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ABSTRACT Characterized by less parameter settings, easy implementation, and strong optimization
capacity, the crow search algorithm has been successfully applied to solve the optimization problem. As the
basic crow search algorithm is a new kind of swarm intelligent algorithm only based on the crow’s memory
foraging mode, it also contains defects like slow search speed and low optimization precision in later
iterations, which are especially obvious for the optimization of high-dimensional functions. In order to
overcome these shortcomings, a new crow search algorithm based on neighborhood search of non-inferior
solution set (NICSA) is proposed. The proposed algorithm makes the crow individual choose the memory
search mode or neighborhood search mode automatically in the course of evolution by the determination
factor of non-inferior solution. With this strategy, the local exploitation and the global exploration of the
algorithm became more balanced. In the neighborhood search, the selectivity factor is used to guide non-
inferior solutions to adaptively execute neighborhood search of Levy flight or Gaussian flight, to enhance the
neighborhood searchability of the algorithm and improve the optimization precision. The result of simulation
experiments with 23 benchmark test functions verifies that the proposed algorithm has good optimization
effect in the aspects of search veracity, convergence rate, and robustness.

INDEX TERMS Crow search algorithm, determination factor of non-inferior solution, neighborhood search,
selectivity factor.

I. INTRODUCTION
In the fields of scientific research and engineering prac-
tice, most problems encountered by people boil down to
the issue of solution optimization. As a computational pro-
cess to find the optimal solution according to the features
and requirements of the problems, it has always been the
hot research topic. The common optimization algorithms for
solving the optimization problem include traditional exact
solution method, structural algorithm and swarm intelligent
algorithm. The traditional exact solution method [1], [2] can
get the exact solution of the problem, but it is only suitable
for the fields of small-scale problem due to its complexity.
Meanwhile, it requires the problem to be continuous
and differentiable when solving the optimization prob-
lem, and lacks global optimization ability for multimodal,
strong-nonlinearity and dynamically changing problems [3].

The associate editor coordinating the review of this manuscript and
approving it for publication was Bora Onat.

The structural algorithm [4] can acquire the solution rapidly,
but it has poor solution quality and can hardly meet the actual
engineering requirements. The swarm intelligent algorithms
are the global optimization methods designed through sim-
ulating the cooperative behavior mechanism among gregar-
ious biological individuals in natural world. Such method
can search the optimum solution or quasi-optimal solution
of complicated optimization problems faster than traditional
exact methods. Comparedwith traditional optimizationmeth-
ods, the swarm intelligent algorithm has simple princi-
ples, few adjustment parameters and relatively strong global
optimization ability, and does not need gradient informa-
tion of the problems. At present, common swarm intel-
ligent algorithms include particle swarm optimization [5],
differential evolution algorithm [6], artificial bee colony
algorithm [7], cuckoo algorithm [8], flower pollination
algorithm [9], krill swarm optimization algorithm [10], [11],
and sine & cosine search algorithm [12]–[14]. Moreover,
it is extensively applied to the engineering fields of function
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optimization [15]–[17], combination optimization [18], flow
shop scheduling [19]–[21] and image processing. There-
fore, it has practical and application significance to
get the optimum solution through the swarm intelligent
algorithm.

The crow search algorithm (CSA) is a new swarm intel-
ligent algorithm proposed by Askarzadeh [22] according to
the crow’s intelligent behaviors in 2016. Characterized by
easy implementation, less parameter setting and relatively
strong development capacity in the searching process, it has
already been successfully applied to solve the problems
of function optimization and engineering application fields,
and gained a very good effect [22]–[26]. Askarzadeh [22]
studied the crow’s superhigh memory ability when seeking
and hiding food, and designed the crow search algorithm.
According to the results of solving 6 constrained engineer-
ing design problems, the crow search algorithm has better
solution results than genetic algorithm and particle swarm
optimization. In literature [23], the crow search algorithm
was used to solve the optimum size and position of capacitors
in power distribution network. From the experimental results,
CSA possesses more accurate solutions than other search
methods. Oliva et al. [24] utilized the crow search algorithm
to optimize the threshold value in image segmentation tech-
nology. Compared with other separation optimization tech-
niques, CSA can avoid premature convergence of sub-optimal
solutions, and obtain an excellent effect in complicated MR
image automatic segmentation. Aleem et al. [25] optimized
the design of resonance damping capacity in filters through
the crow search algorithm. Compared with the genetic algo-
rithm, this algorithm presents a higher convergence rate and
can effectively solve the optimal design problem of third-
order passive filters in power distribution network. Besides,
Liu et al. [26] optimized the input weight of extreme learning
machine (ELM) and threshold value of hidden layer neuron
with the crow search algorithm, and proposed a groundwater
quality evaluation model (CSA-ELM) of extreme learning
machine (ELM) based on crow search algorithm. In compre-
hensive evaluation of underground water quality, the evalu-
ated precision and generalization ability of CSA-ELMmodel
reach a very high level. However, the primary crow search
algorithm is a swarm intelligent search algorithm established
according to the crow’s life habit of searching food via its
memory ability, so this algorithm has defects shown by other
swarm intelligent algorithms including low search precision,
high possibility of getting into local optimum, and premature
convergence, especially for multi-dimensional optimization
problems.

In order to overcome the defects of primary crow search
algorithm, many scholars proposed various improvement
strategies [27]–[35]. Jain et al. [27] introduced experience
factor to balance the exploration and development abilities
of the algorithm, promoted the algorithm to conduct global
search in the whole solution space with the Levy flight

mode, prevented the algorithm to fall into the local opti-
mum, and avoided premature convergence. Through veri-
fication with high-dimensional nonlinear benchmark func-
tion, the improved CSA has very strong competitiveness
and is not sensitive to the dimensions. Sayed et al. [28]
proposed a sine chaotic crow search algorithm, and applied
this improved algorithm to solve feature selection prob-
lems. This algorithm has greatly improved the classifica-
tion performance and reduced the number of characteristic
values selected. Dos et al. [29] adjusted the control param-
eters via diversity information and Gaussian distribution,
and verified the effectiveness of improved CSA with bench-
mark problems of solenoid. Mohammadi and Abdi [30] pro-
posed an improved crow search algorithm by introducing
the new crow tracking target and adaptive adjustment of
flight length, and used it to solve economic load dispatch
problems. Díaz et al. [31] improved the awareness probability
(AP) of primary crow search algorithm and the method of
producing new solutions with stochastic disturbance. The
proposed algorithm has maintained population diversity, and
improved the convergence rate of solving complicated multi-
modal optimization problems. Gupta et al. [32] introduced
an availability feature extraction algorithm based on hier-
archical model, so as to extract and predict the availability
feature. In literature [33]–[35], the chaos theory was utilized
to improve the primary crow search algorithm, and used
it to solve fractional optimization problems, multi-objective
optimization problems and Parkinson’s disease prediction.
The above measures have improved the optimization per-
formance of the crow search algorithm to some extent, but
all improvement work focuses on standard CSA based on
single memory search mode. They do not consider other
search behaviors in the crow’s intelligent behaviors. When
solving the complicated and high-dimensional problems, they
still have defects like slow convergence rate, low solution
accuracy, and insufficient robustness.

In fact, except a few varieties including collared crow,
other crows in natural world are the gregarious animal of
high gregariousness. With an extremely high intelligence
quotient, a crow individual has creative thinking ability [51].
For instance, the crowwill fly downwhen the ice fisherman in
Sweden leaves, and it will eat the fish or bait by drawing back
the fishline. Under the enlightenment of the crow’s foraging
mode, a new crow search algorithm based on neighborhood
search of non-inferior solution was proposed. According to
the determination factor of non-inferior solution set, the crow
individual will automatically choose the foraging search
mode. The comparison between the crow’s fitness value and
the current global optimum, the neighborhood search mode
of Levy flight or Gaussian flight is selected self-adaptively, to
strengthen the neighborhood search ability of the algorithm.
Compared with other swarm intelligent algorithms, the pro-
posed algorithm has better performance in search veracity,
convergence rate and stability.
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II. ANALYSIS ON THE PRIMARY CROW SEARCH
ALGORITHM AND ITS DEFECTS
A. PRIMARY CROW SEARCH ALGORITHM
As a bird living a gregarious life, the crow has very intelligent
foraging behaviors: (i) hide superfluous food (the hiding
place of food is called memory location), which can be taken
out if necessary; (ii) follow other crows to take their food,
while other crows will prevent their food from being stolen
with a certain awareness probability(AP). Suppose that n
crows are distributed in a D-dimensional space at random,
and x ti is the location of crow i in the tth iteration. The update
mode of individuals is as follows:

x t+1i =

{
x ti + r1

∗fl ti
∗(memtj − x

t
i ), r ≥ APtj

random position, other
(1)

where r1 and r obey uniform distribution between 0 and 1,
memtj means the memory location of crow j in the tth itera-
tion, APtj denotes the awareness probability of crow j in the
tth iteration, and fl ti indicates the flying range crow i in the
tth iteration.

B. ANALYSIS ON THE DEFECTS OF PRIMARY
CROW SEARCH ALGORITHM
As a swarm intelligent algorithm, the crow search algorithm
has relatively strong global search capability. The primary
crow search algorithm conduct search simply according to
Eq. (1), it has limitations as following:

FIGURE 1. Schematic diagram for the individual crow’s movement.

(i) In the search process, the crow individual will start
random search in the sector area centering on the current
position. The sector area is constructed by the other individ-
ual’s historical optimum position (memory location), current
position, and their difference value. Owing to such search
method of single mode, the crow’s flight activity lacks motil-
ity and flexibility. Figure 1 is the search schematic diagram
of the basic crow search algorithm for the case of finding the
maximum. Because the basic crow search algorithm does not
have the ability to search non-inferior solutions, it is unable
to search other possible global optimum regions (e.g. g)
effectively, which leads to easy falling into local optimum.

The probability that the algorithm can search for better values
will be greatly increased if the local search can be carried out
in the field of individuals whose memory values are similar
to the current optimal memory values.

(ii) The primary CSA enhances the algorithm diversity by
producing new random solutions in probability, but ignores
the fine gene of advantageous positions in the learning
community. Therefore, the algorithm has defects shown by
other swarm intelligent algorithms including low search
veracity, high possibility of getting into local optimum, and
early-maturing, especially for multi-dimensional optimiza-
tion problems.

III. CROW SEARCH ALGORITHM BASED ON
NEIGHBORHOOD SEARCH OF NON-INFERIOR
SOLUTION SET
According to the above analysis, the basic crow search algo-
rithm has relatively strong global search capability, but its
local search capability is not good. In order to balance the
local exploitation and the global exploration capability of
the algorithm, an independent global search and local search
mode should be designed. As you can see in figure 1, if the
crow individual conducts neighborhood search near the cur-
rent optimum individual position, the algorithm’s probability
of finding a better value will be increased greatly. Under
the inspiration of this idea, this algorithm makes the crow
individual choose the memory search mode or neighborhood
search mode automatically in the evolution process by intro-
ducing the determination factor of non-inferior solution. The
principle of the proposed algorithm is as followings: When
the difference between the optimum value searched by a crow
and the current global best value in the population is small,
the solution searched by this crow will be the non-inferior
solution. As there might be better solutions in the field, this
crow will carry out neighborhood search around, rather than
executing the mode of memory search. Neighborhood search
of Levy flight is executed for the crow individuals far away
from the global optimum, to enhance the global exploration
of the algorithm. Neighborhood search of Gaussian flight is
executed for the crow individuals bear the global optimum,
so as to enhance the local exploitation capability of the algo-
rithm. This mechanism possesses mutability when searching
the nearby areas in detail, so it can fully traverse all solution
areas.

A. SELF-ADAPTIVE DETERMINATION FACTOR OF
NON-INFERIOR SOLUTION SET
In the primary crow search algorithm, the crow will execute
memory search mode or stochastic search mode with a fixed
awareness probability (AP). However, this search strategy
does not consider features of the current crow, and the search
process has a certain blindness. Neighborhood search should
be conducted for superior individuals with a relatively high
probability, so as to acquire a better solution. The searchmode
of fixed probability will miss a comparatively excellent solu-
tion in the current field. The primary crow search algorithm
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prevents the food from being stolen in a randomway. Though
the early-maturing risk is increased, but the convergence
rate is lowered. In order to realize full neighborhood search
around non-inferior solutions, we designed a self-adaptive
judgment method of non-inferior solutions. The self-adaptive
judgment method of non-inferior solutions is as follows:

fit t (memi)− fit t (membest )

> ω · |fit t (memavg)− fit t (membest )| (2)

where fit t (memi), fit t (membest ) and fit t (memavg) are themem-
ory value of crow i in the tth iteration, thememory value about
the best position in the population and the average memory
value respectively. ω means the coordinating parameter used
to adjust the scale of non-inferior solution set.

Neighborhood search of non-inferior solutions in the pop-
ulation can help to excavate possible better solutions around
the non-inferior solutions, and to improve the search veracity
of the algorithm. But if too many non-inferior solutions are
chosen, the algorithmmight fall into local optimum easily and
show insufficient global development ability. In this paper,
a self-adaptive non-inferior solution adjustment parameter ω
was designed, and its definition is as follows:

ω = log0.5(t/Titer) (3)

where t and Titer are the current number of iterations and
maximum number of iterations. The value of parameter ω
decreases with the increase of iterations, and the correspond-
ing number of non-inferior solution sets rises. In early iter-
ations, most crow individuals execute the mode of memory
search, so as to enhance the global search capability. In later
iterations, more and more crows will execute neighborhood
search of non-inferior solutions, so as to improve the local
search capability and increase the search veracity of the
algorithm.

B. SELF-ADAPTIVE NEIGHBORHOOD SEARCH STRATEGY
GUIDED BY SELECTIVITY FACTOR
In order to give the algorithm sufficient ergodicity and muta-
bility during neighborhood search of non-inferior solution
set, a neighborhood search strategy of dynamic self-adaptive
selection is designed in this paper.

1) NEIGHBORHOOD SEARCH MODE OF LEVY FLIGHT
Levy flight originates from the French statistician Paul Lévy,
and many colonial organisms’ life styles can be described
with Levy flight. Levy flight is often reflected as the combina-
tion of long-term short-distance wander and occasional long-
distance jump. Such long-distance jump is characterized by
directional variability. The neighborhood search mode based
on Levy flight can not only guarantee sufficient ergodicity
near non-inferior solutions, but also has mutation perfor-
mance, which will help to balance the local development
capacity and global exploration capability of the algorithm.
The neighborhood search mode is as follows:

x t+1i = memti + levy(D).
∗memti (4)

FIGURE 2. Comparison chart of Gaussian flight and Levy flight.
(a) Gaussian flight. (b) Levy flight.

where memti is the memory value of crow j in the tth iter-
ation. levy(D) means the D-dimensional Levy flight mode.
Figure 2 is the effect picture when Gaussian flight and Levy
flight are executed for 1,000 times in the two-dimensional
space of initial position (0,0).

As can be seen from the figure 2, Levy flight is appropriate
for the crow individuals far away from the global optimum,
and a strong development capacity is presented. Gaussian
flight can enhance the local development capability of the
algorithm, and it is suitable for individuals near the optimum
individual.

2) NEIGHBORHOOD SEARCH MODE OF
GAUSSIAN MUTATION
The neighborhood search mode of Gaussian mutation can
make the crow individual fully traverse the surrounding posi-
tion, and improve the search veracity of the algorithm. The
traversal mode is as follows:

x t+1i = memti + normrnd(0, 1, 1,D).
∗memti (5)

wherememti is the memory value of crow j in the tth iteration.
normrnd(0, 1, 1,D) are the D random numbers which obey
standard Gaussian distribution.

It can be seen from Eq.(5): The Gaussian disturbance term
is controlled by the crow individual’s current position, so it
can not only effectively prevent the crow individual from
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FIGURE 3. The flowchart of the proposed algorithm.

falling into local extreme point but also guarantee the crow
individual’s self-learning ability and increase the conver-
gence rate. This improvement strategy provides a mechanism
for the crow individual in the population to converge quickly
and avoid early-maturing.

3) SELECTIVITY FACTOR OF NEIGHBORHOOD
SEARCH MODE
In order to make the crow individual choose the suitable
neighborhood search strategy according to its’ evolution
state, neighborhood search of Gaussian flight is executed
for non-inferior solutions near the optimum, which can help
to develop better solutions and increase the convergence
rate. Neighborhood search of Levy flight is executed for
non-inferior solutions far away from the optimum, so as to
increase the development capacity of the algorithm. There-
fore, a self-adaptive selectivity factor was introduced in this
paper, to make the crow individual in this algorithm choose a
reasonable neighborhood search mode. The selectivity factor
is shown in Eq. (6).

σ = 1− exp(−|fitt (memi)− fitt (membest )|) (6)

where fit t (memi) and fit t (membest ) are the memory value of
crow i in the tth iteration and the memory value of the best
position in the population. The self-adaptive neighborhood

search mode guided by selectivity factor is shown in Eq. (7).

x t+1i =

{
memti + levy(d).

∗memti rand ≤ σ
memti + normrnd(0, 1, 1, d).

∗memti else

(7)

From Eq. (6) and (7), the difference between the crow
individual’s fitness value and the optimum fitness value is
relatively huge at starting period, and most crow individuals
in the population execute neighborhood search of Levy flight.
With the increase of iterations, the crow individuals approach
the optimum crow individual gradually, so the algorithm
focuses on development near the optimum solution.

C. ALGORITHM FLOW
The flowchart of the proposed algorithm discussed above is
presented in figure 3 and the procedure is shown as follow.

IV. EXPERIMENTAL SIMULATION
In order to verify the performance of NICSA, the experiment
will be conducted from the following four aspects:(1) The
NICSA is compared with bat algorithm (BA) [36], [37],
cuckoo optimization algorithm (CS) [8], differential evo-
lution (DE) [38], flower pollination algorithm (FPA)
[9], [39], grey wolf optimizer (GWO) [40], particle swarm
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TABLE 1. The pseudocode of the proposed algorithm.

optimization (PSO) [5], teaching-learning-based optimiza-
tion (TLBO) [41] and crow search algorithm (CSA) [22] for
solving the optimal problems with dimensions lower than 30.
(2) A contrastive analysis is made on the search perfor-
mance of NICSA and other swarm intelligent algorithms with
50 dimensions and 100 dimensions. (3) The significance of
NICSA’s performance is analyzed via wilcoxon rank sum
test. (4) Different values are selected for the determination
factor ω of non-inferior solution and selectivity factor σ of
neighborhood search mode.

A. BENCHMARK FUNCTION AND TEST PLATFORM
1) TEST PLATFORM
For providing a full test environment, the simulation exper-
iment is conducted in the test environment with operat-
ing system of Windows 7, CPU of Intel (R) Core (TM)
i5-7400 (4 cores), dominant frequency of 3.0GHZ and
internal memory of 8GB, and programming tool of
Matlab 2016b.

2) BENCHMARK FUNCTION
In order to validate the effectiveness of the proposed algo-
rithm, 23 benchmark functions in literature [42]–[44] are
selected as the experiment object, and the function type,

serial number, expression, dimension, search scope and
theoretically optimum value are shown in table 2. This test
functions have diversity, and can reflect the search perfor-
mance of the algorithm more objectively, fairly and compre-
hensively. The 23 benchmark functions can be categorized
into three types: f1 ∼ f7 are unimodal high-dimensional func-
tions (I) to investigate the search veracity of the algorithm;
f8 ∼ f13 are the multimodal high-dimensional functions (II)
with many local extreme points used to test the global search
performance of the algorithm; f14 ∼ f23 are the multimodal
low-dimensional functions (III). f5 is a mutated function,
the global optimum is at valley bottom of a parabola (the
change of the fitness value near the valley bottom is quite
small); moreover, it is hard to search the global optimum
of this function. A large number of local minimum values
exist for f9 in the multimodal high-dimensional functions,
which increases the search difficulty of the algorithm. In the
multimodal low-dimensional functions, most functions have
strong oscillation features.

B. EXPERIMENTAL RESULTS AND ANALYSIS ABOUT THE
COMPARISON OF NICSA WITH OTHER SWARM
INTELLIGENT ALGORITHMS
In experimental comparison, the selection of parameters has
a huge influence on the algorithm performance. For fairness
and reasonability, the parameters of the contrast algorithm
are consistent with that of the original literature. Parameters
of the algorithms are presented in table 3. Meanwhile, for
each test function, evaluation is conducted for 50,000 times,
and each algorithm runs independently for 30 times. The
four indexes of optimum value, average value, worst value
and variance are used to measure the performance of various
algorithms, and the experimental statistical results are shown
in table 4-table 6.

It can be seen from table 4 that NICSA has relatively good
performance for unimodal high-dimensional functions. For
functions f1, f2, f3, f5 and f7, the search results of NICSA
are superior to that of the other 8 algorithms in optimum
value, average value, worst value and standard deviation,
presenting very strong robustness. Especially for f5, NICSA
shows strong search performance. For f4, NICSA is a little
inferior to GWO and TLBO, but it is much better that other
algorithms in search performance. This means that GWO
and TLBO are applicable to solve such functions. For f6,
the search result of NICSA is a little inferior to that of DE
algorithm, but superior to that of the other 7 algorithms. For
the comparison algorithms, the overall performance of BA
is the worst, BA and PSO algorithm shows relatively weak
stability and big variance.

As seen from table 5, in terms of multimodal high-
dimensional functions, NICSA can search the global opti-
mum of three functions including f8, f9 and f11, and presents
very good stability. Especially for f8 which is a typical
deceptive function, the distance from the position of global
optimum to the position of another local optimum is long.
Once the algorithm falls into the local optimum, it can hardly
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TABLE 2. Standard test functions.
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TABLE 3. The parameters set of the algorithms.

TABLE 4. Test statistical results of functionf1 ∼ f7.

jump out. NICSA has searched the global optimum in 30,
50 and 100 dimensions (Section 4.3). For the comparison
algorithms, only TLBO algorithm has searched the global
optimum for f11. For f10, NICSA is superior to the other
8 algorithms in optimum value, average value, worst value
and variance. For f12 and f13, NICSA is a little inferior to
DE algorithm, but superior to the other 7 algorithms. This
means that DE algorithm is applicable to such multimodal
high-dimensional functions. But generally speaking, NICSA
has a better search effect.

Table 6 shows the statistical results of 9 algorithms when
multimodal low-dimensional functions are solved. It is shown
that NICSA can search the global optimum of all 10 test
functions, and shows good stability and robustness.

figure 4–figure 26 are the convergence curves of opti-
mal results for 9 algorithms when solving 23 test functions,

and figure 27 – figure 49 are the variance analysis charts.
It can be seen from figure 4 – figure 26, BA shows the
lowest convergence rate, and the convergence rate of the other
7 algorithms varies as the characteristics of test functions
change. For f6, f12 and f13, DE algorithm shows the highest
convergence rate and search veracity, and TLBO algorithm
also presents good convergence performance. But for other
test functions, NICSA shows obviously higher convergence
rate than the other 8 algorithms. Therefore, different algo-
rithms have different advantages in convergence rate, but
NICSA has more comprehensive advantages. From the vari-
ance analysis charts, NICSA has the smallest variance except
for f6 and f19, and it shows good stability for different types of
test functions. On the contrary, the test results of other com-
parison algorithms are unstable, and NICSA has very strong
robustness.
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TABLE 5. Test statistical results of function f8 ∼ f13.

TABLE 6. Test statistical results of function f14 ∼ f23.

Table 7 shows the average running time (in second) spent
by each comparison algorithm for solving 23 benchmark
functions in table 2. The total average running time of NICSA

algorithm is 0.93 s, which is less than that of DE and TLBO,
and more than that of other algorithms, but it is also within
the time range of 1s.
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FIGURE 4. Evolution curves of fitness value for f1.

FIGURE 5. Evolution curves of fitness value for f2.

FIGURE 6. Evolution curves of fitness value for f3.

FIGURE 7. Evolution curves of fitness value for f4.

C. TEST OF HIGH-DIMENSIONAL FUNCTIONS
In order to verify the search performance of NICSA for high-
dimensional functions, independent tests are also conducted
for 13 high-dimensional test functions including f1 ∼ f13
with 50 dimensions and 100 dimensions. Meanwhile, every

FIGURE 8. Evolution curves of fitness value for f5.

FIGURE 9. Evolution curves of fitness value for f6.

FIGURE 10. Evolution curves of fitness value for f7.

FIGURE 11. Evolution curves of fitness value for f8.

test function is evaluated for 50,000 times, and each algo-
rithm runs independently for 30 times. Other parameters of
various algorithms are consistent with parameters in table 3.
The performance of various algorithms is measured through
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FIGURE 12. Evolution curves of fitness value for f9.

FIGURE 13. Evolution curves of fitness value for f10.

FIGURE 14. Evolution curves of fitness value for f11.

FIGURE 15. Evolution curves of fitness value for f12.

four indexes covering optimum value, average value, worst
value and variance, and the experimental statistical results are
shown in table 8.

FIGURE 16. Evolution curves of fitness value for f13.

TABLE 7. The average running time of the different algorithms.

It can be seen from table 8, for high-dimensional functions
with 50 dimensions and 100 dimensions, NICSA shows better
search results than the other 8 algorithms except for f4 and f11.
For f11, both TLBO and NICSA have searched the global
optimum. For f4, the results of NICSA is inferior to GWO
in the research results of 30 and 50 dimensions, but NICSA
shows better results than GWO in optimum value, average
value, worst value and variance in 100 dimensions. There-
fore, NICSA has better performance for high-dimensional
functions.
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FIGURE 17. Evolution curves of fitness value for f14.

FIGURE 18. Evolution curves of fitness value for f15.

FIGURE 19. Evolution curves of fitness value for f16.

D. NONPARAMETRIC STATISTICAL ANALYSIS
In order to better verify the significance of the search effect
of the proposed algorithm, Wilcoxon rank sum test was
conducted for the results in low-dimensional (D<= 30),
50-dimensional and 100-dimensional functions. The value of
effective level p is 0.05. Table 9 – table 11 show the results
of Wilcoxon rank sum test in low-dimensional (D<= 30),
50-dimensional and 100-dimensional functions respectively.
‘‘+’’ means that NICSA has obvious advantages when com-
pared with other algorithms, and ‘‘≈’’ indicates that NICSA
has no obvious difference from other algorithms.

It can be seen from table 9, in the comparison with 5 algo-
rithms including BA, CS, FPA, PSO and CSA, the p values
of 22 functions are smaller than 0.05, showing that NICSA

FIGURE 20. Evolution curves of fitness value for f17.

FIGURE 21. Evolution curves of fitness value for f18.

FIGURE 22. Evolution curves of fitness value for f19.

FIGURE 23. Evolution curves of fitness value for f20.

is superior to the above 5 algorithms. In the comparison with
DE, GWO and TLBO, the p values of 20, 21 and 17 functions
are smaller than 0.05. According to the analysis from the
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FIGURE 24. Evolution curves of fitness value for f21.

FIGURE 25. Evolution curves of fitness value for f22.

FIGURE 26. Evolution curves of fitness value for f23.

angle of statistics, NICSA has obvious search effects for low-
dimensional functions.

Table 10 and table 11 show 50-dimensional (D = 50) and
100-dimensional (D = 100) Wilcoxon rank sum test results.
In the comparison with BA, CS, DE, FPA, PSO and CSA,
the p values of 13 high-dimensional functions are smaller
than 0.05, showing that NICSA is superior to the above
6 algorithms. In the comparison with GWO and TLBO, the p
values of 12 and 11 functions are smaller than 0.05. This
further proves that NICSA has obvious search effects for
high-dimensional functions.

E. PARAMETER SENSITIVITY ANALYSIS
1) PARAMETER ANALYSIS ON THE SELF-ADAPTIVE
DETERMINATION FACTOR ω OF NON-INFERIOR SOLUTIONS
In order to discuss the influence of the self-adaptive deter-
mination factor ω of non-inferior solutions on the algorithm

FIGURE 27. ANOVA test of global optimum for f1.

FIGURE 28. ANOVA test of global optimum for f2.

FIGURE 29. ANOVA test of global optimum for f3.

performance, 23 standard test functions in table 1 are selected
for verification. The value of ω is 0.1∼0.9 with step 0.1,
and independent experiments are conducted for the proposed
strategy in this paper under 10 situations. Other parameters
are consistent with that in table 2. Table 12 shows the results
when different values of ω were chosen. The black bold
represents the winner in the comparison. According to the last
column of table 12, the number of average optimum gained
by way of determination factor is 16, obviously better than
the results with other situations. In order to further calculate
the advantages and disadvantages when different values of
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TABLE 8. Test statistical results of benchmark functions for different algorithm (D = 50 and D = 100).

52884 VOLUME 7, 2019



C. Qu, Y. Fu: CSA Based on NICSA

TABLE 8. (Continued.) Test statistical results of benchmark functions for different algorithm (D = 50 and D = 100).
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TABLE 8. (Continued.) Test statistical results of benchmark functions for different algorithm (D = 50 and D = 100).

FIGURE 30. ANOVA test of global optimum for f4.

FIGURE 31. ANOVA test of global optimum for f5.

ω are adopted, tests are conducted with Friedman. Friedman
test is a nonparametric test method to analyze whether pop-
ulation distribution has significant differences via the rank.
The smaller the average value of rank is, the better the results
will be. According to the ranking situations of Friedman test

FIGURE 32. ANOVA test of global optimum for f6.

FIGURE 33. ANOVA test of global optimum for f7.

when different values of ω are adopted in table 13, the lowest
rank by using Eq. (3) is 3.24, further showing that the search
effect of the proposed strategy in this paper is better than that
under other ω values.
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FIGURE 34. ANOVA test of global optimum for f8.

FIGURE 35. ANOVA test of global optimum for f9.

FIGURE 36. ANOVA test of global optimum for f10.

2) PARAMETER ANALYSIS ON THE SELECTIVITY FACTOR σ
OF NEIGHBORHOOD SEARCH MODE
In the neighborhood search mode, the value of the selec-
tivity factor σ has a big effect on the algorithm perfor-
mance. In order to discuss the influence of parameter on
the search performance of the algorithm, the standard test
functions in table 2 are selected for verification. The value
of σ is 0.1∼0.9 with step 0.1, and independent experiments
are conducted for the proposed strategy in this paper with
10 situations. Other parameters are consistent with that in
table 3.

FIGURE 37. ANOVA test of global optimum for f11.

FIGURE 38. ANOVA test of global optimum for f12.

FIGURE 39. ANOVA test of global optimum for f13.

Table 14 shows the results that NICSA adopts different
values of the selectivity factor σ . The optimum results are
bold. It can be seen from table 14, when the σ value is adopted
according to Eq. (6), 15 values are acquired on average opti-
mal, better than the situation when a fixed value is adopted
for σ . Therefore, it is reasonable to choose neighborhood
search according to Eq.(6). According to the ranking situa-
tions of Friedman test when different values of σ are adopted
in table 15, the lowest rank of choosing σ value according to
Eq.(6) is 4.39, further showing that the search effect of the
proposed strategy in this paper is better than that under other
fixed σ values.
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TABLE 9. Test statistical results of wilcoxon rank sum test (D<= 30).

FIGURE 40. ANOVA test of global optimum for f14.

F. COMPARISON OF NICSA WITH OTHER
ENHANCED CSA METHODS
In order to verify the superiority of NICSA, we compare
the proposed algorithm with other improved CSA, including
improved crow search algorithm based on variable-factor

FIGURE 41. ANOVA test of global optimum for f15.

weighted learning and adjacent-generations dimension
crossover strategy (C4SA) [45], sine cosine crow search
algorithm (SCCSA) [46], and ICSA [27]. For the comparative
analysis between ICSA [27] and NICSA, the test func-
tions including f1∼ f13 with 50 dimensions are conducted.
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TABLE 10. Test statistical results of wilcoxon rank sum test (dim = 50).

FIGURE 42. ANOVA test of global optimum for f16.

FIGURE 43. ANOVA test of global optimum for f17.

For the comparative analysis between other algorithms
(SCCSA and C4SA) and NICSA, the test functions includ-
ing f1 ∼ f13 with 30 dimensions are conducted. Table 16
shows the experimental statistical results of various

FIGURE 44. ANOVA test of global optimum for f18.

FIGURE 45. ANOVA test of global optimum for f19.

various comparison algorithms. ‘‘-’’ means that the compara-
tive algorithms did not test the function. Meanwhile, for each
test function, evaluation is conducted for 50,000 times, and
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TABLE 11. Test statistical results of wilcoxon rank sum test (dim = 100).

FIGURE 46. ANOVA test of global optimum for f20.

FIGURE 47. ANOVA test of global optimum for f21.

the experimental results are the average of 30 independent
test. It can be seen from Table 16, the search results of
NICSA are better than those of ICSA [27] except function f10

FIGURE 48. ANOVA test of global optimum for f22.

FIGURE 49. ANOVA test of global optimum for f23.

(the result of the two algorithms is basically the same).
Compared with SCCSA [46], the search results of NICSA
for all test functions are better than SCCSA [46]. To solve
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TABLE 12. Statistical results with different ω values.

TABLE 13. Rankings of friedman test with different ω values.

unimodal high-dimensional functions, the results of NICSA
is better than C4SA. But the results of C4SA is better than
NICSA for solving multimodal high-dimensional functions,
which shows that the C4SA is suitable for solving these
functions.

G. ENGINEERING OPTIMIZATION PROBLEMS
In order to validate the performance of NICSA for constraint
problems, it is tested against the following three engineering
structure design optimization.

FIGURE 50. Threebar truss design.

1) THREEBAR TRUSS DESIGN
This test case considers a three-bar planar truss design
problem shown in figure 50. The problem has 2 con-
tinuous variables and 3 nonlinear inequality constraints
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TABLE 14. Statistical results under different σ values.

TABLE 15. Rankings of Friedman test under different σ values.

as follows:

min f (x) = (2
√
2 x1 + x2)× l

s.t. g1(x) =

√
2 x1 + x2

√
2 x2

1
+ 2x1x2

P− σ ≤ 0

TABLE 16. The result obtained by NICS and other enhanced CSA methods.

g2(x) =
x2

√
2 x2

1
+ 2x1x2

P− σ ≤ 0

g3(x) =
1

√
2 x2 + x1

P− σ ≤ 0

52892 VOLUME 7, 2019



C. Qu, Y. Fu: CSA Based on NICSA

TABLE 17. Comparison of the best solution obtained by different
algorithm for three-bar truss design problem.

g4(x) =
x1 + x2
1.5

− 1 ≤ 0

where 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1, l = 100cm,P =
kN/cm2, σ = 2kN/cm2.
The comparison of obtained by other methods such as

NCCO [50], CSA [22], andHCPS [49]. The best results of the
various methods for solving the three-bar truss design prob-
lem are shown in table 17. It can be seen from table 17 that
the optimal solution of the NICSA algorithm is better than
NCCO and CSA. Compared with HCPS, NICSA provides
similar results.

FIGURE 51. Tension-compression spring.

2) TENSION COMPRESSION SPRING DESIGN PROBLEM
As figure 51 indicates, the objective of the tension-
compression spring problem is to minimize the weight with
four inequality constraints and three continuous variables.
The approaches has previously been applied to solve this
problem including many different numerical optimization
techniques, such as IAPSO [47], CSA [22], and HCPS [49].

min f (x) = (x3 + 2)x2x21

s.t. g1(x) = 1−
x32x3

71785x41
≤ 0

g2(x) =
4x22 − x1x2

12566(x2x31 − x
4
1 )
+

1

5108x21
≤ 0

g3(x) = 1−
140.45x1
x22x3

≤ 0

g4(x) =
x1 + x2
1.5

− 1 ≤ 0

where 0.05 ≤ x1 ≤ 2, 0.25 ≤ x2 ≤ 1.3, 2 ≤ x3 ≤ 15.
Table 18 shows the best solution and the values of the

constraints obtained by NICSA and other algorithm for this
design problem. According to the table 18, the optimal value
of NICSA is superior to that of other 3 methods.

TABLE 18. Comparison of the best solution obtained by different
algorithm for tension-compression spring problem.

TABLE 19. Comparison of the best solution obtained by different
algorithm for pressure vessel design problem.

FIGURE 52. The pressure vessel design problem.

3) PRESSURE VESSEL DESIGN PROBLEM
The pressure vessel design problem proposed by Kannan
and Kramer is often used to validate the performance of the
method for solving constraint problems. Figure 52 shows
a pressure vessel with four variables and four nonlinear
inequality constraints. The objective function of the problem
can be expressed as follows:

min f (x) = 0.6224x1x3x4 + 1.7881x2x23 + 3.1661x21x4
+ 19.84x21x3

s.t. g1(x) = −x1 + 0.0193x3 ≤ 0

g2(x) = −x2 + 0.00954x3 ≤ 0

g3(x) = −πx23x4 −
4
3
πx33 + 1296000 ≤ 0

g4(x) = x4 − 240 ≤ 0

where 0 ≤ x1, x2 ≤ 100, 10 ≤ x3, x4 ≤ 200.
The comparison results obtained for the pressure vessel

design problem with previous studies including IAPSO [47],
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CSA [22],and HCS-LSAL [48]. From table 19, it is clear that
the best solution obtained by NICSA is better than those by
IAPSO, CSA,and HCS-LSAL.

V. CONCLUSIONS
Aiming at the defects of the crow search algorithm based
on memory search mode, a new crow search algorithm
based on neighborhood search of non-inferior solution is
proposed. The new algorithm can make the crow individ-
ual choose a suitable foraging search mode through the
self-adaptive determination factor of non-inferior solutions.
Hence, the algorithm can conduct optimum search more rea-
sonably, and sufficient neighborhood search can be conducted
around non-inferior solutions. In neighborhood search, the
determination factor of neighborhood search mode was
designed. The crow individuals choose the neighborhood
search mode of Levy flight or Gaussian flight self-adaptively,
so as to enhance the neighborhood search capacity of the
algorithm. According to the experimental results about the
comparison with other swarm intelligent algorithms in con-
vergence rate, search veracity, variance analysis, nonparamet-
ric statistical analysis and parameter sensitivity, the proposed
algorithm is effective.
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