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ABSTRACT Building footprint extraction from high-resolution aerial images is always an essential part
of urban dynamic monitoring, planning, and management. It has also been a challenging task in remote
sensing research. In recent years, deep neural networks have made great achievement in improving the
accuracy of building extraction from remote sensing imagery. However, most of the existing approaches
usually require a large amount of parameters and floating point operations for high accuracy, it leads to high
memory consumption and low inference speed which are harmful to research. In this paper, we proposed
a novel efficient network named ESFNet which employs separable factorized residual block and utilizes
the dilated convolutions, aiming to preserve slight accuracy loss with low computational cost and memory
consumption. Our ESFNet obtains a better trade-off between accuracy and efficiency, it can run at over
100 FPS on single Tesla V100, requires 6x fewer FLOPs and has 18x fewer parameters than state-of-the-
art real-time architecture ERFNet while preserving similar accuracy without any additional context module,
post-processing and pre-trained scheme.We evaluated our networks onWHU building dataset and compared
it with other state-of-the-art architectures. The result and comprehensive analysis show that our networks are
benefit for efficient remote sensing researches, and the idea can be further extended to other areas. The code
is publicly available at: https://github.com/mrluin/ESFNet-Pytorch

INDEX TERMS Building extraction, deep learning, efficient neural networks, remote sensing, semantic
segmentation.

I. INTRODUCTION
High-resolution aerial images are widely used in modern
smart cities [1], [2]. One of the most import applications
is automatic building extraction (shown in Fig.1) which is
aimed to separate pixels belong to buildings with others
in urban environments, and it can be considered as pixel-
level classification problem, also defined as semantic seg-
mentation task in computer vision. Semantic segmentation
of remote sensing imagery has great significance on remote
sensing research, such as sea-land segmentation [3], road
detection [4], and land cover objects classification [5].

Nowadays, technology has reached an unprecedented
level, the advanced sensors and multimedia systems pro-
vide people a better life [6], [7]. The advanced remote

The associate editor coordinating the review of this manuscript and
approving it for publication was Jiachen Yang.

sensing sensors provide more and more high-quality, high-
resolution aerial images with much higher ground sampling
distance than the past [8], so that the imagery usually con-
tains abundant land cover information and confusing environ-
ment backgrounds which increased the difficulty on semantic
segmentation task especially in urban areas. As a result,
traditional learning-based method, which is over dependent
upon manual designed features, cannot solve the problems
of large scale dataset and meet requirements of nowadays
practical applications.

In the last several years, convolutional neural networks
have made great achievement in kinds of computer vision
tasks, such as classification [9], object detection [10], [11],
image quality retargeting [12] and semantic segmenta-
tion [13]. Since the milestone work of Long et al. [14]
in 2014, they convert the classical CNN to FCN (fully con-
volutional neural network) by replacing the fully connected
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FIGURE 1. Examples of building extraction. (a) Aerial images. (b) Ground
truth in which buildings are in white and background is in black.
(c) Prediction of our network.

layers into intermediary score maps and using multi-scale
feature fusion scheme to solve dense pixel-level classi-
fication tasks, the approaches of deep neural networks
have been extensively used in semantic segmentation tasks,
and they gradually replaced the conventional approaches
in which features are extracted manually. Inspired by
Ronneberger et al. [17], encoder-decoder architecture is
widely used in segmentation tasks, such as SegNet [15],
DeconvNet [16] and U-Net [17], to name a few. Encoder
is usually based on fashion classification networks which
is designed to learn high-level semantic representation of
the whole imagery, and the decoder is used to match the
resolution of output from encoder to the original. For further
improving accuracy, DeepLab family [18]–[21] utilize post-
processing and additional context module, such as dense con-
ditional random fields (dense-CRF) [18] and atrous spatial
parallel pyramid (ASPP) [20], [21]. Although these networks
significantly improved segmentation performance, they usu-
ally require high computational cost, largememory consump-
tion and too much time to train. It is not benefit for scientific
research specifically in remote sensingwhich also needs large
memory allocation for high-resolution data with constraint
computational resources. So besides accuracy, computation
complexity, memory usage and inference speed are also
essential metrics to measure the performance of an architec-
ture [22]. Under this intuition, there is a variety of architec-
tures are designed towards high accuracy and efficiency, such
as MobileNet family [23], [24], ShuffleNet family [22], [25],
ENet [26], ERFNet [27], EDANet [28] and so on. The trade-
off between efficiency and accuracy becomes a key element
for designing these efficient architectures.

In order to solve the efficiency limitation which presents
in the existing approaches, we proposed a highly improved
architecture called ESFNet (Efficient Separable Factorized
Network) based on factorized residual block in real-time
architecture ENet [26] and ERFNet [27]. Benefits from
depth-wise convolutions, we employed SFRB (Separable
Factorized Residual Block) as our core module, it can

compress model size and reduce the computation complexity
drastically. Considering the characteristics of ResNet [29]
and the factors that can influence the efficiency of segmen-
tation networks, we extended ESFNet to ESFNet-mini-ex,
it performs much better than the base one in inference speed.
We evaluated our architecture on recent expressive building
dataset WHUBuilding Dataset, via comparing with the state-
of-the-art and comprehensive analysis, elaborating that our
model is an efficient backbone for semantic segmentation and
the idea can be further extended to other computer vision
tasks. In summary, there are three main contributions as
follows:
• We proposed a novel efficient network named ESFNet,
which employed separable factorized residual block
with dilated convolutions. It can run 100.29 FPS on
single Tesla V100 and achieve 85.34% IoU on WHU
Building Dataset which is similar to the state-of-the-
art. Our ESFNet-mini-ex further increased the inference
speed to 142.98 FPS and achieved 84.57% IoUwith only
1% accuracy loss than the base.

• The proposed ESFNet can run 12 more frames per sec-
ond than novel real-time architecture ERFNet with 6x
fewer floating point operations and 18x fewer param-
eters, and it had only 2% accuracy loss which can be
considered as a proper balance between accuracy and
efficiency. Our ESFNet-mini-ex can be better that per-
formed 54 more frames per second with 3% accuracy
loss.

• We conducted sets of ablation studies to observe the
performance of different architectures and analyzed the
reasons behind them.

The rest of the paper is organized as follows. In Section II
we review related works. Section III introduces each part
of our network. Section IV exhibits expressive comparison
results and analysis. Section V concludes the whole paper.

II. RELATED WORKS
There are lots of FCN-based methods used in semantic seg-
mentation and achieved high accuracy, but the existing works
usually ignored the efficiency of architecture. As a result
most of top-accuracy networks are usually heavy-weight
which is harmful for the cases with constraint computational
resources.

Maggiori et al. [30] designed a multi-scale neuron module
to reduce the trade-off between recognition and localiza-
tion. But there are lots of large kernels in their network.
The large kernel brought large amount of parameters and
memory consumption, it is inefficient and can be replaced
by stacking small kernels [31]. Yuan [32] tackled dense
prediction by integrating activation from multiple layers in
different stages. But the VGG-based straight up and down
structure is not benefit for information flowing and feature
reusing. Li et al. [33] proposed encoder-decoder architecture
and employed Dense-block [34] as their core module. But
the Dense-block makes networks need too much memory
access cost. Ji et al. [35] proposed Siamese U-Net to improve
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segmentation performance by multi-scale input. But the deep
symmetry architecture means it needs heavy-weight decoder
which leads to high memory consumption and low inference
speed. As a result, although the FCN-based and UNet-based
methods make great success on accuracy, they are not suit-
able for practical applications and efficient remote sensing
research.

One way to obtain light-weight networks is utilizing effi-
cient structure, such as residual block, kernel factorization
and group convolutions. Recently, there are lots of deep
learning approaches managed toward light-weight and real-
time [26]–[28], [38]. ENet provides principles of design-
ing efficient segmentation networks and is one of the first
networks designed for light-weight architecture, it employs
bottleneck structure and factorized kernels to keep low com-
putational cost and small amount of parameters. An exten-
sion of ENet, ERFNet also benefits from residual block and
factorized kernels, it gets much better balance between accu-
racy and efficiency than ENet. EDANet employs asymmetric
residual structure, dilated convolutions and the dense con-
nectivity to achieve high efficiency and accuracy. Thus most
of recent novel real-time segmentation networks are bene-
fit from residual block whose basic intention is alleviating
degradation problem of the deep neural networks, the residual
block is also an efficient structure that can speed up the
training phase. Group convolution [39] is an efficient con-
volution operation widely used in many efficient networks,
it divides the input into independent groups and the kernels
of each group share the same weight in order to reduce the
number of parameters. Other efficient networks benefit from
depth-wise convolution [22]–[25], [48] which is extreme case
of group convolution. Recent works such as BiSeNet [36]
and ICNet [37] also have better trade-off between accuracy
and speed, but they are not easy to deploy and difficulty in
migrating to other tasks and areas due to their complex struc-
tures. Although these networks have already performed well
in efficiency, there is still a big room for further improvement.

III. PROPOSED METHODS
In this section, we introduce each component of our efficient
network ESFNet. The detailed information of ESFNet is
shown in Table 1. Similar with most of segmentation net-
works, the whole framework is encoder-decoder architecture.
The encoder is composed of the blocks from 1-16, it consists
of three down sampling blocks, and two stages which have
5 SFRB, 8 SFRB respectively. And blocks of 17-23 form
our light-weight decoder which employs transposed convolu-
tions for upsampling and SFRB for fine-tuning. Our ESFNet
requires low computational cost and memory consumption,
and it achieves similar accuracy to the state-of-the-art without
any other context modules, post-processing and additional
scheme.

A. OUR CORE MODULE
Our core module SFRB (Separable Factorized Residual
Block) is shown in Fig. 2a, which introduces depth-wise

TABLE 1. The detailed information of our ESFNet. And the input and
output are in H × C format, where we only consider square images and H
is spatial size, C is number of channel of the feature maps.

FIGURE 2. Description of our core module SFRB (a) and our down
sampler (b). Where ’DW’ is depth-wise convolution, ’concat’ is
concatenation operation, ’MP’ is Map-Pooling layer and ’s’ is layer stride.

separable convolution into factorized residual block and
incorporates with dilated convolutions to keep large receptive
field with small down sampling rate. In the following part,
we will explain each component of our core module SFRB in
detail.
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1) DEPTH-WISE SEPARABLE CONVOLUTIONS
The depth-wise separable convolution is considered as key-
module in recent efficient networks [22]–[25], it splits the
full convolution operations into two independent operations,
depth-wise convolution and point-wise convolution. In depth-
wise convolution, the number of groups is equal to the number
of feature maps, it means each kernel has single feature map
in and single feature map out, and the shared weight kernels
make the depth-wise convolution require less parameters than
the standard. Point-wise convolution is standard convolu-
tion with kernel size of 1 × 1, it is aimed to combine the
channel-wise independent features from depth-wise convo-
lution. Therefore, the standard convolution can be replaced
by the combination of depth-wise convolution and point-
wise convolution, it drastically reduces the model size and
computational cost.

For further explanation, we take I ∈ RFhin×F
w
in×Cin as input

and O ∈ RFhout×F
w
out×Cout as output, where Cin and Cout are

the number of input channels and output channels, Fhin, F
w
in,

Fhout and F
w
out are the spatial size of the input feature maps

and output feature maps respectively. And weight of the
convolutional layer is W ∈ RCin×Kw×Kh×Cout , the bias is
b ∈ RCout . Let fli ∈ RKw×Kh denotes the lth filter in ith
convolutional layer and ϕ(·) as the non-linearity. The output
of fli and the standard convolution layer can be expressed as:

z(u, v)li = ϕi[b
l
i +

Cin∑
c=1

σ∑
m=−σ

β∑
n=−β

f̄ li · χ (u+ m, v+ n)
T
c ]

(1)

Oi =
Cout∑
l=1

Fhout × F
w
out × z(u, v)

l
i (2)

where σ = (Kw−1)/2, β = (Kh−1)/2, f̄ li is the 2Dmatrix of
lth filter in layer i, and χ (u+m, v+ n)c is corresponding 2D
matrix with the same size of filters and center (u, v) on cth
feature map. From (1) and (2), we can draw the conclusion
that computational cost of standard convolution is related
to spatial size of the output, kernel size and the number of
input and output channels. Then the FLOPs (floating point
operations) of the standard convolution can be calculated as:

Kw × Kh × Fhout × F
w
out × Cin × Cout (3)

different from the standard one, the depth-wise separabel
convolutions separate the full convolution into depth-wise
and point-wise, it significantly reduces the computational
cost and parameters needed by its shared weight scheme.
Based on (1) and (2), in depth-wise phase Cin ≡ Cout ≡ 1
and there are Cin × Oi outputs, in point-wise phase ¯f li and χ
are both 1D vector, so the FLOPs of the depth-wise separabel
convolution is:

Kw × Kin × Fhin × F
w
in × Cin + F

h
out × F

w
out × Cin × Cout

(4)

for simplicity, we set Kw ≡ Kh ≡ K , Fhin ≡ Fwin ≡ Fhout ≡
Fwin ≡ F , Cin ≡ Cout ≡ C and we omit the influence

of bias. Therefore the standard convolution operation needs
K 2
×F2
×C2 FLOPs andK 2

×C2 parameters, the depth-wise
separable convolution operation needsK 2

×F2
×C+F2

×C2

FLOPs and K 2
× C + C2 parameters in total. Typically,

we employ kernel size of 3 in most time [17]. With that in
mind, we set kernel size K equal to 3 and we can calculate
that there is about 9x reduction in FLOPs and the number
of parameters (model size). The comparison indicates that
changing standard convolutions into depth-wise separabel
convolutions can make existing networks more efficient.

2) FACTORIZED CONVOLUTIONS
If the depth-wise convolutions decompose the standard
convolutions in stage-wise, then the factorized convolu-
tions decompose the standard convolutions in kernel-wise.
As Alvarez and Petersson [40] has proved that, each ND
kernels can be decomposed into N consecutive layers of 1D
kernel. Here we only consider the 2D kernels, and it is easy to
convert the situation toNDkernels. Standard 2D convolutions
with K ×K kernels can be converted to two 1D convolutions
with K × 1 kernel size and 1×K kernel size. Reference [52]
demonstrates that it is possible to relax the rank-1 constraint
and essentially rewrite fi as a linear combination of 1D filters:

fi =
r∑

r=1

σ ri h̄
r
i (w̄

r
i )
T (5)

where h̄ri and (w̄ri ) are vectors of length K , σ ri is a scalar
weight, and r is the rank of fi. Continue with the analysis
above, the lth filter of 2D factorized convolution in ith layer
can be expressed as:

z(u, v)li = ϕi[
Cin∑
c=1

σ∑
−σ

w̄liϕi(
β∑
−β

χ (u+ m, v+ n)Tc h̄
l
i)] (6)

here m is in range [−σ, σ ], n is in [−β, β] and we also omit
the bias. Using (2) (3) (5) (6), we can calculate the factorized
convolution needs 2×K ×M2

×C2 FLOPs and 2×K ×C2

parameters which is 3x reduction in computational cost and
parameters than the standard one when K = 3. The factor-
ized convolutions not only shrink the models by reducing
redundant parameters, but also play a role of regularizer in
the whole network that can enhance generalizing capability.
When incorporating with depth-wise separable convolutions,
the computation and memory cost further decrease as 2×K×
F2
×C+F2

×C2 and 2×K×C+C2 respectively. There are
3×F×F×C fewer FLOPs and 3×C fewer parameters than
the single depth-wise separable convolution, and it is another
great improvement upon convolution operation especially
when the feature maps have large spatial size and amounts
of channels.

3) DILATED CONVOLUTIONS AND RECEPTIVE FIELD
In order to improve the accuracy of segmentation in high-
resolution images, the models usually need to have large RF
(receptive field) [41] that can lead to rich context information
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for each pixel. The method used in the past to enlarge recep-
tive field is stacking convolutional layers and down sampling
layers, but too much convolution layers bring large burden
of computation and memory, in addition over downsampling
is harmful to dense pixel-level classification, due to the loss
of unrecoverable spatial information. We evaluated 8x down
sampling and 16x down sampling with the same architecture
on WHU Building Dataset, the prediction of 16x down sam-
pling network was really bad than 8x one, it proofed the spa-
tial information is equally important with context information
in dense classification tasks. Contrast to the previous meth-
ods, dilated convolution can enlarge receptive field without
additional parameters increase, it is implemented by inserting
R−1 zeros between two consecutive kernel values along each
dimension [41], [42], where R is dilation rate. Additionally,
we define RF0 = 0 and FeatureStride0 = 1, the receptive
field of pixels in each layer can be calculated by:

FeatureStridel =
l∏
i=1

stridei (7)

RFl =RF0+
l∑
i=1

(Ki−1)×FeatureStridei−1×Ri

(8)

where RFi, Ki, Ri and Stridei are the size of receptive field,
size of kernel, dilation rate and stride of the ith layer respec-
tively. Inspired by [41] and other novel networks [20], [43],
the dilation rate is usually set to sequence, we deployed
dilated convolutions in stage2 demonstrated in Table 1, and
the sequence of dilation rate is 1, 2, 1, 4, 1, 8, 1, 16. Using
(7) and (8), we can calculate the receptive field of our ESFNet
is 599, and if we remove the dilated convolutions in stage2,
the receptive field is only 183 that is not enough to cover
the whole image. So the dilated convolution is helpful to
enlarge the receptive field and enhance the performance of the
networks, but it makes networks need to keep too much high-
resolution feature maps in the intermediary layers, which
usually leads to high memory cost [44].

4) BOTTLENECK OR NON-BOTTLENECK
ResNet is designed to reduce degradation problem present
in architectures that stacking large amounts of layers [29].
There are two implementations of residual block, the bot-
tleneck structure and non-bottleneck structure. The previous
works [45] reported that non-bottleneck layers gain more
accuracy from increased depth than the bottleneck one, and
it indicates the bottleneck design still struggles with degrada-
tion problem. There is only around 1% accuracy gap between
the same network with non-bottleneck structure and bottle-
neck structure in our experiments, but the bottleneck one
requires fewer parameters and lower computational complex-
ity as shown in Table 2. This can be seen it does not suffer
from the degradation problem, and the purpose of our work
is to design efficient network with as low memory footprint
and computational cost as possible, so we choose bottleneck

TABLE 2. Comparison of different residual structures. ’BT’ is bottleneck
structure, ’FAC’ is factorized convolution, ’DW’ is depth-wise convolutions,
’NON-BT’ is non-bottleneck. The input and output are both size of
64 × 64 × 128.

structure as our residual block backbone. The detailed infor-
mation of different structures is concluded in Table 2.

As Fig. 2a demonstrates that, in residual branch the first
standard 1× 1 convolutional layer is used to compress input
feature maps into 4x less, the following two depth-wise fac-
torized convolution replace the standard 3 × 3 convolution
in original work [29] and the compressed feature maps are
expanded by the last 1× 1 convolutional layer. Note that we
use batch normalization [46] and ReLU [47] non-linearity
function after each convolutional layers, but no ReLU after
depth-wise convolutions [24], [48] and the 1×1 convolutions
which are used for expanding.

B. ARCHITECTURE DESIGN
In this subsection, we will introduce the designation of
downsampling block and decoder.

1) DOWN SAMPLING BLOCK
Down sampling layers benefit for enlarging the receptive field
so that each pixel can get rich context information, and it
also helps to save parameters that can reduce size of model.
But too much down sampling layers increase difficulty in
recovering spatial information, especially harmful to dense
classification. Following with the principles of ENet [26], our
networks have three down sampling layers in total, the first
two is performed at very first consecutively and another down
sampling layer is after stage1, we adopted the initial block in
ENet as our initial block and introduced depth-wise convolu-
tion in the original as the other two down sampler which is
much lighter (shown in Fig. 2b). Because the output of such
down samplers is concatenation of two branches, we tried to
combine and refine the channel-wise independent features.
Due to the great cost of using point-wise convolutions [23],
we added channel shuffle at the end of down sampling blocks.
But the accuracy decreases instead, so we did not use any
additional feature fusion scheme after down sampling block
in our final networks.

2) DECODER DESIGNATION
In encoder-decoder architectures, the encoder is used to
extract high-level semantic features and the decoder is used to
recover resolution of output from encoder to the original. The
existing works [15], [17] usually have heavy-weight decoder.
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Inspired by the view of light-weight decoder [26], we tried
to shorter the decoder, and we evaluated different transposed
convolutions with 2x, 4x and 8x upsampling rate, but we
found that the bigger upsampling rate is, the worse prediction
will be got. For the shortest decoder, we removed the decoder
and used the bilinear interpolation to upsample the feature
maps by a factor of 8, but there was about 3 points accuracy
loss. So we used transposed convolution to perform upsample
with factor of 2 and used SFRB to refine the score maps in
our decoder, which can be seen a better trade-off.

IV. EXPERIMENT
In this section, we first introduce the dataset and training
environment used in our experiments, and then we design sets
of ablation studies to demonstrate our model is high accuracy
and efficiency.

A. GENERL SETUP
1) WHU BUILDING DATASET
We evaluated our methods on aerial imagery dataset from
WHU Building Dataset which is a recent challenging dataset
created by [35]. The aerial dataset consists of more than
22,000 independent buildings extracted from aerial images
with 0.0075 m spatial resolution and 450 km2 covering in
Christchurch, New Zealand. The most parts of aerial images
are downsampled to 0.3 m ground resolution and cropped
into 8,189 non-overlapping tiles with 512 × 512, theses
tiles make up the whole dataset. Then it is split into three
parts, 4,736 tiles for training, 1,036 tiles for validation and
2,416 tiles for testing. We train our network on the train set,
valid it at the end of each epoch and test its performance on
test set. The metric to measure accuracy of segmentation pre-
diction is IoU (Intersection-over-Union) which is also called
Jaccard Index and extensively adopted in segmentation tasks:

TP
TP+ TN + FP

(9)

where TP, FP and FN are the number of true positives, false
positives and false negatives pixels respectively.

2) TRAINING CONFIGURATION
All the experiments are implemented by Pytorch1.0.1.post2
with CUDA9.0 and CuDNN7. The models are trained on
single Tesla V100 in 300 epochs, using Adam optimizer with
weight decay of 0.0002 and momentum of 0.9. We set the
initial learning rate to 0.0005 and use poly learning rate policy
as many previous works, where the learning rate is multiplied
by (1− iter

itermax
)power with power of 0.9. We set the batch size

to 16 to fit our GPU memory. For fair comparisons, we also
adopted the weighted loss scheme with cross entropy loss
to counterwork the problem of unbalanced data, which is
defined as Wclass =

1
log(Pclass+c)

and we set c to 1.12. The
data augmentation strategies we used only include random
horizontal flip and random vertical flip. The whole training
phase is really fast, just needs 4 hours and very low memory
consumption.

TABLE 3. The comparison results of ablation studies. For comparing
subtle difference, we adopted different precision representation which is
the same in Table 4.

B. ABLATION STUDIES
In this subsection, we conduct sets of experiments to demon-
strate high performance of our methods as shown in Table 3.
All the following results are based on test dataset.

1) CORE MODULES
The key-modules of SFRB are depth-wise separable convo-
lutions and factorized convolutions, so we designed another
two variants of our network to further explain the efficiency
of our modules. The first one is ‘‘non-depth-wise’’ variant
which replaces the standard 3 × 3 convolution into 3 × 1
and 1 × 3 convolutions in bottleneck structure. The other
one is ‘‘non-factorized’’ variant implemented by replacing
the standard 3× 3 convolution into a depth-wise one without
factorized kernels. For fair, we used the same backbone and
training configuration to train these two variants, and these
two networks are named as ESF-Bt-Fac and ESF-Bt-Dw
respectively.

As 2-8 lines demonstrates that, our ESFNet-base achieves
no more than 1% accuracy loss compared with ESF-Bt-Fac
and ESF-Bt-Dw. But the ESF-Bt-Fac has 11% more com-
putational cost and 30% more parameters than ESFNet-base.
The ESF-Bt-Dw is slightly more than ESFNet-base in FLOPs
and the number of parameters, because the model is already
small that the difference of 3 × M × M × C and 3 × C
cannot be vast gaps. The comparison results proof the depth-
wise convolutions have more powerful performance than the
factorized convolutions in improving network efficiency and
further combining two approaches will get much better result.
The similar accuracy shows that the more parameters do not
mean more accuracy, and there are much redundancies of
parameters and computation in deep neural networks which
need to solve urgently.

2) DOWN SAMPLING BLOCK
Following with ERFNet, we adopted the initial block as our
first down sampling block, and we extended the initial block
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to two variants. The first variant, which is used in our final
model, is implemented by replacing the standard 3×3 convo-
lution into depth-wise one. Another one is designed for com-
bining the channel-wise independent features, as described
in Section III-B we added channel shuffle operation after the
concatenation of main branch and pooling branch.

In order to investigate our efficient down sampling block,
we compared ours with another two variants of ESFNet
shown in 9-10 lines. The first variant named as ESF-ENet-
down uses initial block in all down sampling layers likes
ERFNet. The second one named as ESF-shuffle-down is
implemented by adding channel shuffle operation after the
concatenation at the end of down sampler. Our ESFNet-
base achieves almost equal accuracy to ESF-ENet-down, but
needs 18% less parameters and 7% less FLOPs. The basic
idea of ESF-shuffle-down is to combine the channel-wise
independent features, but it has 2 points accuracy drop caused
by channel shuffle operation among unequal groups. From
the above, the down sampler in our final networks is high
accuracy and efficiency.

3) LIGHT-WEIGHT DECODER
Encoder-decoder architecture is one of the most popular
architectures in semantic segmentation tasks. The symmetric
structure means that decoder is an exact mirror of the encoder
which is deep and wide. In contrast, [26] provides a view of
light-weight decoder that the decoder is only used for recov-
ering resolution and fine-tuning. So we have an exploratory
work on light-weight decoder for further studies, we per-
formed comparisons on four variants of ESFNet with lighter
and lighter decoder, they are ESFNet, ESFNet-trans2x4x,
ESFNet-trans8x and ESFNet-interp8x where 2x, 4x and 8x
mean the upsampling rate of transposed convolutions and
interp8x means that using bilinear interpolate with factor of 8
instead of decoder.

The comparison results are reported in 11-13 lines. Though
using transposed convolution with high upsampling rate like
4x and 8x brings much lighter decoder than the ESFNet-
base, the accuracy drastically falls to 50.58% and 13.20%.
Transposed convolutions implement upsampling by insert-
ing blanks between consecutive pixels in original feature
maps and then performing standard convolution operation
on the upsampled feature maps which is similar to dilated
convolutions. So the bad performance of transposed convo-
lution with high upsampling rate is caused by inserting too
much blanks that destroys the high-level feature represen-
tations. The bilinear interpolate is a straight-forward way
to recover original resolution, the ESFNet-interp8x requires
1/5 and 1/2 parameters of ESFNet-base with 3 points drop
in accuracy. The result of ESFNet-interp8x fits the view
that the decoder is just for recovering and fine-tuning. The
comparison results demonstrate the decoder in most sym-
metric structures [15]–[17] is ‘‘bottleneck’’ that effects the
efficiency of networks, and it is necessary to have light-
weight decoder. For preserving better balance, we employed

transposed convolution with upsampling rate of 2 and SFRB
for fine-tuning in our network.

4) MINI-VERSIONS
According to the characteristics of ResNet, we extended our
ESFNet-base to mini-versions. Veit et al. [49] proposed that
dropping a single residual block only has a little influence on
the accuracy. Greff et al. [50] said each residual in the same
stage does not learn a new representation but learn an unrolled
iterative estimation, in another word the following residual
blocks is used to refine the coarse estimation from the first
block in each stage. Under the premise of enough receptive
fields, we dropped four SFRB in stage2 whose dilation rate is
equal to one, and consider this network as ESF-mini, in this
case the receptive field is 535. Furthermore, we dropped
another two SFRB in stage1 and named it as ESF-mini-ex,
and the receptive of ESF-mini-ex is 519 that is still enough
to cover the whole image. On one hand there is too much
redundancy information in early stage, on the other hand
it makes the stage2 relatively close to the supervisions and
lets it learn a better representation [51]. The ESF-mini and
ESF-mini-ex have both 22% less parameters and 8%, 12%
fewer FLOPs compared to ESFNet-base and the accuracy loss
only at around 1%. It is worth to note that ESF-mini-ex have
significant improvement on inference speed, we will discuss
it in the next part.

TABLE 4. The comparison results of our architecture to the
state-of-the-art networks.

V. EVALUATION
As shown in Table 4, we compared our ESFNet-base
and its mini-versions with other state-of-the-art networks
(i.e. SiU-Net, CU-Net, UNet and FCN which come from
the original paper [35]) and novel real-time architectures
(i.e. ENet, ERFNet and EDANet which are in similar struc-
ture and easy to deploy). All the comparison results are
based on test set with the same training environment and
configuration. The accuracy of networks is measured by
IoU, and we used FPS (Frames Per Second) to measure
the inference speed, and ‘‘-’’ means that this value is not
given. The architectures of CU-Net and FCN are not given
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FIGURE 3. Prediction results of ENet (c), ERFNet (d), our ESFNet (e) and ESFNet-mini-ex (f). (a) Aerial images.
(b) Ground Truth.

clearly in the original paper [35], so we do not display their
FLOPs, Params and FPS. But we know CU-Net has similar
structure with UNet and FCN-8s [14] already has over 130 M
parameters, both of them are heavy-weight networks. Though
SegNet has much lighter decoder than other encoder-decoder
architectures, it still has so many parameters of 29.44 M that
we cannot train it on a single GPU with batch size of 16 and
we do not display its IoU.

The results show that our ESFNet-base can achieve similar
accuracy to the state-of-the-art and obtain much better trade-
off between accuracy and efficiency than previous real-time
networks. Our ESFNet-base can run 100.29 FPS, it achieves
85.34% IoU on test dataset with 2.513 G FLOPs and 0.18 M
parameters. We extended our ESFNet-base to ESF-mini-ex
which has only 1% accuracy drop but with lower FLOPs
and less parameters than the base, the ESFNet-mini-ex highly
improves the inference speed to 142.98 FPS.

Most of previous networks for segmentation tasks are
encoder-decoder architecture, by making networks deeper
and wider or using additional scheme to achieve high accu-
racy, such as SegNet, SiU-Net, CU-Net and UNet, but these
networks need high computation and memory resources. The
top-accuracy method SiU-Net in Table 4, which uses the
multi-pipline input with shared weight UNet, achieves 88.4%

IoU but requires 26.78 M parameters and more than 495 G
FLOPs. Compared to the top-accuracy network, our ESFNet-
base only has accuracy drop of 3 points with 148x less param-
eters 196x less FLOPs. Our ESFNet-base achieves similar
accuracy to the FCN, but FCN has over 130 M parameters
which is a huge number compared to 0.18 M. It demonstrates
that there is large amount of redundancies in previous high-
accuracy networks, and our networks can utilize parameters
much more efficiently to learn the similar representation to
the top-accuracy one. In summary, previous high-accuracy
networks are not comparable to our networks and other real-
time networks in efficiency, and our networks can achieve
better trade-off between accuracy and speed.

We compared our ESFNet to recent real-time networks,
which both utilize residual learning. The ENet and ERFNet
both benefits from ResNet architecture, ERFNet achieves
much higher IoU 87.03% than ENet 86.03% but it can
run 1.8x faster than ENet with higher FLOPs and lager
model size in our experiment. It proofs the performance
of factorized convolutions both in accuracy and efficiency.
EDANet has lower FLOPs and less parameters than ERFNet,
it achieves 84.05% IoU but with similar inference speed to
ERFNet, the reason is that Dense-Blocks need much memory
resources to save high resolution feature maps in intermediate
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layers which leads too much cost of memory access, and
the lower accuracy is caused by bilinear interpolate upsam-
pling method as analyzed in Section IV-B. Our ESFNet-base
achieves 85.32% IoU on test set and it can run 12 more
frames per second than ERFNet. Our ESFNet-mini-ex highly
improves the inference speed to 142.98 FPS while preserv-
ing acceptable accuracy of 84.29% IoU. Therefore, our core
module SFRB and our network designation scheme signif-
icantly enhances the performance of networks for semantic
segmentation tasks, both in accuracy and efficiency.

The comparison of prediction results is shown in Fig. 3.
To test the performance of our ESFNet, we specifically
selected the aerial images in which the buildings are small,
large or in fragmentation. Our network performed well on
small buildings (the third row) and large buildings (the
fifth row), but there is slight loss of precision in extremely
tiny buildings (bottom left of the second row) and build-
ing boundaries. The comparison result demonstrates the
proposed ESFNet can get similar predictions compared to
the state-of-the-art, but our ESFNet implements the better
trade-off between accuracy and efficiency.

VI. CONCLUSIONS
In this paper, we proposed novel efficient and accurate archi-
tecture ESFNet for building extraction task. Our ESFNet-
base achieves 85.34% IoU and 100.29 FPS onWHUBuilding
Dataset, and our ESFNet-mini-ex achieves 84.29% IoU and
142.98 FPS. We designed a highly efficient module SFRB as
our core module which can be deployed in most of existing
architectures. Through comprehensive ablation studies and
sets of comparisons with state-of-the-art, we analyzed the
efficient and accurate network designation scheme for seman-
tic segmentation networks. In summary, our ESFNet can
provide the better trade-off between accuracy and efficiency
that makes remote sensing researches much more efficient.

During the experiments, we observed some unexpected
results which are different from the previous works.We found
the memory access cost is another factor that can influence
the inference speed. In the future work, we will interleave the
memory access cost with the current metrics to analyze the
efficiency of deep neural networks. For deploying in practical
applications, we will further evaluate our networks on other
embedded devices.
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