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ABSTRACT The covariance methods exert an effect on spatially colored (correlated) noise elimination
during direction finding in multiple-input multiple-output (MIMO) radar. However, most of the existing
methods seem difficulty to achieve a good balance between accuracy and efficiency. This paper aims at for-
mulating a covariance trilinear decomposition perspective for direction-of-departure (DOD) and direction-
of-arrival (DOA) estimation for bistatic MIMO radar. First, the array covariance matrix model is presented
for de-noising. Furthermore, the noiseless covariance matrix is rearranged into a trilinear decomposition
model. Finally, joint DOD and DOA estimation are linked to trilinear decomposition, which can be easily
accomplished by exploiting the existing COMFAC technique. The proposed scheme can exploit the tensor
structure of the covariance matrix, and it is attractive from the perspective of computational complexity.
Moreover, it can be easily extended to the spatially colored noise scenario. The proposed algorithm is
analyzed in terms of identifiability, flexibility, and complexity, and the stochastic Cramér-Rao bound on joint
DOD and DOA estimation is derived. The computer simulations verify the effectiveness and improvement
of the proposed method.

INDEX TERMS Array signal processing, bistatic MIMO radar, direction finding, spatially colored noise.

I. INTRODUCTION
Over the past decade, signal processing in multiple-input
multiple-output (MIMO) radar has aroused a renewed atten-
tion.MIMO radar is characterized by the integrated ofMIMO
technique and radar detection. It simultaneously emits mutu-
ally orthogonal waveforms to illuminate the areas of inter-
est, and try to capture the targets from the echoes received
by multiple antennas [1]. Owing to the waveform diver-
sity, MIMO radar is significantly superior to the traditional
phased-array radar in terms of jamming and interference sup-
pression, fading effect overcoming [2], [3], parameter esti-
mation enhancement, et al. Usually, the MIMO radar system
can be divided into statistical MIMO radar and colocated
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MIMO radar according to its antenna geometry. The for-
mer utilize widely separated antenna to combat radar cross
section (RCS) scintillation [4], while the latter exploit closely
spaced antenna to obtain unambiguous angle estimation [5].
In this paper, we focus on the bistatic MIMO radar, which
belongs to the latter.

Joint direction-of-departure (DOD) and direction-of-
arrival (DOA) is a fundamental task in bistatic MIMO
radar. Many efforts have been devoted and various algo-
rithms have been proposed. Typical algorithm include spec-
trum grid search methods (e.g., Capon [6], [7], MUSIC [8]),
propagator method (PM) [9], estimation of signal parame-
ters via rotational invariance techniques (ESPRIT) [10], and
optimization-based methods [11], [12]. Among which the
spectrum grid search methods and the optimization-based
methods are often computationally inefficient due to
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exhaustive peak search. ESPRIT has attached a significant
interest as it can obtain closed-form solution for direction
estimation. PM can relief the calculation burden since it does
not involve eigen-decomposition. Theoretically, the above
mentioned methods can be summarized as matrix-based
estimator, in which the array measurement is arranged
into a matrix, and the multi-dimensional structure inher-
ent in the matched array measurement has been ignored.
Unlike matrix-based methods, tensor-based estimators are
powerful to exploit the strong algebraic structure [13], thus
they usually provide more accurate estimation performance.
Two tensor models are widely used in tensor algebraic,
named Tucker tensor and Kruskal Tensor [14]. Accordingly,
two main strategies, termed higher-order singular value
decomposition (HOSVD) and parallel factor (PARAFAC)
analysis [15], [16], are utilized for tensor decomposition,.
The HOSVD is the higher-order analogue of singular value
decomposition (SVD), which tries to find a set of basis for
each tensor unfolding. The PARAFAC method factorizes a
tensor into a sum of rank-one tensors. Some tensor-based
approaches have been introduced in [17]–[20]. In [17],
a direct HOSVD method and a covariance HOSVD (C-
HOSVD) method are proposed, which turn out to be effect
to achieve more accurate subspaces estimation. A real-valued
version is proposed in [21], which relief the calculation bur-
den of the HOSVD method. The PARAFAC estimator is
introduced in [18] followed by an improved version with
larger virtual aperture [19] and a real-valued variant [20].
Also, many efforts have been tried in robust direction finding
with array imperfections [22]–[25]. Usually, the HOSVD is
directly computed via multiple truncated SVDs, while the
PARAFAC decomposition is accomplished via alternative
least squares (ALS) algorithm. In contrast, the PARAFAC
estimator is more accurate but less efficient, since the ALS
is sensitive to the initialization.

Unfortunately, as suggested in the literature, the afore-
mentioned tensor estimators are only effective with Gaussian
white noise. In the presence of spatially colored (correlated)
noise, their performance would degrade or even fail to work.
Several improved algorithms have been proposed to deal
with the colored noise in bistatic MIMO radar. In [26]–[29],
the spatial cross-correlation methods has been proposed,
in which the transmit array in these methods is divided
into several subarrays, the non-correlation characteristic of
the matched noise associated with different transmit antenna
is explored. Assume that the noise associated with vari-
ous pulse are uncorrelated, the temporal cross-correlation
algorithms have been derived in [30]–[32]. In these algo-
rithms, the array measurement is divided into two groups
according to the temporal index, the cross-correlation of
the above two groups is exploited to suppress the spatial
colored noise. Additionally, suppose that the noise field is
invariant under two measurements of the array covariance,
the effect of the spatial colored noise can be removed through
covariance differencing [33], [34]. Comparatively speaking,
the spatial cross correlation approaches are suffering from

the virtual aperture loss, since the dimension of the covari-
ance matrix is reduced. Although the covariance differencing
algorithms can exploit the full DOF of the virtual aperture
of the MIMO radar, they are less efficient than the tempo-
ral cross-correlation methods, since additional calculation is
required in determining the unambiguous directions. It should
be emphasized all these de-noising methods are relay on the
array covariance (or cross-covariance). Moreover, as shown
in the literature, the PARAFAC variant offer more accurate
performance than the HOSVD version [32], since the for-
mer utilizes more degree-of-freedom (DOF). Nevertheless,
the fourth-order PARAFAC estimator is quit sensitive to
the initializations and may suffers from the slowness of the
convergence steps, making it unsuitable for massive MIMO
configuration [35], [36].

In this paper, we revisit the DOD and DOA estimation
problem in bistatic MIMO radar, and a covariance-based
trilinear decomposition estimator is proposed. The contribu-
tions of this paper are listed as follows:

(a). The covariance-PARAFAC model is established.
By rearranging the covariance matrix into a fourth-order
tensor, the proposed PARAFAC model is able to capture the
multidimensional structure of the covariance measurement.

(b). A fast implication scheme is proposed. By exploit-
ing the low-rank property as well as the multidimensional
structure of the cross-covariance measurement, an innova-
tive third-order PARAFAC (trilinear decomposition) model is
formulated, thus the PARAFAC decomposition of the covari-
ance tensor can be accomplished via the existing COMFAC
algorithm. In contrast to the state-of-the-art quadrilinear least
squares (QALS) approach, the proposed estimator can be
quickly implemented.

(c). We illustrate how does the proposed estimator
extended to the spatially colored noise scenario. Actually,
the proposed estimator can be easily combined with the
existing de-noising strategies. Herein, the existing temporal
cross-correlation strategy is utilized as an example.

(d). The proposed estimator is analyzed in terms of identi-
fiability, flexibility, complexity as well as stochastic Cramér-
Rao bound (CRB). The advantages of the proposed estimator
are verified by numerical simulations.

This paper is organized as follows. The data model for
DOD and DOA estimaiton in bistatic MIMO radar is elabo-
rated in section II. The proposed covariance-trilinear decom-
position estimator is given in section III. Detailed analysis are
described in section IV. Numerical simulations and discus-
sions are presented in section V. Finally, a brief conclusion is
provided in section VI.

II. TENSOR PRELIMINARIES SIGNAL MODEL
A tensor is the higher-order analogue of a vector and a
matrix [32]. Before given the details of the proposed algo-
rithm, let us first introduce some necessary preliminaries con-
cerning tensor, which can be find in our pervious work [32].
Definition 1(Unfolding): The mode-n unfolding

of an N -th order tensor X is denoted by [X ](n).
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The (i1, i2, · · · , iN )-element of X maps to the (in, j)-th ele-
ment of [X ](n), where j = 1 +

∑N
k=1,k 6=n (ik − 1)Jk with

Jk =
∏k−1

m=1,m 6=n Im.
Definition 2 (Mode-n Tensor-Matrix Product):Themode-n

product of an N -order tensor X ∈ CI1×I2×···×IN and a matrix
A ∈ CJn×In , denoted by X×nA, is a tensor of size I1 × · · · ×
In−1×Jn×In+1×· · ·×IN , obtained by taking the inner product
between each mode-n fiber and the rows of the matrix A, i.e.,

Y = X×nA⇐⇒ [Y](n) = A [X ](n) (1)

Definition 3(PARAFAC Decomposition): The PARAFAC
decomposition of an N -order tensor X with rank-K is
given by

X =
K∑
k=1

gka
(1)
k ◦ a

(2)
k ◦ · · · ◦ a

(N )
k (2)

where a(n)k ∈ CIn×1, ◦ denotes the outer product. Obviously,
the PARAFAC decomposition expresses X into a sum of K
rank one tensors. In mode-n tensor-matrix product form, (2)
can be expressed as

X = G×1A(1)×2A
(2)
×3 · · ·A

(N−1)
×N A(N ) (3)

where G ∈ CK×K×···×K is a ‘diagonal’ tensor with the
(k, k, · · · , k)-th element is gk and zeros elsewhere. A(n) =[
a(n)1 , a(n)2 , · · · , a(n)K

]
∈ CIn×K , n = 1, 2, · · ·N . Also, X can

be rearranged in matrix style as

[X ](n) = A(n)G
[
A(n+1) � A(n+2) � · · ·A(N )�

A(1) � A(2) · · · � A(n−1)
]T

(4)

where G = diag {[g1, g2, · · · , gK ]}, the superscript (·)T

represents transpose, � denotes the KhatriRao product.
Definition 4:(Generalized Tensorization of a PARAFAC

model [37]): For the PARAFAC decomposition model in (2),
let the order sets Oj =

{
oj,1, oj,2, · · · , oj,Mj

}
for j =

1, 2, · · · , J be a partitioning of the dimensions O =

{1, 2, · · · ,N }, the generalized tensorization of X is denoted
by a new tensor XO1,O2,··· ,OJ ∈ CT1×T2×···×TJ with

XO1,O2,··· ,OJ =

K∑
k=1

gkb
(1)
k ◦ b

(2)
k ◦ · · · ◦ b

(J)
k (5)

where Tj=5
Mj
m=1Ioj,m , b

(j)
k =a

(
oj,Mj

)
k ⊗a

(
oj,Mj−1

)
k · · · ,⊗a(

oj,1)
k ,

⊗ stands for the Kronecker product. The above definition can
be easily obtained by exploiting the unfolding of X .

As shown in Figure 1, we consider a bistatic MIMO radar
system (the transmit antennas and the receive antennas are in
the far-field of each other) with anM -element transmit array
and anN -element receive array. Assume that there areK slow
moving targets appear in the far-field (within the same range
bin), and the DOD-DOA-Doppler frequency pair for the k-th

FIGURE 1. Illustration of bistatic MIMO radar [32].

target is (ϕk , θk , fk ). Suppose that the transmit elements emit
orthogonal narrowband pulse waveforms {sm (t)}Mm=1, i.e.,∫

Tp
sm (t) s∗n (t) dt = δ (m− n) (6)

where t is the fast time index, Tp denotes the pulse duration,
the superscript (·)∗ represents conjugate and δ (·) is the Kro-
necker delta. The echo from the k-th target is modeled as [38]

rk (t, τ ) = bk (τ ) aTt (ϕk) s (t) (7)

where bk (τ ) = βk,τ ej2π fkτ , τ is the slow time (pulse)
index, βk,τ is the reflection amplitude of the k-th target
during the τ -th pulse duration, at (ϕk) ∈ CM×1 repre-
sents the corresponding transmit steering vector, s (t) =
[s1 (t) , s2 (t) , · · · , sM (t)]T is the transmit waveform vector.
The noisy observation at the receiver is then given by

x (t, τ ) =
K∑
k=1

bk (τ ) ar (θk) aTt (ϕk) s (t)+ w (t, τ ) (8)

where ar (θk) ∈ CN×1 is the receive steering vector cor-
responding to the k-th target, w (t, τ ) is the additive noise
vector. Before the detailed derivation, the following assump-
tions are made:
A1. The transmit array and the receive array are linear

arrays, and they have been well calibrated, i.e., sensor errors
(e.g., gain-phase error, mutual coupling) are beyond the scope
of this paper.
A2. {θk}Kk=1 are distinct with each other, and so as to
{ϕk}

K
k=1 and {fk}

K
k=1.

A3. The targets are uncorrelated, i.e., E
{
bk1 (τ ) b∗k2 (τ )

}
={

0 , k1 6= k2
αk , k1 = k2 = k

, where αk is the power of the k-th target

reflection coefficient, E {·} returns the expectation of a vari-
able.
A4. The noise vectorw (t, τ ) is temporally Gaussian white,

spatially correlated, i.e., E
{
w (t1, τ )wH (t2, τ )

}
= C ·

δ (t1 − t2), the superscript (·)H denotes Hermitian transpose.
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Matching x (t, τ ) with sm (t) yields

ym (τ ) =
∫
Tp
x (t, τ ) s∗m (t) dt

=

K∑
k=1

bk (τ ) ar (θk) aTt (ϕk)
∫
Tp
s (t) s∗m (t) dt

+

∫
Tp
w (t, τ ) s∗m (t) dt

=

K∑
k=1

bk (τ ) amt (ϕk) ar (θk)+ nm (τ ) (9)

where amt (ϕk) denotes the m-th entity of at (ϕk), nm (τ ) =∫
Tp
w (t, τ ) s∗m (t) dt . By arranging all the outputs as y (τ ) =[

yT1 (τ ) , y
T
2 (τ ) , · · · , y

T
M (τ )

]
, we can get

y (τ ) =
K∑
k=1

[at (ϕk)⊗ ar (θk)] bk (τ )+ n (τ )

= [At � Ar ]b (τ )+ n (τ ) (10)

where n (τ ) =
[
nT1 (τ ) ,n

T
2 (τ ) , · · · ,n

T
M (τ )

]T , b (τ ) =
[b1 (τ ) , b2 (τ ) , · · · , bK (τ )]T , At = [at (ϕ1) , at (ϕ2) , · · · ,
at (ϕK )] ∈ CM×K and Ar = [ar (θ1) , ar (θ2) , · · · , ar (θK )]
∈ CN×K are, respectively, the transmit direction matrix and
the receive direction matrix. Accordingly, the covariance
matrix of y (τ ) is

Ry = E
{
y (τ ) yH (τ )

}
= ARbAH

+ Rn

= Rs + Rn (11)

where A = At � Ar denotes the virtual direction matrix,
Rb = diag {[α1, α2, · · · , αK ]} represents the target covari-
ance matrix, where diag {r} denotes the diagonalization
operation.Rs = ARbAH andRn = E

{
n (τ )nH (τ )

}
, respec-

tively, denote the signal covariance matrix and the noise
covariance matrix. It is easily to find that Rs is a low-rank
noise-free matrix. Now we focus on Rn. It is follows that
n (τ ) =

∫
Tp
s∗ (t)⊗ w (t, τ ) dt , and hence

Rn = E

{∫
Tp

∫
Tp

[
s∗ (t1)⊗ w (t1, τ )

]
·

[
sT (t2)⊗ wH (t2, τ )

]
dt1dt2

}
=

∫
Tp

∫
Tp
E
{
s∗ (t1) sT (t2)

}
⊗ E {w (t1, τ )w (t2, τ )} dt1dt2

=

∫
Tp

∫
Tp

[
s (t1) sH (t2)

]∗
⊗ [C · δ (t1 − t2)] dt1dt2

= IM ⊗ C (12)

where IM denotes the M × M identity matrix, and the
property in (6), assumption A4 as well as the property
(A1 ⊗ A2) (A3 ⊗ A4) = (A1A3) ⊗ (A2A4) are utilized in
the derivation.

In practice, y (τ ) is sampled at instances τ =

1/fs, 2/fs, · · · ,L/fs, and L snapshots Y = [y (1/fs) ,
y (2/fs) , · · · , y (L/fs)] ∈ CMN×L are collected. Conse-
quently, (10) is replaced by

Ys = [At � Ar ]BTf + Ns (13)

where Bf = [b (f1) ,b (f2) , · · · ,b (fK )] ∈ CL×K

denotes the characteristic matrix of the target, b (fk) =[
βk,1ej2π fk/fs , βk,2ej4π fk/fs , · · · , βk,Lej2Lπ fk/fs

]T
is the k-th

column of Bf . Ns = [n (1/fs) ,n (2/fs) , · · · ,n (L/fs)] ∈
CMN×L stands for the observation of the matched noise. Also,
Ry is estimated via

R̂y =
1
L

L∑
l=1

ylyHl (14)

According to assumption A2, the matrices At , Ar and Bf are
rank-K . Therefore, the model in (13) can be interpreted as a
third-order noisy PARAFAC model as

Y =
K∑
k=1

at (ϕk) ◦ ar (θk) ◦ b (fk)+N

= I3,K×1At×2Ar×3Bf +N (15)

where I3,K is a K×K×K identity tensor, i.e., the (k, k, k)-th
(k = 1, 2, · · · ,K ) element is one, and zero elsewhere. Also,
(14) is known as the trilinear decomposition model. It is easy
to find the relation between (13) and (34){

Ys = [Y]T(3)
Ns = [N ]T(3)

(16)

III. THE PROPOSED ALGORITHM
A. WHITE NOISE SCENARIO
When the received array noise is spatially white, C = σ 2IN
and Rn = σ

2IMN , where σ 2 is the power of the noise. Usu-
ally, eigendecomposition is performed on Y, or alternatively,
on R̂y to obtain the subspaces. With the intention of utilizing
the multidimensional nature inherit in Y, the direct trilinear
decomposition algorithm is proposed in [18], which tries to
optimize

min
At ,Ar ,B

∥∥Y − I3,K×1At×2Ar×3B
∥∥
F (17)

‖·‖F accounts for the Frobenius norm. The above problem
is resolved via the trilinear ALS technique, which fixes two
factor matrices and fits the residual one alternatively until
convergence conditions have been stratified, ie.,

min
Bf

∥∥∥Ys − [At � Ar ]BTf
∥∥∥
F

min
At

∥∥Yt −
[
Ar � Bf

]
AT
t

∥∥
F

min
Ar

∥∥Yr −
[
Bf � At

]
AT
r

∥∥
F

(18)

where Yt = [Y]T(1), Yr = [Y]T(2). Trilinear ALS is quite easy
to implement and is guaranteed to converge [22]. However,
ALS suffers from the slowness of the convergence steps [39],
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since it is very sensitive to the initialization. In this paper,
the computationally efficient COMFAC algorithm in [40] is
utilized. In COMFAC, the third-order tensor is first com-
pressed via the Tucker algorithm. Thereafter, the fitting oper-
ations are conducted in the condensed space, which only
require a few TALS steps. Finally, the solutions are recovered
to the original space by using the Tucker loadings [24].

Similar to (14), the low-rank signal covariance matrix Rs
can be written in tensor format as [32]

Rs =

K∑
k=1

αkat (ϕk) ◦ ar (θk) ◦ a∗t (ϕk) ◦ a
∗
r (θk)

= Rb×1At×2Ar×3A∗t×4A
∗
r (19)

where Rb×1 ∈ CK×K×K×K is a fourth-order tensor with the
(k, k, k, k)-th (k = 1, 2, · · · ,K ) element equals to αk and
zeros elsewhere. Actually, Ry considered as a multi-mode
unfolding of Ry [15], denoted as Ry =

[
Ry
]
(H). With

sufficient snapshots, σ̂ 2, the estimation of σ 2, can be eas-
ily estimated via the matrix decomposition or the Tucker
decomposition technique. Hence, Rs can be estimated via
R̂s = R̂y − σ̂

2IMN . Estimating At and Ar is transferred into
approximating

min
At ,Ar ,Rb

∥∥∥R̂s −Rb×1At×2Ar×3A∗t×4A
∗
r

∥∥∥
F

(20)

where R̂s =

[
R̂s

]
(H)

. A common solver to the above problem

isQALS. Similar to TALS,QALS has very poor convergence.
According to Definition 4, by defining O1 = {1}, O2 = {2}
and O3 = {3, 4}, Rs can be stacked into a third-order tensor
Rs,new as

Rs,new =

K∑
k=1

at (ϕk) ◦ ar (θk) ◦
(
αka∗tr (θk , ϕk)

)
= I3,K×1At×2Ar×3Ã∗ (21)

where a∗tr (θk , ϕk) = a∗t (ϕk) ⊗ a∗r (θk), Ã = ARb. Obvi-
ously, (21) gives the trilinear decomposition model ofRs,new.
By exploiting COMFAC algorithm on the estimate ofRs,new,
At and Ar can be easily estimated, which fulfills [16]{

Ât = 5At11 + N1

Âr = 5Ar12 + N2
(22)

where 5 is a permutation matrix, N1 and N2 represent the
corresponding fitting errors,11 and12 stand for the diagonal
scaling matrices. Note that Ât and Âr are Vandermonde-like,
the least squares (LS) method is suitable for joint DOD and
DOA estimation. Define

Pt =

[
1 1 · · · 1
0 2πdt,2/λ · · · 2πdt,M/λ

]T

Pr =

[
1 1 · · · 1
0 2πdr,2/λ · · · 2πdr,N /λ

]T (23)

where dt,m is the distance between the m-th transmit ele-
ment and the first transmit element, and dr,n is the dis-
tance between the n-th receive element and the first receive
element, λ denotes the carrier wavelength. Let ât (ϕk) and
âr (θk) are the k-th column of Ât and Âr , respectively. Denote{
htk = −phase

{
ât (ϕk)

}
hrk = −phase

{
âr (θk)

} , where phase{·} is to get the phase.
Then compute {

uk = P†1htk
vk = P†2hrk

(24)

where the superscript (·)† denotes the pseudo-inverse.
Notably, the second entity of uk and vk , given by uk,2 and
vk,2, respectively, contain the directions of the k-th target. The
k-th DOD and DOA can be estimated via{

ϕ̂k = arcsin
(
uk,2

)
θ̂k = arcsin

(
vk,2

) (25)

It should be noted that Ât and Âr share the same permutation,
hence the DODs and the DOAs are paired automatically.

B. SPATIALLY COLORED NOISE SCENARIO
In the presence of spatially colored noise, the traditional
subspace-based algorithms may significantly degenerated.
Moreover, approaches such as the direct PARAFAC decom-
position method and the ML estimator could neither per-
form properly. Typical strategies to suppress the spatially
colored noise are rely on the covariance output of the
measurement [26]- [32]. Since the PARAFAC model in this
paper is based on the covariance matrix of the samples, it can
be easily extended to the colored noise scenario. Taking the
temporal cross-correlation framework [30] as an example,
we will illustrate the extension details. For any τ1 − τ2 =
1 6= 0, according to the A3, we have

E
{
w (t, τ1)wH (t, τ2)

}
= 0 (26)

which mean the spatially colored noise is temporal uncorre-
lated. Consequently, we can get

Rn1 = E
{
n (τ1)nH (τ2)

}
=

∫ ∫
Tp

[
s (t1) sH (t2)

]∗
⊗E

{
w (t1, τ1)wH (t2, τ2)

}
dt1dt2

= 0 (27)

which indicates the matched array noises associated with
various pulses are uncorrelated. Besides, we have

E
{
bk (τ1) b∗k (τ2)

}
=ej2π fk1 · E {βk (τ1) βk (τ2)}=γk (28)

where γk is a nonzero constant. (28) reveals that the b (τ ) is
temporal correlated. In combination with A3, we obtain

E
{
b (τ1)bH (τ2)

}
= 0 (29)
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where 0 = diag {γ1, γ2, · · · , γK }. Furthermore, we have

R = E
{
y (τ1) yH (τ2)

}
= A0AH (30)

Obviously, the effect of the spatially colored noise is removed
from the temporal cross-correlation of y (τ ). Let 1 = 1/fs,
R can be estimated via

R̂ =
1

L − 1
Y1YH

2 (31)

where Y1 and Y2 consist of the first L − 1 columns and the
last L − 1 columns of Y, respectively. Similar to (21), R can
be rearranged into a third-order PARAFAC decomposition
model as

R = I3,K×1At×2Ar×3Ā∗ (32)

where Ā∗ = A0. Utilizing the COMFAC algorithm to
perform PARAFAC decomposition for R, one can get the
estimation of At and Ar . With the LS method in the last
subsection, the DODs and DOAs can be easily estimated.
It should be noted that the temporal cross-correlation scheme
is only suitable for scenario where b (τ ) is temporally cor-
related, e.g., the Doppler frequency of the targets is time
invariant during L snapshots, otherwise it may fail to work.

C. ALGORITHM SUMMARIZATION
To help the reader to repeat the results of this paper, we sum-
marize the algorithmic steps for the proposed estimators
in Table 1 and Table 2.

TABLE 1. Algorithmic steps in white noise scenario.

TABLE 2. Algorithmic steps in spatially colored noise scenario.

IV. ALGORITHM ANALYSIS AND CRB
A. IDENTIFIABILITY
Uniqueness is an important feature of PARAFAC analysis,
which can be described as follows.
Theorem 1 [16]: For any PARAFAC decomposition model

in (3), if the factor matrices
{
A(n)

}N
n=1 are full k-rank. Once

N∑
n=1

kA(n) ≥ 2K + 2 (33)

then
{
A(n)

}N
n=1 are unique up to permutation and scaling of

columns, where kA(n) represents the k-rank of A(n).
Theorem 1: reveals the identifiability of the proposed

algorithm. In combination with (21) one can observe
that the proposed algorithm can identify M+N+MN−2

2 at
most. in Table 3, we summarize the identifiability of
our algorithm, ESPRIT [10], HOSVD and its covariance
version [17] (marked with C-HOSVD), PARAFAC [18] as
well as QALS [32]. To make a fair comparison with ESPRIT,
the HOSVD and C-HOSVD in the following are equal
to HOSDV-ESPRIT and C-HOSVD-ESPRIT, respectively,
i.e., after the subspace have been obtained by HOSVD and
C-HOSVD, the ESPRIT-like technique is adopted to obtain
the DODs and DOAs. It is shown that the proposed esti-
mator has lower identifiability than the subspace methods
(e.g., ESPRIT, HOSVD and C-HOSVD), while it can identify
more targets than PARAFAC and QALSwhenMN > M+N .

TABLE 3. Comparisons of various algorithms.

B. FLEXIBILITY AND COMPLEXITY
ESPRIT is only suitable for uniform linear array (ULA). The
HOSVD andC-HOSVD canworkwith arbitrary linear geom-
etry by replacing ESPRIT with MUSIC. From Eq. (23) and
Eq. (24) one can find that the proposed algorithm is for arbi-
trary linear manifolds (and even arbitrary manifolds, inter-
ested readers are recommend to refer [23] for more details),
and so deos the QALSmethod. The flexibility of the proposed
estimator is verified via simulation. We provide the scatter
results of the proposed estimator in Figure 2, where M = 4,
N = 5 and SNR=10 (the defination of the parameters can be
find in the simulation section, other paramters are the same
to that in Examle 1),

[
dt,1, dt,2, dt,3

]T
= [0.45, 0.75, 1.00]T ,[

dr,1, dr,2, dr,3, dr,4
]T
= [0.40, 0.85, 1.15, 1.90]T . It is

seen that the DODs and DOAs can be correct estimated
and paired. Moreover, the covariance-based frameworks,
i.e., C-HOSVD, QALS and the proposed algorithm, can be
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FIGURE 2. Scatter results of the proposed estimator with nonuniform
arrays.

easily extended to spatially colored noise scenario. In sum-
mary, C-HOSVD, QALS and the proposed algorithm are
more flexible than the others.

It is usually very hard to count the detailed calcula-
tion of each algorithm. In this paper, we only make an
approximate estimation on the dominant burden of each
algorithm. The main complexity of the above mentioned
subspace methods is eigendecomposition, therefore, the com-
plexity of all the algorithms are analized in terms of the
eigendecomposition. For a m × n matrix, the SVD needs
O
(
mn2

)
complex multiplication [41]. Therefore, the com-

plexity of ESPRIT is on the order O
(
M3N 3

)
. The eigde-

composition in HOSVD and C-HOSVD are on the order
O
(
MNL2 +MN 2L +M2NL

)
and O

(
2M3N 4

+ 2M4N 3
)
,

respectively. In QALS, the inilizations are obtained via
traditional algorithm(e.g., MUSIC, ESPRIT, PM), and the
ALS fittings are conducted in original space, making
it is computationally much complex than ESPRIT and
HOSVD. Moreover, for nonuniform array geometries, spec-
trum grid search in both methods require extra calcula-
tions, hence HOSVD, C-HOSVD and QALS are com-
putationally costly. In PARAFAC and the proposed algo-
rithm, the truncated SVD need O

(
MK 2

+ NK 2
+ LK 2

)
and O

(
MK 2

+ NK 2
+MNK 2

)
, respectively. From this

point of view, the proposed algorithm is computation-
ally attractive, espectively with large snapshot L or
massive MIMO configuration. Also, the flexibility and
complexity of various algorithm have been summarized
in Table 1.

C. STOCHASTIC CRB
Refer to [42], we have derived the stochastic CRB on
joint DOD and DOA estimation with unknown spatially
colored noise field [43]. Let Rn = Q (q), where q =
[q1, q2, · · · , qP]T is a real vector to parameterize the noise
covariance. The stochastic CRB is given by

CRB (θ, ϕ) =
1
L

[
H−MT−1MT

]−1
(34)

with

H=2Re
{(

D̃H5⊥
Ã
D̃
)
⊕

((
RbÃH R̃−1y ÃRb

)
⊗ 12×2

)}
M=2Re


 JT

((
D̃H
θ 5
⊥

Ã

)
⊗

(
R̃−1ÃRb

)T)
Q̃∗

JT
((

D̃H
ϕ 5
⊥

Ã

)
⊗

(
R̃−1ÃRb

)T)
Q̃∗




T=2Re
{
Q̃H

(
R̃−T ⊗5⊥

Ã

)
Q̃
}
−Q̃H

((
5⊥

Ã

)T
⊗5⊥

Ã

)
Q̃

(35)

where ⊕ denotes the Hadamard product. Ã = Q−1/2A,
5⊥

Ã
= I − 5Ã with 5Ã = ÃÃ†. D̃ =[

D̃θ , D̃ϕ
]
, D̃θ = Q−1/2Dθ and D̃ϕ = Q−1/2Dϕ with

Dθ =

[
at (ϕ1)⊗

∂ar (θ1)
∂θ1

, · · · , at (ϕK )⊗
∂ar (θK )
∂θ1

,
]

and

Dϕ =
[
∂at (ϕ1)
∂ϕ1
⊗ ar (θ1) , · · · ,

∂at (ϕK )
∂ϕK

⊗ ar (θK )
]
, respec-

tively. R̃y = Q−1/2RyQ−1/2, 12×2 is a 2 × 2 matrix filled
with ones. J =

[
vec

{
e1eT1

}
, vec

{
e2eT2

}
, · · · , vec

{
eK eT1

}]
,

with ek denotes the k-th column of the K × K iden-
tity matrix, vec {·} denotes the vectorization operation.
Q̃ =

[
vec

{
Q̃′1
}
, vec

{
Q̃′2
}
, · · · , vec

{
Q̃′P
}]

with Q̃′p =

Q−1/2Q′pQ
−1/2, Q̃′p =

∂Q
∂qp

.

V. SIMULATION RESULTS
In this section, the superiority of the covariance-based tri-
linear decomposition estimator is verified via Monte Carlo
simulation. We consider a bistatic scenario, where the MIMO
radar configured with M transmit antenna and N receive
antenna. For fair comparison with the existing rotation invari-
ance technique-based solutions, both the transmitters and
the receivers are assumed to be ULAs with inter-element
distance is half-wavelength. Suppose K = 3 uncorrelated
sources located at the angles (θ1, ϕ1) = (10◦, 15◦), (θ2, ϕ2) =
(20◦, 25◦), (θ1, ϕ1) = (30◦, 35◦), and Doppler frequencies
are {fk}3k=1 = {200, 400, 850}Hz, respectively. The reflec-
tion coefficients βk,τ are randomly generated, the sampling
frequency is fs = 2KHz and L snapshots are collected. In this
paper, the matched filtering processing is ignored. All the
simulation results are relay on the data model in Eq. (10).
The signal-to-noise ratio (SNR) in the simulation is defined
as SNR = 10log10‖Ys − Ns‖

2 /‖Ns‖
2 [dB], where Ys and

Ns are the matrices given in (13). Two scenarios have been
considered in the simulation, I) Gaussian white noise case, II)
spatially colored noise case with the (m, n)-th element of C
is C (m, n) = α · exp {−|m− n|β}, where β is the noise ‘col-
ored’ parameter. All the curves are based on 500 independent
trials. To evaluate the estimation performance, two metrics
are adopted. One is the root mean square error (RMSE),
which is defined as

RMSE =
1
K

K∑
k=1

√√√√ 1
500

500∑
i=1

{(
θ̂i,k − θk

)2
+
(
ϕ̂i,k − ϕk

)2}
where θ̂i,k and ϕ̂i,k are the estimates of θk and ϕk in the i
th trial. The other one is the probability of the successful
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detection (PSD). When the absolute error of all the estimated
angles in a trial are smaller than 0.3◦, it will be recorded to
calculate the PSD.
Example 1: The estimation performance of the proposed

estimator is tested at various SNR value, where M = 8,
N = 8, L = 500 and scenario I are considered. For
comparison, the performance ESPRIT [10], HOSVD [17],
C-HOSVD [17] in bothHOSVDandC-HOSVD, the ESPRIT
technique is adopted once the signal subspace is obtained,
thus no step searching is required, PARAFAC [18] as well
as QALS [32] (initialized by PM) are added. It is shown
in Figure 3 that QALSwould fail to work at low SNR regions,
owing to imprecise initializations. Moreover, the proposed
algorithm has very close RMSE with PARAFAC, both of
which provide lower RMSE than the other methods. Notably,
all the methods exhibit a 100% PSD at high SNR regions.
With the decreasing SNR, the PSD of each algorithm starts
to drop at a certain point, which is known as the SNR
threshold [31]. One can observe that both PARAFAC and the
proposed method have lower SNR thresholds than the other
methods, as depicted in Figure 4. The improvements benefit
from two aspects. On the one hand, the iterative strategy in
COMFAC help to achieve more accurate direction matrices.
On the other hand, the LS fitting in angle estimation canmake
full use of the array apertures.

FIGURE 3. RMSE versus SNR in scenario I.

Example 2:We compare the estimation performance with
different snapshot L in scenario I, where M = N = 8 and
SNR is fixed at 0dB. Figure 5 and Figure 6 illustrate the
performance curves. As expected, PARAFAC, QALS and the
proposed algorithms provide lower RMSE and offer lower
L thresholds than the other methods. Also, one can see that
QALS may fail to work with small snapshot.
Example 3: We repeat Example 1 but now scenario II

is considered, with α = 0.9 and β = 0.1. For compar-
ison, the performance of temporal cross-correlation based
ESPRIT algorithm in [30] (marked with T-ESPRIT), the
spatial cross-correlation based HOSVD algorithm in [29]

FIGURE 4. PSD versus SNR in scenario I.

FIGURE 5. RMSE versus L in scenario I.

FIGURE 6. PSD versus L in scenario I.

(marked with S-HOSVD), the PARAFACmethod in [18] and
the temporal cross-correlation based QALS algorithm in [32]
(marked with T-QALS) are added. Figure 7 and Figure 8
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FIGURE 7. RMSE versus SNR in scenario II.

FIGURE 8. PSD versus SNR in scenario II.

give the results. Certainly, the traditional PARAFAC method
fails to work at low SNR regions, neither does T-QALS can
properly work. An interesting observation is that the proposed
algorithm outperform all the compared methods, corroborat-
ing the flexibility of our algorithm.
Example 4: We repeat Example 2 in scenario II, where

α and β are fixed at 0.9 and 0.1, respectively. Figure 9
and Figure 10 present the performance curves. Similarly,
the proposed algorithm has lower RMSE at low L regions,
and it offers very close RMSE performance to T-QALS
when L≥300. Furthermore, it provides much lower L thresh-
olds than T-ESPRIT, S-HOSVD and PARAFAC. As shown
in Figure 9, the RMSE of the PARAFAC algorithm is larger
than 0.3◦, thus it provides a 0% PSD. It is evident that
the proposed algorithm is valid for spatially colored noise
scenario.
Example 5: The performance of various methods with dif-

ferent ‘colored’ parameter β is examined, whereM = N = 8,
L = 500, α = 0.9 and SNR=0dB, respectively. Figure 11
and Figure 12 display the results. Worthnoting is thatC ≈ αI

FIGURE 9. RMSE versus L in scenario II.

FIGURE 10. PSD versus L in scenario II.

FIGURE 11. RMSE versus β in scenario II.

when β � 1. It is shown that PARAFAC is sensitive to β. The
performance of other algorithms barely change since they are
suitable for colored noise scenario, while RMSE of QALS is
not stable in such example.
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FIGURE 12. PSD versus β in scenario II.

FIGURE 13. Average running time versus N in scenario I.

FIGURE 14. Average running time versus N in scenario II.

Example 6: We compare the average running time in
terms of receive antenna number N in both scenarios, where
M = 32, L = 1000, SNR= −5dB are considered.
As depicted in Figure 13 and Figure 14, for each algorithm,

more intensive computations are required with the increas-
ing N . Beside, the proposed algorithm is more efficient
than the HOSVD-based methods in scenario I, and it is less
complex than ESPRIT and PARAFAC in scenario II. Most
importantly, the complexity of our algorithm is improved by
two or three orders of magnitude in contrast to the QALS
method.

VI. CONCLUSION
In this paper, we address the direction finding prob-
lem in bistatic MIMO radar. A covariance-based trilinear
decomposition algorithm is presented, which makes full use
of the tensor nature of the array measurement form the
covariance perspective, and it can be easily extended to
the spatially colored noise scenario. From an engineering
point of view, the proposed scheme has reached a good
compromise between accuracy and efficiency. The proposed
covariance-based trilinear decomposition algorithm should
also be of interest in other areas.
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