy to solve these high-order and nonlinear ther-
modynamic models [12]–[16]. Especially for a newly used
reciprocating multiphase pump, the thermodynamic mecha-
nism models are more difficult to be constructed and thus
rarely involved.

Alternatively, computational fluid dynamics (CFD)models
utilized in multiphase flows can provide useful informa-
tion [5]–[8], [11], [12], [17], [18]. A few studies investigated
the temperature characteristics of twin-screw multiphase
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pumps [12]. However, little research was conducted for the
reciprocating multiphase pumps. On one hand, only using
a single CFD model for a working cycle is not enough to
describe the time-varying flow states for the migration phe-
nomena of the multiphase flow interface [5]. On the other
hand, some CFD modeling procedures, such as the selection
of multiphase and turbulencemodels, dynamic grid technique
and user-defined functions, affect the reliability and accu-
racy of results [19]. Generally, large quantities of compu-
tational resources and time are required for a whole CFD
simulation. Additionally, using the existing test technology,
the quick and nonlinear temperature characteristics of the
multiphase pumps are not easy to be accurately measured
online [7]–[10], [12]. Therefore, a feasible modeling method
should be developed for better description of temperature
characteristics.

Recently, data-driven empirical modeling methods have
been increasingly applied to process industries [4]–[6],
[20]–[35]. As a nonlinear probabilistic modeling method,
the Gaussian process model (GPM) can be developed with-
out deep understanding of the process. Generally, GPM
can be trained simpler and faster than the mechanism and
CFD models. Additionally, compared with other data-driven
models (e.g., support vector regression and deep neural
networks [22], [23], [25]–[27]), GPM can evaluate the uncer-
tainty of predictions. With this interesting property, dif-
ferent kinds of GPMs have been proposed for multiphase
flows [4]–[6], [29] and other chemical processes [30]–[35].

B. CONTRIBUTION
In this work, a probabilistic modeling method integrating
both advantages of CFD and GPM is developed to pre-
dict the temperature characteristics in different multiphase
transportation conditions. First, in view of the difficulty in
collecting enough experimental data, different CFD models
are adopted to provide training data for the construction of
several local GPMs. Then, using the Bayesian inference,
a probabilistic index is developed to assess the uncertainty of
local GPMs. With this information, the most suitable GPM
can be adopted from the candidates for online prediction of a
new sample. Meanwhile, for this sample, the corresponding
CFDmodel is also the most appropriate one because it gener-
ates the training data for the selected GPM. Sequentially, for
all samples of the discharge process, a special GPM (SGPM)
can be constructed to predict the temperature characteristics
ofmultiphase transportation conditions. Due to different CFD
models having their reliable domains, the proposed method
also explores that an assembled CFD model is more suitable
to complicated flow patterns.

This work is organized as follows. In Section II, the prob-
abilistic modeling and prediction method for the tempera-
ture characteristics is proposed. The prediction results of the
SGPM for several new conditions are discussed and analyzed
in Section III. The comparison studies of the SGPM and
GPM are also investigated. Finally, the work is summarized
in Section IV.

II. SGPM FOR TEMPERATURE
CHARACTERISTICS PREDICTION
A. CFD MODEL FOR TEMPERATURE CHARACTERISTICS
As aforementioned, the quick and nonlinear temperature
characteristics of the multiphase pumps are not easy to be
accurately measured online. Several common CFD models
are constructed to provide initial modeling data for GPMs.
To ensure the fairness of the modeling data, some efforts are
undertaken in the CFD numerical calculation. First, select the
structure parameters of the CFD calculation model. To assure
the calculation accuracy and reduce the computational time,
they are consistent with the test pump shown in Fig. 1. Then,
construct the three-dimensional geometric model using the
SolidWorks software. Due to the symmetrical structure of the
test pump, as shown in Fig. 2(a), half of the cavity, suction
and discharge valves is adopted here. Additionally, conduct
grids in the whole model using the Gambit software. Due to
the complexity of the model, multiple grids are adopted and

FIGURE 1. The structure of the reciprocating multiphase pump.

FIGURE 2. (a) The three dimensional geometric model of the
reciprocating multiphase pump (b) The three dimensional numerical
model of the reciprocating multiphase pump in the caption.
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shown in Fig. 2(b). The grid interface, remeshing technolo-
gies and the grid independence test are carried out to ensure
the meshing quality. The results show that the influence of
grid size on calculation results is very small when the number
of model grids reaches 287528. Finally, the Fluent software
is employed for the numerical calculation.

In the numerical calculation, the mixture model is used to
study the interphase coupling and pulsation characteristics
of complex multiphase flows in the reciprocating multiphase
pump. Additionally, the user-defined function is adopted for
valves’ motion before the iteration of each step. Moreover,
due to the difficulty and importance for the selection of turbu-
lence model, the RNG k-ε model (simply denoted as RNG),
the SST k-ωmodel (simply denoted as SST), and the standard
k-ε model (simply denoted as STA), are utilized here to
simulate the multiphase process. The three models are widely
used to describe the complicated turbulence flows. From the
CFD simulation results, the y plus values for three turbu-
lence models empirically validate their effectiveness. Finally,
according to the operational environment of an oilfield in
China, the liquid and gas phases are set as crude oil and
methane, respectively. Therefore, based on three turbulence
models, three sets of CFD simulation data (i.e., CFD1 or
CFDRNG, CFD2 or CFDSST, CFD3 or CFDSTA) are obtained
as the training data for GPMs.

B. GPM CANDIDATES
The pump speed, the suction pressure, the discharge pres-
sure, the gas volume fraction, and the crank angle are
several important factors for the temperature characteris-
tics [1], [7]–[12]. For practical use, the samples in the
same pump speed are considered as one subclass. Con-
sequently, the training samples from three candidate CFD
models (i.e., CFD1, CFD2, CFD3) can be divided into L, M
and Z subclasses and denoted as S = (S1, . . . ,Sl)T , l =
1, . . . ,L,P = (P1, . . . ,Pm)T ,m = 1, . . . ,M , and
Q = (Q1, . . . ,Qz)

T , z = 1, . . . ,Z , respectively.
As an example, for the data of CFD1 model, the lth training

subclass with Nl samples is denoted as Sl = {Xl, yl} ={
xl,i, yl,i

}Nl
i=1. For each subclass, GPM provides a predic-

tion of the output variable for an input sample through the
Bayesian inference. For an output variable yl , GPM can be
described a discrete form [36]:

yl =
(
yl,1, . . . , yl,Nl

)T
∼ G (0,Cl) (1)

where Cl is the Nl × Nl covariance matrix with the
ij-th element Cl

(
xl,i, xl,j

)
defined by the covariance function

below [36].

Cl
(
xl,i , xl,j

)
= al,0+al,1

D∑
d=1

xl,idxl,jd

+vl,0 exp

(
−

D∑
d=1

wl,d
(
xl,id−xl,jd

)2)
+δl,jbl

(2)

where xl,id is the d-th component of the vector xl,i. δij =
1 if i = j, otherwise, it is equal to zero. θ l =

[al,0, al,1, vl,0,wl,1, . . . ,wl,d , bl]T are the model parameters.
Using the Bayesian method to train the lth GPM,

the parameters θ l can be obtained [36]. Finally, for the test
subclass with Nt input samplesXt =

{
xt,i
}Nt
i=1 , t = 1, . . . ,T ,

the predicted output of yt,i (i.e., ŷl,ti) and its variance (σ 2
ŷl,ti

)
can be calculated below [36].

ŷl,ti = kTl,tiC
−1
l yl (3)

σ 2
ŷl,ti
= kl,ti − kTl,tiC

−1
l kl,ti (4)

where kl,ti = [Cl
(
xt,i, xl,1

)
,Cl

(
xt,i, xl,2

)
, . . . , Cl(xt,i,

xl,Nl )]
T is the covariance vector between the new input and

the training data, and kl,ti = C
(
xt,i, xt,i

)
is the covariance

of the new input. Additionally, Eq. (4) provides a confidence
level on the prediction.

Consequently, several GPMs, denoted as GPM1
l , l = 1,

. . . ,L, can be built offline for L subclasses using the Eq.
(1) and Eq. (2). For a test subclass, the online prediction and
its variance can be calculated using the Eq. (3) and Eq. (4),
respectively. Using the same method, GPM2

m,m = 1, . . . ,M
for CFD2 and GPM3

z , z = 1, . . . ,Z for CFD3 can be built,
respectively.

C. CONSTRUCTION OF SGPM
For a new sample of the test subclass, it is important to judge
which GPM and CFD models are the most suitable. To this
end, a probability index based on the Bayesian method is
proposed to evaluate the relationship between a single GPM
and a test sample xt,i.
To calculate the probability of each sample xt,i with each

GPM1
l or GPM2

m, GPM
3
z model, the posterior probability

P
(
GPM1

l

∣∣ xt,i), P (GPM2
m

∣∣ xt,i), and P
(
GPM3

z

∣∣xt,i ) using
the Bayesian inference is proposed. Taking GPM1

l as an
example, P

(
GPM1

l

∣∣ xt,i) is calculated as follows [5], [33]:

P
(
GPM1

l |xt,i
)
=

P
(
xt,j|GPM1

l

)
P
(
GPM1

l

)
P
(
xt,i

)
=

P
(
xt,i |GPM1

l

)
P
(
GPM1

l

)∑L
l=1

[
P
(
xt,i |GPM1

l

)
P
(
GPM1

l

)] ,
l = 1, . . . ,L (5)

where P
(
GPM1

l

)
and P

(
xt,i
∣∣GPM1

l

)
are the prior probability

and conditional probability, respectively. The prior probabil-
ity for each GPM1

l can be simply defined as follows [5]:

P
(
GPM1

l

)
=
Nl
N
, l = 1, . . . ,L (6)

where N =
L∑
l=1

Nl is the number of all training samples.

To determine the other terms in Eq. (5), a relative prediction
variance item of the test sample for each GPM is defined [5].

vl,xt,i =
σŷl,ti∣∣ŷl,ti∣∣ × 100%, l = 1, . . . ,L (7)
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where the actual value of yt,i is unknown and it is replaced by
its predicted value ŷl,ti. The item σŷl,ti describes the prediction
uncertainty for a test sample with this model. The value of
σŷl,ti is relatively large if the test sample xt,i is predicted
with an inapposite model. Consequently, a larger value of
vl,xt,i generally means a larger uncertainty when the GPM1

l
is utilized for prediction. In such a situation, the conditional
probability P

(
xt,i
∣∣GPM1

l

)
is defined [5].

P
(
xt,i
∣∣GPM1

l

)
=

1
vl,xt,i

, l = 1, . . . ,L (8)

Consequently, Eq. (5) becomes:

P
(
GPM1

l

∣∣∣ xt,i) = Nl
vl,xt,i

∑L
l=1

(
Nl/vl,xt,i

) , l = 1, . . . ,L

(9)

Using the probabilistic analysis approach, the GPM1
l is

more suitable to predict the new test sample xt,i if the
value of P

(
GPM1

l

∣∣ xt,i) , l = 1, . . . .,L is larger. Similarly,
P
(
GPM2

m

∣∣ xt,i) ,m = 1, . . . ,M and P
(
GPM3

z

∣∣ xt,i) , z =
1, . . . ,Z can be obtained. Consequently, Eq. (9) provides a
feasible method to evaluate which GPM is most suitable for
a new test sample xt,i.
Generally, in three selected GPM1

l , GPM
2
m and GPM3

z
models for the prediction of the same test sample xt,i,
the one with the largest posterior probability index,

FIGURE 3. The probabilistic modeling method flowchart for the
temperature characteristics prediction of the reciprocating
multiphase pump.

namely max{max
[
P
(
GPM1

l

∣∣ xt,i)] ,max
[
P
(
GPM2

m

∣∣ xt,i)] ,
max

[
P
(
GPM3

z

∣∣ xt,i)]} is most suitable to. The corresponding
CFD model is also the most appropriate one to describe
the test sample xt,i because it generates an initial set of
training data for the most suitable GPM. Thus, the prediction
uncertainty of the CFD model can also be obtained using
the posterior probability index. As a result, a most suitable
GPM among all candidates can be sequentially selected for
each sample of the test subclass Xt =

{
xt,i
}Nt
i=1 and thus the

temperature characteristics of a discharge process is obtained
using the proposed SGPM method. Meanwhile, based on the
superiority of different turbulence models in the description
of different flow patterns, the selected CFDmodels can assist
the analysis of internal flow fields. The obtained information
will assist the designers optimize the structure of the multi-
phase pumps more efficiently.

In summary, two main stages with several implemented
steps of the SGPM-based probabilistic modeling method are
illustrated in Fig. 3. As a useful evaluation index, the uncer-
tainty of the GPM and CFD models can be assessed by
Eq. (9). From a practical viewpoint, this method can be
simply implemented to predict the temperature characteristic
of a multiphase pump in different multiphase transportation
conditions.

III. ONLINE PREDICTION OF TEMPERATURE
CHARACTERISTICS
A. TRAINING AND TEST SETS SELECTION
Considering different work conditions of the test pump,
the CFD simulations are conducted in different pump
speeds (n = 100, 120, 148, 160, 180 r/min), suction pres-
sures (Ps = 0.2, 0.25, 0.3, 0.35, 0.4 MPa), discharge pres-
sures (Pd = 1.0, 1.5, 2, 2.5, 3.0 MPa), and gas vol-
ume fractions (β = 40, 60, 70, 80, 90 %), respectively.
With the change of crank angle (θ = 180◦ ∼ 360◦),
the transient temperature values of the pump cavity in a
discharge process are obtained from three CFD models,
respectively. That is to say, for an example of CFD1 sam-
ples, the lth subclass with Nl samples can be represented

as sl,i =
{
xl,i =

[
nl,i,Psl,i,Pdl,i, βl,i, θl,i

]T
, yl,i = Tl,i

}Nl
i=1

.
About 5760 samples of 15 operational conditions are col-
lected from each CFD model. The former 9 sets (i.e.,
S1, . . . ,S9) are used for training and the remaining 6 sets (i.e.,
S10, . . . ,S15) are for test.

Generally, the transient temperature will rise obviously
with the decrease of the suction pressure and the increase
of the gas volume fraction. To validate the reliability
of the proposed method and provide meaningful infor-
mation for engineering applications, 3 test sets with dif-
ferent multiphase transportation conditions (i.e., S10, S11,
S12) are selected for the detailed analysis. And their input
varies are X10 =

{
x10,i = [148, 0.4, 2, 40, 180+ i]T

}180
i=1,

X11 =
{
x11,i = [148, 0.3, 2, 60, 180+ i]T

}180
i=1, and X12 ={

x20,i = [148, 0.2, 2, 80, 180+ i]T
}180
i=1, respectively.
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TABLE 1. The posterior probability index comparisons of 9 GPMs for the 20th test sample with θ = 200◦ (The selected GPM with the largest posterior
probability index is bolded and underlined).

A common performance index, namely the relative root-
mean-square error (simply denoted as RE), is adopted to
evaluate the proposed method. For the t-th test subclass, REt
can be defined as follows

REt =

√√√√ Nt∑
i=1

[(
ŷt,i − yt,i

)
/yt,i

]2
/Nt × 100% , t = 1, . . . ,T

(10)

where yt,i comes from the CFD model, ŷt,i denotes the pre-
diction of yt,i, and Nt is the sample number of the t-th test
subclass.

B. RESULTS AND DISCUSSION
As shown in Fig. 3, each test sample can automatically
select its most reliable GPM for the prediction based on
the posterior probability index, respectively. Taking the 20th
sample with θ = 200◦ of S10 as an example, its posterior
probability indices predicted by 9 GPMs are listed in Table 1.
It shows that the posterior probability index of GPM1

5 is larger
than other GPMs, which are trained by the data from CFD1.
Consequently, GPM1

5 is the most suitable model for online
prediction of the 20th sample of S10. Similarly, GPM2

4 and
GPM3

8 trained by the data from CFD2 and CFD3, are the most
appropriate ones for the 20th sample of S10, respectively.
Moreover, the posterior probability index of GPM2

4 is larger
than the ones of GPM1

5 and GPM
3
8. In such a situation, GPM

2
4

and corresponding CFD2 are selected as the most suitable

GPM and CFD models for the predictions of the 20th sample
of S10, respectively. Similarly, as also tabulated in Table 1,
using the posterior probability indices of the 20th sample,
suitable GPM andCFDmodels for S11, . . . ,S15 are chosen as
follows: GPM1

8 and CFD1 for S11, GPM3
4 and CFD3 for S12,

GPM3
2 and CFD3 for S13, GPM3

4 and CFD3 for S14, GPM3
8

and CFD3 for S15, respectively.
As an illustrated case, compared with the simulation result

of corresponding CFD models, the RE values of the 20th
sample of S10 predicted by 9 GPMs are listed in Table 2.
The RE value of GPM1

5 is smaller than that of other models
trained by the data from the CFD1 model, which indicates
GPM1

5 can obtain better prediction performance. Similarly,
the smaller RE values of GPM2

4 and GPM3
8 trained by the

data from the CFD2 and CFD3 models show they also predict
better than other GPMs. Additionally, the RE value of GPM2

4
is smaller than that of GPM1

5 and GPM3
8. This indicates that

GPM2
4 is more suitable than GPM1

5 and GPM3
8 for online

prediction of the 20th sample of S10. Consequently, the cor-
responding CFD2 model is validated as the most appropri-
ate one for prediction of the 20th sample of S10. Similarly,
as also listed in Table 2, GPM1

8 and corresponding CFD1
GPM3

4 and corresponding CFD3 GPM3
2 and corresponding

CFD3 GPM3
4 and corresponding CFD3 GPM3

8 and corre-
sponding CFD3, can be validated as the most appropriate
models for prediction of the 20th sample of S11, . . . ,S15,
respectively.
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TABLE 2. The RE index comparisons of 9 GPMs for the 20th test samples with θ = 200◦ (The selected GPM with the smallest RE index is bolded and
underlined).

For a new sample in different multiphase transportation
conditions, which model is more appropriate to describe
its characteristics is unknown before the actual value is
available. All the prediction results listed in Table 1 and
Table 2 validate that the posterior probability index suits to
evaluate the GPM-based and CFD candidate models. Gener-
ally, a GPM-based candidate model with a larger posterior
probability value can have a smaller RE value when it is
applied for online prediction of a new sample. Thus, a CFD
candidatemodel, generating training data for a selectedGPM,
can better describe the transient characteristics.

TABLE 3. The selection results of the SGPM for all test subclasses.

Consequently, a most suitable GPM among all candidates
can be sequentially selected for each sample of all test sets.
The selection results for 6 test sets (i.e., S10, . . . ,S15) are
listed in Table 3. It indicates that, if only using a single
turbulence model, RNG k-ε may be the most appropriate one
for the description of 6 test sets, mainly because most of

GPM1
l are selected for the online prediction. However, only

using a single turbulence model is often not enough. With the
decrease of the suction pressure and the increase of the gas
volume fraction, more and more samples are captured using
the standard k-ε turbulence model for the increasing selection
of GPM3

z . Consequently, several GPMs, trained using the data
from different CFD models, can be integrated to better track
the temperature characteristics of a whole discharge process
in different multiphase transportation conditions.

As aforementioned, the SGPM can integrate better pre-
diction results for the discharge process. To further analyze
the internal flow field of a discharge process, the predic-
tion results for different samples of the SGPM are denoted
as SGPMRNG, SGPMSST, and SGPMSTA, respectively. The
SGPMRNG, SGPMSST and SGPMSTA exhibit that the SGPM
is obtained by the data from the CFD1, CFD2, and CFD3
models, respectively. Their detailed prediction results of S10,
S11, S12, obtained by the SGPM and GPMs trained by the
data from three CFD models, are compared with their cor-
responding CFD test data (i.e., CFDMIX, CFDRNG, CFDSST,
CFDSTA), respectively. Notice that CFDMIX means that it has
several turbulence models during the discharge process.

The RE indices in Table 4 show that SGPM obtains better
prediction performance than three GPMs for S10. Its detailed
prediction results shown in Fig. 4 also indicate that it can
better track the main characteristics of S10. This implies the
SGPM based on the proposed posterior probability index
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TABLE 4. The RE index comparisons of the SGPM, GPM prediction
models and their CFD models for S10, S11, and S12. (The smallest RE
index is bolded and underlined).

can replace costly experiments and complicated CFD mod-
eling processes to realize the prediction of S10. Additionally,
26 samples in the opening lag stage of the discharge valve
corresponding to the rising stage select GPM2

m as the better
prediction models. And the remaining 154 samples mainly in
the opening stage of the discharge valve corresponding to the
declining and steady stages choose GPM1

l as the better ones.
Due to the superiority of the SST k-ω turbulence model in the
description of free flows near the walls, there may be a large
amount of gas flows near the discharge valve in the opening
lag stage [19]. Similarly, a lot of vortex flows appear in the
opening stage of the discharge valve for the selected RNG k-ε
turbulence model. The main reason may be that the mixture
containing continually and highly compressed gas flows out
of the pump rapidly to reach the maximum flow rate, and
then the flow rate reduces and vibrates for the opening lag
characteristics of the discharge valve [4]–[6]. Consequently,

FIGURE 4. (a) Online prediction results of the test subclass S10 with
SGPM (b) Online prediction results of the test subclass S10 with GPM
trained by the data from the CFD RNG k-ε transient model (c) Online
prediction results of the test subclass S10 with GPM trained by the data
from the CFD SST k-ω transient model (d) Online prediction results of the
test subclass S10 with GPM trained using the data from the CFD.

FIGURE 5. (a) Online prediction results of the test subclass S11 with
SGPM (b) Online prediction results of the test subclass S11 with GPM
trained by the data from the CFD RNG k-ε transient model (c) Online
prediction results of the test subclass S11 with GPM trained by the data
from the CFD SST k-ω transient model (d) Online prediction results of the
test subclass S11with GPM trained using the data from the CFD.

the selection results of GPMs can provide useful information
for the recognition of complicated flow patterns.

Similarly, the RE indices listed in Table 4 show SGPM
exhibits better prediction performance of S11 than other
GPMs. Its detailed prediction results shown in Fig. 5 also
indicate it tracks themain characteristics of S11 more suitably.
Additionally, most of samples select GPM1

l as the better pre-
diction models, except for 5 samples in the opening lag stage
of the discharge valve. And one of 5 samples chooses GPM2

m
as the better one, the remaining 4 samples adopt GPM3

z . This
indicates that new flow patterns may be generated except
for free flows near the walls and vortex flows, and they can
be better tracked using the standard k-ε turbulence model.
Moreover, compared with S10, the operating condition of S11
presents relatively small suction pressure Ps = 0.3 MPa
and high gas volume fraction β = 60%. Thus, the resulting
larger opening lag angle of the discharge valve cause more
complicated internal flow.

Similarly, as shown in Table 4 and Fig. 6, SGPMcan be fur-
ther validated as themost appropriatemodel for the prediction
of S12. In view of the smaller suction pressure Ps = 0.2 MPa
and the higher gas volume fraction β = 80% for the operating
condition of S12, most of samples still select GPM1

l as the
better predictionmodels, except for 24 samples in the opening
lag stage of the discharge valve. One of 24 samples chooses
GPM2

m as the better one, and the remaining 23 samples select
GPM3

z .
From the above analysis, it can be summarized that SGPM

has better prediction results for all test sets. This implies that
it is difficult to capture all information with only a single
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FIGURE 6. (a) Online prediction results of the test subclass S12 with
SGPM (b) Online prediction results of the test subclass S12 with GPM
trained by the data from the CFD RNG k-ε transient model (c) Online
prediction results of the test subclass S12 with GPM trained by the data
from the CFD SST k-ω transient model (d) Online prediction results of the
test subclass S12 with GPM trained using the data from the CFD standard
k-ε transient model.

GPM model. Similarly, it also indicates that a single CFD
turbulence model is inadequate for depicting the temperature
characteristics of multiple multiphase transportation condi-
tions and different stages of a discharge process. Addition-
ally, most of samples select GPM1

l as the better prediction
models, except for a few samples in the opening lag stage
of the discharge valve. With the decrease of the suction
pressure and the increase of the gas volume fraction, more
and more samples in the opening lag stage choose GPM3

z
as the better ones. Due to the turbulence models having
their reliable applications in the description of different flow
patterns, the selection results of GPMs can also help explore
the complicated internal flows.

Although more computational resources and time (hours
to days) are needed for several CFD modeling processes,
the proposed method can better describe the main temper-
ature characteristics of new conditions than a single CFD
model. The prediction time of SGPM is much less than
CFD. Consequently, the proposed SGPM method shows bet-
ter prediction performance compared with only using a GPM
and more efficient implementations than the traditional CFD
modeling method.

IV. CONCLUSION
A probabilistic modeling method is proposed to predict the
temperature characteristics for a dynamic discharge process
of reciprocating multiphase pumps. Its main advantages can
be summarized in three aspects. First, using the proposed

posterior probability index, suitable GPM and CFD models
are automatically selected for a new sample without knowing
its actual value. Second, compared with only using a sin-
gle GPM, SGPM can better describe the main temperature
characteristics of new conditions. Third, for practical appli-
cations, the selection results of GPM and CFD models can
provide useful information for better recognition of compli-
cated flow patterns in the pump cavity.

One of our future research directions is to construct a
model for better description of the characteristics near the
maximum temperature of dynamic fluid processes. Applica-
tion of deep neural networks [22], [23], [25], [26] to dynamic
fluid processes is also an interesting topic.
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