
Received January 29, 2019, accepted April 17, 2019, date of publication April 24, 2019, date of current version May 6, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2912996

Routing Selection With Reinforcement Learning
for Energy Harvesting Multi-Hop CRN
XIAOLI HE 1,2, HONG JIANG1, YU SONG1,3, CHUNLIN HE4, AND HE XIAO1
1School of Information Engineering, South West University of Science and Technology, Mianyang 621010, China
2School of Computer Science, Sichuan University of Science and Engineering, Zigong 643000, China
3Department of Network Information Management Center, Sichuan University of Science and Engineering, Zigong 643000, China
4School of Computer Science, China West Normal University, Nanchong 637009, China

Corresponding authors: Xiaoli He (hexiaoli_suse@hotmail.com) and Hong Jiang (jianghong_swust@hotmail.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 61771410, in part by the Postgraduate
Innovation Fund Project through the Southwest University of Science and Technology under Grant 18ycx115, in part by the Artificial
Intelligence Key Laboratory of Sichuan Province under Grant 2017RYY05 and Grant 2018RYJ03, and in part by the Horizontal
Project under Grant HX2017134 and Grant HX2018264.

ABSTRACT This paper considers the routing problem in the communication process of an energy harvesting
(EH) multi-hop cognitive radio network (CRN). The transmitter and the relay harvest energy from the
environment use it exclusively for transmitting data. In a relay on the path, a limited data buffer is used to
store the received data and forward it. We consider a real-world scenario where the EH node has only local
causal knowledge, i.e., at any time, each EH node only has knowledge of its own EH process, channel state,
and currently received data. An EH routing algorithm based on Q learning in reinforcement learning (RL)
for multi-hop CRNs (EHR-QL) is proposed. Our goal is to find an optimal routing policy that can maximize
throughput and minimize energy consumption. Through continuous intelligent selection under the partially
observable Markov decision process (POMDP), we use the Q learning algorithm in RL with linear function
approximation to obtain the optimal path. Comparedwith the basic Q learning routes, the EHR-QL is superior
for longer distances and higher hop counts. The algorithm produces more EH, less energy consumption, and
predictable residual energy. In particular, the time complexity of the EHR-QL is analyzed and its convergence
is proved. In the simulation experiments, first, we verify the EHR-QL using six EH secondary users (EH-SUs)
nodes. Second, the performance (i.e., network lifetime, residual energy, and average throughput) of the
EHR-QL is evaluated under the influences of different the learning rates α and discount factors γ . Finally,
the experimental results show that the EHR-QL obtains a higher throughput, a longer network lifetime, less
latency, and lower energy consumption than the basic Q learning routing algorithms.

INDEX TERMS Routing selection, multi-hop CRN, energy harvesting, Q learning, reinforcement
learning, MDP.

I. INTRODUCTION
A multi-hop cognitive radio network (multi-hop CRN) is a
wireless network formed by a plurality of network nodes,
with cognitive transceivers in a self-organizing manner. It is
mainly used in military, medical, environmental monitoring
and disaster relief application [1]. The multi-hop CRN nodes
are usually battery-powered, but the battery capacity may
often be limited. When the battery is exhausted, replacing
it or recharging the device through a charging system is
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approving it for publication was Shashi Poddar.

impractical and costly. Therefore, in order to extend the
lifetime of the CRN, the concept of energy harvesting (EH)
is proposed, which has attracted widespread attention in
the industry [2]. EH is a technology that collects energy
from environmental sources (e.g., solar energy, wind, seismic
energy, thermal energy and radio frequency energy (RF)).
Obviously, EH technology extends the network operating
lifetime and is considered as a possible alternative to address
energy-constrained wireless network bottlenecks.

The key metrics of the network layer (e.g., end-to-end
throughput, delay, routing effectiveness, and stability)
directly impact the quality of service (QoS) of secondary
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user (SU) services. Meanwhile, since the spectrum of the
multi-hop CRN is dynamic in time and space, the rout-
ing protocol needs to be highly dynamic, intelligent and
robust [3] and [4]. Therefore, proper routing is the key to
ensuring the utility of multi-hop CRNs.

Energy harvesting multi-hop CRNs (EHMulti-hop CRNs)
constitute a research field with exploratory value. On the one
hand, the deployment of EH nodes in cooperative commu-
nications has been envisioned as a promising approach to
energy constrained networks in fifth generation (5G) mobile
communications. On the other hand, multi-hop communi-
cation is also considered an ideal solution to address the
contradiction between high-speed transmission and coverage.
In EH multi-hop CRN communication, the EH transmitter
communicates with the receiver through many intermediate
EH nodes (i.e., EH relay nodes). The EH transmitter and
each EH relay node harvest energy independently and use the
harvested energy for data transmission. Therefore, the capa-
bility of transmitting data from the source EH-SU node to
the destination EH-SU node depends on the EH node energy
harvesting process and the selection policy of the optimal
path.

A. RELATED WORKS
At present, some related studies have implemented a route
policy in multi-hop CRNs [5]–[9]. Khalife et al. [7] proposed
three separate routing scheme categories. The new routing
solutions were used for the static and dynamic spectrum
segments, while an opportunistic forwarding scheme without
pre-established routes was proposed for the main frequency
band. Syed et al. [8] presented a platform to test the accuracy
of the solutions which is composed of three routing options,
software radio peripherals and GNU radios. Meanwhile, rein-
forcement learning (RL) and spectrum leasing (SL)were used
to design the routing. Li et al. [9] investigated a spectrum-
aware virtual coordinate (SAViC) geographic routing scheme.
Therefore, geographic routing, whether it can bypass the
area or not, was affected by the licensed user or bypassed with
a more available spectrum. According to the different spec-
trum occupancy modes of the PUs, two versions of SAViC
were designed on the basis of the channel utility and search
time of the primary user. In the energy constrained multi-hop
CRN, energy is invaluable. Thus, the above studies mainly
considered the balance between routing and energy, and work
on energy persistence is still needed.

Hence, researchers [10]–[12] studied routing algorithms
for EH multi-hop wireless networks. Unfortunately, these
routing algorithms required each node to preserve the global
state of the network, which consumed a large amount of
router resources while not reflecting network state changes
in time. Among these studies, [12] addressed joint power
allocation and routing selection to minimize the probability
of an outage in an EH multi-hop CRN. The Bellman-Ford
algorithm and Dijkstra’s algorithm were used to select
the best route path. In the previous work [13], our
research focused on channel allocation and power allocation.

Therefore, the purpose of this paper is to study routing in EH
multi-hop CRNs.

The research of [14] and [15] is the most relevant to our
work. The authors of [14] addressed the characteristics of
mobile Ad hoc networks (MANETs) (i.e., dynamic topology,
lack of fixed infrastructure and limited energy for mobile
devices) to study the bi-objective problem of delay and
energy efficient routing. It was assumed thatMANETs had an
EH function in which the nodes had recharging capabilities
while the remaining energy levels varied randomly with the
passage of time. Therefore, in order to reduce the expected
long term cost function, composed of end-to-end delay and
path energy costs, a bi-objective intelligent routing protocol
was proposed. Specifically, the routing problem was repre-
sented as a Markov decision process (MDP), which cap-
tured the link state dynamics caused by node mobility and
the rechargeable energy state dynamics. As a consequence,
an algorithm based on multi-agent RL was proposed to
address the optimal routing policy without any preconditions.
However, for the multi-hop CRN, the state of the network
is dynamic. For a single route, it is necessary to consume a
large amount of resources in order to gauge the entire network
in a timely manner. Therefore, it is appropriate to describe
the network as a model-free partially observable Markov
decision process (POMDPs).

In [15], a decode-and-forward two-hop communication
scenario with EH nodes was investigated. The goal was to
find power allocation strategies that could maximize the
throughput of the receiver by linear function approxima-
tion RL. Each point-to-point problem was modeled as a MDP
and the linear function approximation RL algorithm was
applied to enhance the learning of the SARSA algorithm.
In addition, for the linear function approximation, a special
feature function was studied in the data receiving process
of the EH node. Although RL was utilized in the EH CRN,
it did not solve the problem of long distance transmission
(i.e., multi-hop) and routing selection.

We will use the model-free POMDPs to establish the net-
work model for the characteristics of the EH multi-hop CRN
(e.g., dynamic topology, EH randomness and intermission).
Then, Q learning with RL will be used to find a better path.

Although the EH multi-hop CRN solves the problem
of energy limitation, the harvested energy is still a scarce
resource. Therefore, the next focus for research in wireless
networks concerns how to reduce the network energy loss
and improve the EH rate and energy utilization. Q learning is
based on a predictive algorithm which is applied to enhance
the context awareness ability for the EH multi-hop CRN.
The routing algorithm based on Q learning can establish the
predictive mechanism that can predict the harvested energy,
consumed energy and residual energy of the neighboring
nodes. According to the energy prediction of the neighboring
nodes, the possible harvested energy and energy consumption
can be calculated, to select the optimal and efficient path.
Ignoring the surrounding environment, Q learning algorithm
starts to accumulate experience and updates the status from its
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own learning. Finally, it learns and seeks the optimal solution
based on the accumulated experience.

B. CONTRIBUTIONS
In this paper, we focus on the path selection problem of
EH multi-hop communication, i.e., routing selection. Thus,
we apply RL to find the routing policy. RL is a suitable tool
to design routing strategies for EH multi-hop communication
scenarios because it does not require a priori information
about the EH process or the channel fading process. Each
routing node can be regarded as an agent, and the RL con-
cept is used to obtain the network information through the
probability that each node forwards to its neighbor without
knowing the network topology. The node learns where data
will be sent to from routing decisions and network responses
(e.g., throughput or rate achieved). Thus, the key contribu-
tions of our paper can be summarized as follows:
• First, compared with the previous EH multi-hop

CRN routing algorithm, this work not only considers the node
distance and hop count, but also considers communication
energy consumption and residual energy consumption in the
routing selection.
• Second, we show how to apply the RL algorithm to find

the best routing policy in an EH multi-hop CRN scenario.
In this scenario, the EHmulti-hop CRN communication prob-
lem is modeled as a POMDP, and Q learning with RL is used
to find the routing selection policies aimed at maximizing the
transmission rate and minimizing energy consumption.
• Third, this paper presents an energy harvesting routing

model based on the Q learning with RL (EHR-QL) for multi-
hop CRN. On the one hand, the model does not increase the
complexity of the route. On the other hand, network conges-
tion can be detected and avoided based on the efficiency of
node EH and residual energy.
• Then, we provide numerical results to evaluate the

effectiveness of our proposed routing policy. The numer-
ical simulation results show that the EHR-QL policy we
considered is superior to other routing selection algorithms,
e.g., [14] and [15].
• Finally, we use an actual network topology to verify the

accuracy of the EHR-QL.

C. ORGANIZATION
The remainder of this paper is organized as follows.
In Section II, the system model is introduced. The routing
selection study for maximum transmission rate and minimum
energy consumption in an EH multi-hop CRN scenario is
formulated in Section III. Based on RL the routing selection
algorithm EHR-QL is designed in Section IV. Numerical
results are presented in Section V. Finally, Section VI con-
cludes this paper.

II. NETWORK AND SYSTEM MODEL
A. NETWORKS MODEL
In this paper, we consider an EH multi-hop CRN, in which
a PU transmits its information to the base station (BS) on

FIGURE 1. System model.

the licensed spectrum and allows multiple SUs to share the
available spectrum of the PU. At the same time, we assume
that a PU is only allocated to one licensed channel to transmit
data, and a licensed channel is only allocated to one PU,
so there is no spectrum contention or transmission interfer-
ence between PUs. More specifically, we assume that the PU
and the SUs operate in the underlay spectrum sharing mode,
i.e., the PU and the SU can simultaneously transmit data on
the same licensed channel, provided that the interference of
the SUs to the PU does not exceed the interference tempera-
ture (IT) threshold Ith [13].
All SUs (i.e., source SU, relay SU and destination SU) have

an EH function. When the transmission distance between the
source SU and the destination SU exceeds a certain distance,
one or more relay SUs may be used to forward the data
packets to the destination SU. It is assumed that the relay SUs
adopt the decode-and-forward (DF) scheme in our paper. The
system model is shown in Figure 1. In our network topology
diagram (see Figure 1), there are six EH-SU nodes, including
four relay nodes. In addition, there are four possible routing
options from the node SU1 to the node SU6.

The Euclidean distance can be used to represent the dis-
tance between two nodes. Then, the actual distance between
node i and node j at time t is expressed as follows

Dtij =

√(
x ti − x

t
j

)2
+

(
yti − y

t
j

)2
, ∀i, j ∈ 8SU (1)

|X | =
√(

x ti
)2
+
(
yti
)2 (2)

where Dtij is the Euclidean distance between the node i and
the node j. |X | is the Euclidean distance from the node i to
the origin, and 8SU = {1, 2, . . . ,N } is a set of EH-SUs.
If
∣∣∣Dtij∣∣∣ > Dth, the relay node is used for multi-hop trans-

mission, otherwise, it can be transferred directly. Therefore,
in order to reduce delay due to excessive distance between
nodes, there is a constraint∣∣∣Dtij∣∣∣ ≤ Dth (3)

where Dth is the node transmission radius. i represents the
current forwarding node, and j is any neighbor node of the

VOLUME 7, 2019 54437



X. He et al.: Routing Selection With RL for EH Multi-Hop CRN

FIGURE 2. Energy harvesting model.

node i, i.e., j ∈ J ∈ 8SU , J = {1, 2, . . . ,N − 1} is a set of
one-hop neighbor nodes of the node i.
gij (i, j ∈ 8SU = {1, 2, . . . ,N }) denotes the channel gain

between the node SUi and SUj, which is expressed as

gij = D−ζij
∣∣hij∣∣ (4)

where hij ∼ CN (0, 1) is a random value generated according
to the Rayleigh distribution, Dij is the distance between SUi
and SUj, and ζ is the path-loss exponent.

B. ENERGY HARVESTING MODEL
In this scenario, we assume that the EH model for
EH-SU nodes follows an independent composite Poisson
distribution [16]. At the same time, the EH-SUs also have
many functions, such as data processing, network data packet
forwarding, GPS positioning and routing selection. Because
there is only one antenna in a node, we prefer the EH process
in [17]. Furthermore, we assume that the battery does not
leak, and that almost all of the harvested energy is stored.
The EH model is shown in Figure 2. In each time slot,
the node first performs EH, then stores the harvested energy,
and determines if the energy is sufficient for the data trans-
mission. If the energy is sufficient, the node will use the
harvested energy to transmit its local data, otherwise it
will keep EH (EH-save-judge-transmit-then EH). The vari-
ables Pehi,t , P

st
i,t and P

tr
i,t represent the harvested power, stored

power and transmitted power of the i th EH-SU at time t ,
respectively.

In each time slot t , there are e energy packs that reach
the EH-SUs, and the size of each energy pack is fixed
at efix . The arrival time of e follows a Poisson distribution
with a mean value of λ. This parameter λ also indicates
the network load condition. For example, λ = 0.5 implies
a low load, and λ = 4 implies a high load. Specifically,
we set the entire transmission time to T , which is equally
divided into h (hop count) time slots. The EH arrival times

are {0, 1, . . . , t, . . . ,T }, where 0 ≤ t ≤ T , and
T∑
t=0

t ≤ T is

satisfied. Each EH-SU uses the harvested energy to transmit
its local data. The harvested energy Eehi of the i th EH-SU at
time T is expressed as

Eehi = η
∫ T

0
Pehi,tdt (5)

where η is the energy harvesting conversion rate, η ∈ [0, 1).

Similarly, the expression of the energy consumed by the
transmission can be written as follows

E tri =
∫ T

0
Ptri,tdt (6)

where Pehi,t and P
tr
i,t are the harvested power and transmission

power of the i th EH-SU at time slot t , respectively.
Eehi,t , E

tr
i,t are used to represent the energy harvested and the

energy used for transmission of the i th EH-SU at time slot t .
After the node h hops, the residual energy is

Erei,t = Eehi,t + E
re
i,t−1 − E

tr
i,t (7)

We assume that the battery capacity is large enough and
that there are no energy leaks. The harvested energy can be
stored in the battery. This assumes that the battery has a very
large capacity relative to the EH efficiency, which is rea-
sonable in practical applications [14]. Therefore, we assume
that the battery capacity is at most Emax. We can write the
relationship between Erei,t and Emax as follows

0 ≤ Erei,t ≤ Emax, 0 ≤ t ≤ T (8)

Erei,t = min
(
Eehi,t + E

re
i,t−1 − E

tr
i,t ,Emax

)
, 0 ≤ t ≤ T

(9)

Equation (7) represents the energy causality, and equa-
tion (8) is for the storage capacity. Let Ecoij = e

hop(i,j)
H repre-

sent the energy consumed by transmitting data packets from
node i to the neighbor j within its one-hop coverage. hop(i, j)
represents the hop count of the next node to the destination
node. H represents all hops from node i to the destination
node. If the data packets are transmitted from source node 1
to destination node N , the relay node i needs multi-hop trans-
mission, and the energy consumption can be expressed as

Ecoall =
∑N−1

i=1,j 6=i
Ecoij (10)

For any data grouping, the optimization objective function is

minEcoall (11)

That is, the energy consumption of each packet is minimized.

C. MARKOV DECISION PROCESS MODEL
RL is biologically inspiring, and it acquires knowledge by
actively exploring its environment. It is a process of learning
in ‘‘exploration-exploitation’’. For this reason, it is ideal for
resolving distributed problems such as routing. When node i
makes a routing decision, it only selects its neighbor node j as
the next-hop node having the highest reward value. The self-
learning mechanism will be triggered by a dynamic reward
value and route policy.

We model the routing process as POMDPs. A finite MDP
is made up of 5-tuple elements,

〈
S,A,Pass′ , γ,R

〉
, where S is

a finite set of all possible states that the agent (packet) might
assume in the environment. In this paper, S is defined as a
set of three sub-states, i.e., harvested energy amount, battery
level, and all possible destination nodes. More specifically,
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si,t =
{
Ei,t ,Bi,t ,Ni,t

}
represents the state of the i th EH-SU

at time slot t , where Ei,t is the state of renewable energy,
i.e., the amount of harvested energy, uniformly quantized into
three levels (low, medium and high). Bi,t is battery the energy
level, also quantized into ten levels(less than10%, 10%-20%,
20%-30%..... 80%-90%, higher than 90%). In addition Ni,t is
the number of EH-SUs in the entire EH multi-hop CRN.
• In this paper,A is a set of all of the possible actions that all

neighbor nodes may select as the next hop. ai,t ∈ Ai = J =
{1, 2, . . . ,N − 1} represents the action of the i th EH-SU at
time slot t , and J ∈ 8SU is the number of the i th EH-SU’s
neighbor set. Each link in the routing may be associated with
different types of action costs (e.g., queuing delay, available
bandwidth, packet loss rate, energy loss level, etc.).
• Pass′ is the transition probability that the system

chooses the action a ∈ A from current state s ∈ S
at time t to the next state s′ ∈ S at time t + 1,
where Pass′ = P(st+1 = {Ei,t+1,Bi,t+1,Ni,t+1} = s′|st =
{Ei,t ,Bi,t ,Ni,t } = s, at = a).
• γ ∈ [0, 1] is the discount factor, which is used to weight

the impact of future rewards on cumulative rewards. It means
that the lower state is, the less it affects the reward. It is a
decaying process.
• R:S × A × S → R is written as Rass′ =

E
[
rt+1

∣∣st = s, at = a, st+1 = s′
]
. It represents the reward

function for each decision, where R
(
s, a, s′

)
is the reward

obtained when transiting from state s ∈ S to the next state
s′ ∈ S such that the action a ∈ A is selected at state s ∈ S.
During routing process, the rewardR represents themaximum
transmission rate and minimum energy consumption of the
node in this state. R will vary depending on the distance
between the SUs.

The routing scenario based on RL is shown in Figure 3.
As seen from Figure 3, there are a total of six EH-SUs, and
we will take node 1 as an example. The goal is to find the
routing with the maximum transmission rate and minimum
energy consumption from node 1 to node 6.Then, the state
set S1 is S1 = {high; 50%− 60%; 1, 2, 3, 4, 5, 6} and the
action set A1 is a1,t ∈ A1 = {2, 3, 4}. From the routing
table of node 1, we can see that the value of Q1 (3, 6) = 5 is
obtained by the algorithm, and we will discuss the maximum
value later. Therefore, the routing selected from source node 1
to destination node 6 is {1− 3− 6}.

III. PROBLEM FORMULATION
A. REINFORCEMENT LEARNING APPROACH WITH
ENERGY HARVESTING
In EH-multi-hop CRN routing environment, the entire net-
work environment is taken as the learning object. Using a
packet as an agent, each node can be treated as a state,
which records its neighbor nodes as actions. Each Agent
adopts a greedy ε policy. Each routing table is maintained
by each node response, indicating that each node performs a
possible routing policy responding to the Q-value of the next
hop node. When the routing is performed, the routing table
is traversed. According to the Q-value, the neighbor node

FIGURE 3. Routing selection scenario with RL.

with the highest Q-value is selected as the next hop node
to establish an optimal path. One neighbor node is selected
for data forwarding. Each node maintains a separate Q table
containing all Q-values arriving at the target node. The goal of
an intelligent routing optimization policy is to find a specific
sequence of Q-values that maximizes the cumulative reward
achieved in this sequence.

Therefore, to make an optimal routing decision, a node
will select the maximum Q-value across the destination col-
umn and return the neighbor’s value which matches the max
Q-value. To avoid the network throughput degradation caused
by poor communication quality or a low transmission rate,
we propose a routing rule that chooses the next hop node
with higher data transmission rate as the next hop node [18].
This solution can solve the load balancing problem, improve
the throughput performance of the network and enhance the
link utilization of the IEEE 802.1l multi-hop network. When
routing, our goal is to find the next hop node policy, which is
the optimal EH policy for maximizing the average transmis-
sion rate Rrate of the EH transmitter within the deadline T .
Then, according to Shannon theorem, the transmission rate
(bits/s/Hz) of EH-SU is given by

Rratei,t = log2

1+
D−ζij

∣∣hij∣∣Ptri,t
σ 2︸︷︷︸

noise power

+ D−ζiPU |hiPU |P
tr
PU ,t︸ ︷︷ ︸

interferrence power of PU


(12)

where D−ςij and D−ςiPU represent the distance from node i
to its neighbor node j and node i to the PU, respectively.
hij ∼ CN (0, 1) and hiPU ∼ CN (0, 1) are random values gen-
erated from the Rayleigh distribution. Ptri,t and P

tr
PU ,t denote

the power of the node i and the PU, respectively. σ 2 is the
noise power, and its value is assumed to be the same for all
users.

Our aim is to find the node with the highest data transmis-
sion rate (i.e., high throughput) among the neighbor nodes of
the SU as the next hop. Combining equations (3), (8), (9), (11)
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and (12), the expression can be written as follows:

max
i=1,2,···N

Rrate = max
i=1,2,···N

∑
N
i=1R

rate
i,t

s.t. (3), (8), (9), (11) (13)

Therefore, we can get the optimal node i as i∗ =
arg max

i=1,2,···N

∑
i=1N R

rate
i,t . Thus, the formulation of the rout-

ing policy is performed according to equation (13).
The routing algorithm can achieve load balancing of net-

work nodes while maximizing the throughput rate and min-
imizing energy consumption. Therefore, when designing the
reward function, the node states regarding the harvested
energy, the residual energy and consumption energy are
referenced. After the node obtains an instantaneous reward
and forwards some data packets, it encodes the value of
the residual energy, energy consumption, and the necessary
Q-value to make its data packets obtain additional target
rewards after reaching the target node. In this paper, the pur-
pose of RL is to train nodes to select the neighbor node with
largest reward value as the next hop node each time, and
to thus select the best path. Thus, the setting of the reward
value R is especially critical. We can obtain the instantaneous
rewards ri,t as follows.

ri,t =

{
0 Bi,t < Bth or Dtij > Dth
βErei,t − ωE

co
ij Bi,t ≥ Bth and Dtij ≤ Dth

(14)

whereBth is the battery level threshold. β andω are weighting
factors. If β is larger, the smaller ω is, the larger feedback
value will be, and vice versa.

B. OPTIMIZATION OBJECTIVE
The proposed algorithm aims to obtain an optimal routing
policyπ . The node implements an actionA in a certain state S,
which can be represented by π (s) = a, so that an optimal
reward value can be obtained. From this state si,t at time t ,
the node i starts to perform the action ai,t , and learns the
state in the next round, and repeats the iteration until the goal
of policy π is finally adopted. In summary, the cumulative
reward value of the process is calculated by equation (14).

Rn
(
si,t
)
= ri,t+1 + γ ri,t+2 + γ 2ri,t+3 + · · ·

= ri,t+1 + γRπ
(
si,t+2

)
=

∑T

k=0
γ kri,t+k+1 (15)

The value of ri,t+1 can be obtained by equation (12).
There are three different scenarios for different discount
factor γ :

Rn
(
si,t
)
= ri,t+1 γ = 0 scenario1

Rn
(
si,t
)
= ri,t+1 + γ ri,t+2
+ γ 2ri,t+3 + · · · 0 < γ < 1 scenario2

Rn
(
si,t
)
= ri,t+1 + ri,t+2
+ ri,t+3 + · · · γ = 1 scenario3

(16)

Scenario1 indicates that only the reward value of the cur-
rent action is considered. Scenario2 means considering both
current and future rewards. Scenario3 shows that the current
reward is the same as the future reward. In general, we choose
scenario2, setting γ = [0.1, 0.3, 0.5, 0.7, 0.9].
We maximize the value function by selecting the appropri-

ate policy. If policy π is taken at a certain time t , then its value
function in state S can be calculated by equation (17):

V π (s) = Eπ
[
Rni,t |St = s

]
(17)

V π (s) is a state value function, which is defined as the
expected reward that state s can obtain at time t .

V π (s) =
∑

a∈A
π (s, a)

[
Rass′ + γ

∑
s′∈S

Pass′V
π
(
s′
)]
(18)

The above value function has the form of a Bellman equa-
tion, that is, a dynamic programming (DP) equation, which
can be solved in several ways, such as value iteration, policy
iteration, Q-learning, SARSA, etc. We use Q learning to
design our routing algorithm. Please refer to Appendix A-A
for the specific derivation process of the Bellman
formula.
V π (s) is the state value function, we also need to design

the action value function, which can be used to make actions
according to the size of the action value. Q learning is to learn
the quality of each action in different states.

In addition to the state value function V π (s), we also need
to design an action value function Qπ (s, a), which can be
used to select actions based on the magnitude of the action
value. Q learning is used to learn the quality of each action in
different states.

Qπ (s, a) = Eπ
[
Rni,t |St = s,At = a

]
(19)

The action value function Qπ (s, a) is an estimate of the
reward value. A low Q-value does not mean that the reward
value of this state is less than the reward value of another state.
Therefore, the method of selecting the optimal action when
the node is in state s must incorporate various factors, and
the corresponding action policy cannot be adopted by relying
only on the immediate reward value.

Qπ (s, a) = Rass′ + γ
∑

s′∈S
Pass′

×

∑
a′∈A

π
(
s′, a′

)
Qπ

(
s′, a′

)
(20)

Equation (20) is also a Bellman equation. Please also refer
to Appendix A-B for the specific derivation process of the
Bellman formula.
When routing, EHR-QL yields the optimal routing pol-

icy compared with other policies. The reward value of the
EHR-QL is the maximum value, which can be obtained by
the following equation:

V π
∗

(s) = max
[
Rass′ + γ

∑
s′∈S

Pass′V
π∗
(
s′
)]

= Rass′ +max a∈Aγ
∑

s′∈SP
a
ss′V

π∗
(
s′
)
≥ V π (s)

(21)
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Qπ
∗

(s, a) = max
[
Rass′ + γ

∑
′
s ∈ SP

a
ss′ maxQπ

∗ (
s′, a′

)]
= Rass′ +max a∈Aγ

∑
s′∈SP

a
ss′ maxQπ

∗ (
s′, a′

)
≥ Qπ (s, a) (22)

Through the optimal Bellman equations of equations (20)
and (21), the optimal action policy π∗ can be solved as
follows:

π∗ = argπ max a∈Aγ
∑

s′∈SP
a
ss′V

π∗
(
s′
)

(23)

π∗ = argπ maxQ∗ (s, a) ,
{
R∗ (s, a) ≥ Rπi (s, a) , πi ∈ π

}
(24)

In our proposed formulation, the goal is to calculate the
routing policy πi:Si → Ai, using each routing decision ai for
each node in each state si at time t . Eventually, the long term
cumulative reward value, namely, the difference between the
residual energy and the energy consumption of the nodes is
maximized. This routing policy selects the route with the
maximum average rate and minimum energy consumption.
More specifically, each node’s optimal relay selection policy
is computed based on π∗.

IV. ALGORITHM DESIGN AND IMPLEMENTATION
A. RL FOR OPTIMAL ROUTING POLICY WITH
Q LEARNING
The important idea of Q learning is to use an episode as a
training period, which is from the initial state to the final state.
After each episode is completed, the agent moves on to the
next episode to learn. Therefore, it can be seen that the outer
loop of Q learning is an episode, and the inner loop is every
step of the episode.

The Q learning algorithm learns the state of the network
based on the Q-value, which is the value of action A when
the state is S, and these Q-values are used to determine the
routing policies. The Q-value update rule is the core of the
Q learning algorithm. The update equation is shown:

Q
(
si,t , ai,t

)
← (1− α)Q

(
si,t , ai,t

)︸ ︷︷ ︸
old
value

+ α︸︷︷︸
learning
rate

learned value︷ ︸︸ ︷ri,t + γ max a∈AQ
(
si,t+1, ai,t+1

)︸ ︷︷ ︸
estimate of optimal future value


(25)

where 0 ≤ α ≤ 1 is the learning rate, it controls how much of
the difference between the old Q-value and the new Q -value
will be taken into account. In particular, when α = 1, the
two Q-values are offset and the update is exactly the same
as the Bellman equation. Here, we specify that α = 0.7.
ri,t is the instantaneous reward, which can be obtained from
equation (12).

The Q learning algorithm for RL has been widely used in
network routing. The Q-routing algorithm, which is based on
the Q learning model-free RL framework, is the most well-
known among them [19]. The node makes a routing decision
based on the estimated time to the destination node, that is,
the neighbor node with the smallest Q-value is selected as
the next hop node. While not exactly the same as Q-routing,
our goal is to maximize the transfer rate and minimize energy
consumption, so in our EHR-QL, the Q-value is designed
as the value of the maximum reward value. The specific
assumptions are as follows.

Each node x in the network represents its own view of
the network state through its Q table. Let the Q-value in the
Q table be represented byQx (y, d), where d is the destination
node and y ∈ J is the neighbor node of node x. Specifically,
the Qx (y, d) is the best estimate of the energy that the
SU source node x reaches its destination d as it travels
through its next hop neighbor node y, considering the har-
vested energy, the residual energy, and the consumed energy.
The reward value is used as the Q-value, and the neighbor
SU node with the largest Q-value is selected as the next hop
node.

As shown in Figure 3, when the node 1 receives the packet
destined for node 6, node 1 checks its Q table to select the
neighbor node with the minimum value of Q1 (3, 6). How-
ever, these Q-values are not accurate. Therefore, routing deci-
sions based on Q-values may not provide the best solution.
These Q-values should be updated frequently for accurate
routing decisions. Instead, the Q-value will be updated when-
ever a node sends a packet to its neighbor. The Q-value update
equation is as follows:

Qx (y, d)︸ ︷︷ ︸
new

= (1− α)Qx (y, d)︸ ︷︷ ︸
old

+α

 ri,t︸︷︷︸
reward

+γ max
z∈neighbors of y

Qy (z, d)


(26)

As seen from equation (26), when α is higher, the
Q-value is more dependent on ri,t (i.e., the current knowl-
edge). Conversely, when α is lower, the Q-value is more
dependent on the old Qx (y, d) (i.e., previous knowledge).

B. ROUTING SELECTION FOR EHR-QL
First, in the Q learning phase, the SU source node sends a
packet to the destination node at a specific time and initial-
izes the Q-value to zero. The packet encapsulates informa-
tion such as energy, hop count and distance. Second, each
SU relay node obtains the learned information from its neigh-
bor SU nodes, which includes the Q-value of the neighboring
nodes, the number of hops, the harvested energy, the remain-
ing energy, and the energy consumption. Then, the rout-
ing action is selected according to a Boltzmann probability
distribution. Next, information such as the hop count, reward,
and residual energy is stored in the model and updates
the account value iteratively. The source node periodically
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forwards a learned message to its neighboring nodes and each
node similarly forwards the received messages and updates
the model. Finally, each neighbor node continuously sends a
learnedmessage to the next node, and each node continuously
updates the internal model. Through continuous iteration,
the evaluation value gradually converges. The details of the
routing algorithm are shown in Algorithm 1.

C. ALGORITHM ANALYSIS
1) ALGORITHM CONVERGENCE ANALYSIS
Watkins proved the convergence of the Q learning algorithm
under certain conditions [20]. As shown in this paper, as long
as all actions are repeatedly sampled in all states and their
action values are discretely represented, Q learning will con-
verge to the optimal action value with a probability of 1.
Therefore, we also prove the convergence of our proposed
EHR-QL algorithm by formulaic derivation and experimental
methods.

First, our network model is a POMDP, which has two char-
acteristics, i.e., the instant return is bounded, and each action
has return information when routing. Second, a formula is
used to prove the convergence of the EHR-QL algorithm.
SeeAppendix B for the specific certification process. Finally,
through experimental simulation, it is proved that the conver-
gence of EHR-QL is achieved in approximately 30 episodes.
See Part C of Section v for the simulation and results analysis.

2) ALGORITHM TIME COMPLEXITY ANALYSIS
Computational complexity issues are significant in all
research aspects of RL mechanisms. [14] proposed that the
computational complexity of the algorithm requires updating
the Q-value of ∀sti ∈ Si and for each state. Therefore,
its computational complexity was O (|Ai| |Si|). Because i ∈
{1, 2, · · ·N }, we can simplify the computational complexity
to O

(
N 2
)
. However, the influences of the number of nodes

and the distance on the time complexity were not considered.
The EHR-QL we proposed is applicable to multi-hop CRNs.
When calculating the time complexity, it is related not only to
the action and state, but also to the number of EH-SU nodes
and hops. The fewer the number of nodes is, the fewer hops
there will be from the source node to the destination node,
the learning time will be shorter, and the time complexity of
the algorithm will be lower. Hence, the time complexity
of the EHR-QL algorithm is O

(
N 2
)
, where N is the number

of EH-SUs. See Part C of Section v for simulation and results
analysis.

V. SIMULATION AND RESULTS ANALYSIS
In this section, we use numerical simulation to evaluate the
performance of our intelligent algorithm EHR-QL. As shown
in Figure 1, assuming the network coverage is 100 m ×
100 m, where one BS, one PU and six EH-SUs are ran-
domly distributed. The system is deployed in a Rayleigh
fading environment and the channel state information (CSI)
is perfect, i.e., the channel state estimation is equal to the
actual channel gain value without an estimation error. Let the

Algorithm 1 Routing Selection for EHR-QL

1: Initialize: t ← 0, si,0 =
{
Ei,0,Bi,0,Ni,0

}
, T , α, γ ,

η, β, ω, λ, D0
ij, P

eh
i,0, P

tr
i,0,hop (i, j),H , ε, D0

ij, D
0
ij,

Q
(
si,0, ai,0

)
= 0, ∀si,t ∈ S, ∀ai,t ∈ A, SU number N

2: For i = 1 to N do
3: Exchange causal knowledge and observe the current

state si,t based on Ei,t ,Bi,t ,Ni,t
4: For j = 1, j 6= i, j ≤ N and EH − SUi is EH do
5: // each EH − SUi EH:
6: Calculate the harvested energy Eehi,t using equation (5)
7: Calculate the consumed energy E tri,t and E

co
i using equa-

tion (6) and equation (10)
8: Calculate the residual energy Erei,t equation (9)
9: //RL:

10: If current state si,t ∈ S
11: Calculate the corresponding reward ri,t
12: Else go back step 1
13: End if
14: If Bi,t ≥ Bth and Dtij ≤ Dth
15: ri,t = βErei − ωE

co
ij

16: Else ri,t = 0
17: End if
18: Select an action ai,t using ε-greedy
19: πi

(
si,t+1, at

)
,∀ai,t ∈ A

20: Transmit the packet with the Ptri,0
21: Observe the current reward ri,t and the next state si,t+1
22: Update the Q-value

Q
(
si,t , ai,t

)
, si,t ∈ S, ai,t ∈ A according to equation(25)

23: Update the policy πi
(
si,t
)
, si,t ∈ S

24: Update the reward value ri,t and share with the next hop
neighbor

25: t ← t + 1
26: End for
27: End for

distance Dij between the node i and the neighbor node j vary
from 1meter to 30meters. Referring to the literature [8], [14],
[15], the simulation parameters used in this paper are shown
in TABLE 1, and all of the simulation models and algorithms
are coded in the MATLAB 2015b.

To evaluate the performance of our proposed EHR-QL
routing algorithm, an example and algorithm comparison
analysis method is used. First, a path selection example with
only six EH-SUs nodes is given. According to the Q learning
mechanism in the RL algorithm, the node updates its own
Q-value table and selects as the next hop node the node
with the maximum Q-value table to select the path. Then,
the main routing information, such as the end-to-end delay,
throughput and jitter delay, are simulated and compared with
other routing algorithms.

A. EXAMPLE OF EHR-QL WITH SIX EH-SUs NODES
In this section, we use an example to verify the accuracy
of EHR-QL. The EH multi-hop CRN routing scheme based

54442 VOLUME 7, 2019



X. He et al.: Routing Selection With RL for EH Multi-Hop CRN

TABLE 1. Simulation input parameters.

on EHR-QL RL are shown in Figure 3, there are six EH-SUs:
source node 1, intermediate nodes 2, 3, 4, 5 and destination
node 6. When node 1 receives the packet for the destination
node 6, node 1 checks its Q table (It is similar to the routing
table, but the Q table has Q-values, which are related to the
learned feedback value), and selects next hop node based
on the maximum Q-value of the neighbor nodes. Note that
this is not exactly same as Q routing, our Q-value is the
reward value rather than the delay time. Therefore, the node
with the maximum Q-value is selected as the next hop node.
However, these Q-values are not accurate and may not pro-
vide the best solution. These Q-values should be updated in
a frequently for accurate routing decisions. In other words,
the Q-value is updated whenever a node sends a packet to its
neighbor.

In Figure 3, there are four possible routes to des-
tination node 6, i.e., {1− 3− 6}, {1− 3− 4− 5− 6},
{1− 4− 5− 6} and {1− 4− 3− 6}. According to
equation (24), after 300 iterations using MATLAB, the
Q-value of node 1 can be calculated. The neighbor nodes of
node 1 are node 2, node 3 and node 4. However, node 2 does
not have a route to destination node 6, so the Q-value is null.
Q1 (3, 6) = 5 is larger than Q1 (4, 6) = 4.05, so node 1
selects node 3 as the next hop node. The possible paths
are now {1− 3− 6} and {1− 3− 4− 5− 6}. Applying
Dijkstra’s algorithm, the longest path {1− 3− 4− 5− 6} is
excluded from the candidate routes. Therefore, the optimal
route from node 1 to node 6 is {1− 3− 6}. Different routing
results can be obtained quickly by changing the number
of EH-SUs and modifying the source and destination nodes.

FIGURE 4. Impact of communication distance and number of EH-SUs on
network lifetime.

B. ALGORITHM PERFORMANCE EVALUATION
In this section, we will simulate the effectiveness and char-
acteristics of EHR-QL. When routing, there are many factors
that affect the network lifetime, such as the network topol-
ogy (number of nodes), transmission rate, transmission range
(communication distance) and residual energy. As shown
in Figure 4 (three-dimensional surface map), the network
lifetime of an EH multi-hop CRN is related to the distances
and the number of EH-SUs. It can be seen from Figure 4 that
the network lifetime decreases gradually with the increase
of the communication distance but increases with an increase
in the number of nodes.We analyze the impact of the commu-
nication distance and the number of EH-SUs in the network
lifetime. The specific analysis process is as follows:
• The loss of signal strength is related to the transmission

distance. As shown in Figure 4, the network lifetime does
not decrease sharply with distance but rather changes slowly.
That is because the EH andmulti-hop network for close-range
communication is considered in a CRN. Therefore, its disad-
vantage that, the network lifetime will be shortened with an
increase in communication distance will be compensated by
EH and multi-hop. However, once the transmission distance
from the source node to the destination node exceeds the
distance threshold Dth = 30 meters, the transmission energy
consumption will be very large. As a result, the network
lifetime also changes rapidly. The simulation shows that the
EHR-QL multi-hop routing algorithm still performs well in a
large coverage area, which effectively expands the coverage
area of the network and prolongs the network lifetime.
• Considering the complexity of the algorithm, the num-

ber of EH-SUs is set to 20. Since each SU has EH ability,
the network lifetime is longer than that of an energy-limited
network. Thus, the problem of dynamic topology can be
solved better with a multi-hop CRN. Figure 4 illustrates how
the lifetime of the entire network changes with the number
of nodes. The blue dot in Figure 4 indicates that when the
communication distance is 0.15 meters and the number of
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FIGURE 5. Residual energy value varies with distance for different
discount factors where α = 0.7, ε = 0.3.

FIGURE 6. Average throughput varies with the number of EH-SUs for
different learning rates where γ = 0.9, ε = 0.5.

nodes is 15, the maximum lifetime of EH multi-hop CRN is
31.5432 seconds.

Figure 5 illustrates that for different values of γ , the resid-
ual energy of the source node decreases as the communication
distance increases, where α = 0.7, ε = 0.3. Once the
communication distance exceeds the threshold of 30 meters,
the node energy consumption will increases. As a result,
the residual energy also drops sharply. When the distance
reaches 63.35 meters and γ = 0.1, the residual energy will
be at least 17.21 J. At the same time, it can be seen that in
the case of the same communication distance, a larger value
of γ leads to more attention paid to the experience and the
energy-saving routing path is more likely to be selected, and
the residual energy will be larger.

Figure 6 provides the average throughput of the EH multi-
hop CRN that is obtained through simulation. As the number
of EH-SUs increases, the throughput increases and the rout-
ing energy consumption decreases. It can be explained that as
the number of EH-SUs node increases, the energy harvested

FIGURE 7. Comparison of algorithmic time complexity relative to the
model of [14].

in the network increases, and when the source EH-SU node
sends data to the destination EH-SU node, the selected rout-
ing probability increases. By constantly updating the return
value, the optimal path is selected, and the network energy
is balanced while the network throughput is improved. It can
also be seen from equation (25), that the larger the learning
rate α is, the less the training is before retention. As seen
from Figure 6, EHR-QL can achieve the highest network
average throughput when the learning factor α is 0.9. The
higher the learning factor α is, the more balanced the energy
utilization is.

C. ALGORITHM PERFORMANCE COMPARISON
To evaluate our proposed algorithm, we analyze it relative to
other similar algorithms. From the aspects of algorithmic time
complexity, convergence, end-to-end delay, system through-
put and jitter delay, we compare EHR-QL with algorithms
in [14] and [15].

Figure 7 shows how the running time of the EHR-QL
algorithm changes as the scale of the problem increases. It can
be seen that by increasing the training time, the agent Q table
is trained better, and the agent is more likely to find the
optimal path of the target state. In this way, the algorithm
running time is slowly reduced. When the problem scale
reaches 500, the algorithm running time is slowly increasing
with the number of EH-SUs. Compared with the model of
literature [14], the EHR-QL running is slightly less, although
the time complexity both isO(N 2). Themain reason for this is
that in the state setting, we consider the harvesting energy, the
battery residual energy and the number of EH-SUs, while the
model of literature [14] only considers energy and distance.

Figure 8 depicts the number of iterations required for the
three algorithms at different episodes. We can also clearly
see the convergence speed of the three algorithms from the
graph. When the convergence target value is 0.15, the con-
vergence average iteration number is 10 and the episode
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FIGURE 8. Comparison of algorithm convergence with models
of [14] and [15].

is approximately 31.28, EHR-QL converges. The models
of [14] and [15] need to continue iterating and training until
the number of episodes is approximately 35.15. It can be con-
cluded that the convergence speed of EHR-QL is the fastest
(in other words, the iterations and episodes of EHR-QL
are the lowest), followed by the models of [14] and [15].

In Figure 9, as the number of EH-SU nodes increases,
the number of available routes also increases, as does the
network lifetime. When the number of EH-SU is 20 and
γ = 0.9, the network lifetime under the EHR-QL algorithm
is the largest, and at a value of approximately 20.56 seconds.
All three algorithms consider the energy persistence problem
of the SU node, but the EHR-QL algorithm also considers
the residual energy maximization problem, so its lifetime
is longer than the other two algorithms. At the same time,
we also noticed that when γ = 0.9, the lifetime of the
model of [15] is higher than the model of [14]. The main
reason is that in the model of [15] pairs of each point-to-
point problem are modeled as a Markov decision process and
the RL algorithm, SARSA, is combined with linear function
approximation.

Figure 10 demonstrates the process of increasing the
average throughput as the number of episodes changes.
When the γ values are the same, the average throughput
of EHR-QL is slightly higher than that of the other two
algorithms. There are several reasons for this. First, the
EHR-QL algorithm balances the load on the network. Second,
it considers maximizing the throughput rate and minimiz-
ing energy consumption. Finally, when setting the reward
function, EHR-QL also considers energy harvesting, residual
energy and energy consumption.

In addition, γ also changes the average throughput. The
larger the γ is, the larger the average throughput is. From
Figure 9 and Figure 10 we can know that the γ value will
affect the length of the network lifetime and the size of
the average throughput. However, it is worth noting that the
optimal path is constant regardless of the γ value.

FIGURE 9. The network lifetime VS. number of EH-SUs with different
discount factors.

FIGURE 10. The average throughput VS. number of episodes with
different discount factors.

In this section, we will describe the effect of the learning
rate α on average throughput and end-to-end delay. α is an
important parameter that affects the learning efficiency of
Q learning. In the Q learning of RL, α is closely related to
the dynamic level of the environment. Specifically, a higher
(or lower) α value is required if the environmental dynamics
are high (or low).

This is illustrated in Figure 11, where a higher α value indi-
cates a higher performance enhancement. Higher through-
put is also obtained compared to lower α values. At the
same time, as the number of EH-SUs increases in network,
the average throughput also increases. When the number
of EH-SUs nodes is 20, the average throughput reaches a
maximum of approximately 8.56 bits/s/Hz. From Figure 12,
it can be seen that the average throughput obtained
by EHR-QL is slightly higher than that of the other two
algorithms. However, the average throughput of the model
of [14] is very close to that model of [15].
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FIGURE 11. The average throughput VS. number of EH-SUs with different
learning rates.

FIGURE 12. The average end-to-end delay VS. number of episodes with
different learning rates.

In a multi-hop network, each node sends data through
a relay in a routing protocol. Considering that the random
scene test cannot accurately reflect the performance of the
routing algorithm, multiple experiments with time delay are
simulated according to the training times, and thus, the per-
formance of EHR-QL is described more objectively.

Similarly, Figure 12 shows that as the learning ratios are
changed from α = 0.1 to α = 0.5 and then to α = 0.9,
the average end-to-end delay decreases as the number of
episodes increases. In the case of the learning rate α = 0.9,
episode [0, 10], the EHR-QL method provides the best net-
work performance. The average end-to-end delay of EHR-QL
is minimal. With the increase of episodes, when the episode
is at [50, 60], the delays obtained by the three algorithms all
reach the same value of 0. Through RL, the three algorithms
select the optimal path for signal transmission through contin-
uous learning. Therefore, the average end-to-end delay also
decreases with the increase in trainings time.

VI. CONCLUSION
We have studied the routing problem in the EH multi-hop
CRN communication scenario, where only the EH procedure
is assumed at the transmitter and relay of the SU. Different
from other researchers, we assumed that the battery does not
leak, and considered the factors affecting routing, such as the
distance of the node, the number of hops, the communication
energy consumption and the residual energy consumption.
The EH multi-hop CRN communication problem is modeled
as a POMDP and the Q-learning RL algorithm is used to
find a routing strategy aimed at maximizing the transmission
rate and minimizing energy consumption. Combining energy
harvesting and throughput maximization, we propose the
EHR-QL algorithm. In addition, we provide an analysis and
a proof of the time complexity and convergence for the
proposed algorithm. The effectiveness of our proposed rout-
ing strategy is evaluated through experimental and numeri-
cal results. The numerical simulation results show that the
EHR-QL performance is superior to other routing algorithms
in terms of extending the network lifetime, saving residual
energy, increasing the average throughput and decreasing the
average end-to-end delay.

In the future, we intend to design cross-layer routing to
optimize the performance of the physical layer, data link layer
and network layer. Meanwhile, the experimental process of
EH is more refined. The algorithm in this paper is applied
to the further expansion of RL, i.e., multi-agent methods
and deep reinforcement learning. At the same time, with the
research findings of this paper, SU network performance can
be improved in much more complex and more realistic sce-
narios, such as with power allocation, channel access, spec-
trum sensing and so on. This paper has important implications
for the widespread use of CRNs and green communications.
In addition, it also provides new research methods, research
ideas and a research basis for the theory of CRN transmission
technology.

APPENDIX A
A. DERIVATION OF BELLMAN EQUATION I

V π (s) = Eπ
[
Rni,t |St = s

]
V π (s) = Eπ

[
ri,t+1 + γ ri,t+2γ 2ri,t+3 + · · · |St = s

]
= Eπ

[
ri,t+1 + γ

(
ri,t+2 + γ ri,t+3

+ γ 2ri,t+4 + · · ·
)
|St = s

]
= Eπ

[
ri,t+1 + γRni,t+1

(
si,t+1

)
|St = s

]
= Eπ

 ri,t+1︸ ︷︷ ︸
immediate reward

+ γV π
(
si,t+1

)︸ ︷︷ ︸
discount value of the next state value function value

|St = s


=

∑
a∈A

π (s, a)
[
Rass′ + γ

∑
s′∈S

Pass′V
π
(
s′
)]

(27)
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The value function can be divided into two parts, i.e., ri,t+1 is
the immediate reward, and γV π

(
si,t+1

)
is the discount value

of the next state value function value.

V π (s) =
∑

a∈A
π (s, a)

[
Rass′ + γ

∑
s′∈S

Pass′V
π
(
s′
)]
(28)

Equation (2) represents the expected cumulative reward value
obtained by the system according to equation (13) after
implementing action policy π .

B. DERIVATION OF BELLMAN EQUATION II

Qπ (s, a) = Eπ
[
Rni,t |St = s,At = a

]
Qπ (s, a) = Eπ

[
ri,t+1 + γ ri,t+2

+ γ 2ri,t+3 + · · · |St = s,At = a
]

= Eπ
[
ri,t+1 + γ

(
ri,t+2 + γ ri,t+3

+ γ 2ri,t+4 + · · ·
)
|St = s,At = a

]
= Eπ

[
ri,t+1

+ γ
∑∞

k=0
γ krt+k+2 |St = s,At = a

]
=

∑
s′∈S

Pass′
[
Rass′ + γEπ

×

(∑∞

k=1
γ kri,t+k+2

∣∣st+1 = s′
)]

=

∑
s′∈S

Pass′
[
Rass′ + γEπ

×

(∑∞

k=1
γ kri,t+k+2

∣∣st+1 = s′,At = a′
)]

=

∑
s′∈S
Pass′

[
Rass′ + γ

∑
a′∈A
π
(
s′, a′

)
Qπ

(
s′, a′

)]
= Rass′ + γ

∑
s′∈S

Pass′
∑

a′∈A
π
(
s′, a′

)
Qπ

(
s′, a′

)
(29)

V π (s) = Eπ
[
Rni,t |St = s

]
=

∑
a∈A

P [At = a |St = s ]

∗Eπ
[
Rni,t |St = s ,At = a

]
(30)

= π (s, a)Qπ (s, a)

Qπ (s, a) = Rass′ + γ
∑

s′∈S
Pass′

∑
a′∈A

V π
(
s′, a′

)
(31)

APPENDIX B
PROOF OF CONVERGENCE
Let Q∗

(
si,t , ai,t

)
denote the Q-value of the state si,t after the

t + 1 th update, and the expression is as follows

Q∗
(
si,t , ai,t

)
= (1− α)Q

(
si,t , ai,t

)
+α

[
ri,t + γ maxQ

(
si,t+1, ai,t+1

)]
(32)

Additionally, let 1Q denote the maximum error of all of the
entries in the Q-value table, as shown below

1Q = max
∣∣Q (si,t+1, ai,t+1)− Q (si,t , ai,t)∣∣ (33)

where Q
(
si,t , ai,t

)
represents the value before the update.

Q∗
(
si,t , ai,t

)
− Q

(
si,t , ai,t

)
= max

∣∣∣(1− α)Q (si,t , ai,t)
+α

[
ri,t + γ maxQ

(
si,t+1, ai,t+1

)]
− (1− α)Q

(
si,t , ai,t

)
+α

[
ri,t + γ maxQ

(
si,t , ai,t

)]∣∣∣
=

∣∣∣α [ri,t + γ maxQ
(
si,t+1, ai,t+1

)]
−α

[
ri,t + γ maxQ

(
si,t , ai,t

)]∣∣∣
=

∣∣∣α [r maxQ
(
si,t+1, ai,t+1

)
− γ maxQ

(
si,t , ai,t

)]∣∣∣
=

∣∣∣αγ [maxQ
(
si,t+1, ai,t+1

)
−maxQ

(
si,t , ai,t

)]∣∣∣
=

∣∣∣αγ max
[
Q
(
si,t+1, ai,t+1

)
− Q

(
si,t , ai,t

)]∣∣∣
= αγ max

∣∣∣[Q (si,t+1, ai,t+1)− Q (si,t , ai,t)]∣∣∣
= αγ1Q (34)

where 0 ≤ α ≤ 1 and 0 ≤ γ ≤ 1 are bounded. Therefore, for
any si,t and ai,t , the updatedQ∗

(
si,t , ai,t

)
is at most αγ times

the maximum error1Q in the Q-values table. After k stages,
since each state and action is frequently accessed infinitely,
the error is at most (αγ )k 1Q. The number of such intervals
is infinite, so when k →∞, (αγ )k 1Q→ 0, andQ

(
si,t , ai,t

)
converges to Q∗

(
si,t , ai,t

)
.
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