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ABSTRACT The main purpose of influence maximization is to find a subset of key nodes that could
maximize the spread of information under a certain diffusion model. In recent years, many studies have
focused on the problem of influence maximization. However, these studies usually ignore the role of
community structure which captures a significant effect on the process of influence propagation. To address
above problem, we propose a novel hybrid algorithm PHG, which is a three-phase algorithm for influence
maximization based on community structure. In our algorithm the influence propagation process is divided
into three phases: 1) partition phase; 2) heuristic phase; and 3) greedy phase. Specifically, we first design an
efficient algorithm CCSC that finds key nodes in each community to construct a candidate set by detecting
community structure. Second, we find the most potential influence nodes from a candidate set by combing
the influence weight of nodes and the community influence of nodes through the analysis of the community
structure of the impact on nodes. Finally, we greedily select the nodes with maximization marginal gain from
remaining a candidate set. The extensive experimental results on artificial and real-world social networks
show that our algorithm obtains a better influence spread as well as an acceptable running time.

INDEX TERMS Community structure, heuristic phase, influence maximization, greedy phase, partition

phase.

I. INTRODUCTION

In recent years, social networks have drawn much attention
such as Facebook, Twitter and Google+-, which serve as an
important medium or platform for sharing their thoughts,
news and any type of information to users. In social networks,
some users can propagate information through some kinds
of relation (friendship or co-authorship, etc.), which leads
to an important application in viral marketing. For example,
a company wants to market a new product to customers.
It wishes to select a small number of influential users to adopt
the product so as to create a large cascade of further adop-
tions through the word-of-mouth effect. In above example,
the crucial problem is how to select influential users so that
these users could maximize spread their influence on other
users. The crucial problem known as influence maximization,
is to find top-K influential nodes in social networks that
maximizes the influence.
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Influence maximization problem was first introduced by
Domingos and Richardsom[1]. Kempt et al. [2] proved
the influence maximization problem is NP-hard and gave
two fundamental propagation models: independent cascade
model and linear threshold model. Some efficient approxi-
mate algorithms have been proposed [2]-[4] based on above
two models in order to maximize the influence spread of
nodes. Although the greedy algorithms are efficient, they
ignore the role of community structure in the process of influ-
ence propagation. In the real world, people tend to connect
with other people via strong links to form a community. Infor-
mation flows between these communities at high speed which
results in most people within communities know the same
message immediately. Therefore, some researches [5]-[7]
are focusing on finding key nodes only inside communi-
ties. Despite these researches reduce time complexity of
algorithms, the connectivity between communities has been
ignored. Information flows among different communities,
expanding the breadth of information dissemination. Hence,
in order to identify influential nodes, more and more works
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are devoted to finding an efficient method by considering
community structure.

According to the above analysis, we propose a three-phase
algorithm for influence maximization, called Partition-
Heuristic-Greedy Algorithm(PHG), to model the based-
community influence maximization under linear threshold
model. In our algorithm, we firstly design an efficient algo-
rithm for narrowing down the search space of the candidate
seeds, called Community-based Candidate Set Construction
Algorithm(CCSC), to construct a candidate set by detect-
ing community structure. Then we find the most potential
influence nodes from a candidate set by combining the influ-
ence weight of nodes and the community influence of nodes
through the analysis of the community structure of the impact
on nodes. And finally, we greedily select the nodes with
maximization marginal gain from remaining a candidate set.
Consequently, the proposed method is superior to some clas-
sical algorithms in influence spread as well as a reasonable
running time.

The contributions of this paper are summarized as follows:

« In real social networks, nodes tend to cluster together
by some link relations. Therefore, we propose PHG by
utilizing the community structure information to solve
the problem of influence maximization.

o We heuristically choose the seed nodes from a candidate
set by combining the influence weight of nodes and the
community influence of nodes instead of relying only
on the influence weight. Moreover, it is noticed that the
community influence of nodes can be measured by the
degree of nodes, the number of communities that nodes
connected directly and the size of the community which
will be discussed in detail in section 3.

o We carry out our experiments using several artificial
and real-world social networks to demonstrate that the
performance of our algorithm is not only efficient but
also has a more favorable influence spread compared
with state-of-the-art algorithms.

The rest of this paper is organized as follows. In section 2
we introduce related work of influence maximization con-
taining basic diffusion model, influence maximization algo-
rithms and community detection. We describe our proposed
algorithm in detail in section 3 and verify our algorithm in
artificial and real-world social networks in section 4. Finally,
in section 5 we give our conclusion of this paper.

Il. RELATED WORK

In this section, we introduce the following three aspects:
basic diffusion model, influence maximization algorithms
and community detection.

A. BASIC DIFFUSION MODEL

The diffusion model is a fundamental rule that information
can propagate on it in an appointed social network. Assume
that each node only has two states in the network: active state
or inactive state. If a node has already accepted a message,
this node will be an active node. Otherwise, this node will
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be an inactive node. With the unceasingly conducting of the
studies, IC model and LT model are popular and have been
widely applied to the problem of the influence maximization.
In this paper, we mainly use the LT model which is considered
more superior than the IC model for modeling influences in
social networks owing to taking the ‘““‘influence accumula-
tion” property into account [4], [8].

1) LINEAR THRESHOLD MODEL

In this model, each node is allocated a threshold 6(w) €
[0, 1], which represents that the difficulty of this node is
affected. For each directed edge (v, w) € E, there is an influ-
ence weight b, ,, (3_ by, < 1) which reflects the influence

of an active node v ovn its inactive neighbor w. When a node w
is being an inactive state, the node w can be activated only by
the total influence weight of all active neighbors of the node w
is at least 6,, (as shown in formula(1)). The diffusion process
will stop when no further nodes can be activated.

D buw =6 ()
veneighbor(w)

That is to say, when an active node v attempts to activate its
neighbor w unsuccessfully, the influence of an active node v
on its inactive neighbor w will be accumulated instead of
disappeared immediately like the IC model. This accumu-
lated influence greatly increases the possibility of the inactive
node w activated by other neighbors. Based on this ““influence
accumulation” property, in our algorithm, we find the most
potential influence nodes in the heuristic phase. Although
these nodes are not the most influential nodes, their potential
influence will be accumulated which results in activating
more nodes in the greedy phase.

Algorithm 1 Greedy Algorithm
Input: Network G = (V, E).k
Output: seed set §

:§S <~ &

2:fori=1tok do

3:  v=argmax(§(S U {u}) — 8(S))
uev\S

4: 5 =S U {v}

5: Return §

B. INFLUENCE MAXIMIZATION ALGORITHMS

Given a social network graph G = (V,E), a seed set §
contains k influential active nodes. For each edge (v, w) € E,
finding a seed set S < V such that the expected num-
ber of nodes influenced by S, §(S), is maximized. How-
ever, this influence maximization problem is proved to be
NP-hard under the basic diffusion model. Most of the pro-
posed algorithms try to obtain approximate solutions. As a
result, an effective greedy algorithm was proposed which can
guarantee the influence spread is within (1 — 1/e — ¢) of the
optimal influence solutions[2]. As a basic influence maxi-
mization algorithm, the greedy algorithm of finding the &
influence largest active nodes detailed is given in algorithm 1.
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The core idea of the greedy algorithm is that selecting a
node with marginal gain increment maximization (as shown
in line3) to join in a seed set S at each step until the size
of seed set is k. Although the greedy algorithm obtains a
better influence spread, it is proved to be time consuming for
applying to a large-scale network [15], [23], [24].

In order to optimize the greedy algorithm running effi-
ciency, a lot of improved greedy algorithms were proposed
such as CELF++ [9], NewGreedy [10] and MixGreedy [10].
Although these algorithms run much faster than the sim-
ple greedy algorithm, they still can not handle large-scale
networks owing to time consuming. Another way to reduce
the time complexity is to find the influence maximization
nodes with some heuristic strategies, such as degree [2],
pagerank [3] and PMIA [11]. As a result, these algorithms
seriously decrease the accuracy. To solve the imbalance prob-
lem between the efficiency and effectiveness of the above
algorithms, Tian et al. [4] presented a hybrid algorithm,
called HPG, combining the advantages of both heuristic and
greedy algorithms under the LT model. Specially, the pro-
posed algorithm first heuristically chooses half of the initial
seeds with the biggest potential influence and then greedily
chooses the other half initial seeds with the most influence.

Above algorithms further improve the influence spread
and the running time of the existing algorithms from dif-
ferent perspectives. However, these algorithms ignore the
importance of community structure during the information
diffusion which was proved by some works[12], [13]. Thus,
some recent studies [14]-[16], [27]-[31] began to use com-
munity structure to solve influence maximization. These
studies firstly divide communities by classical community
algorithms. And then they compute the influence of nodes in
each community to approximate the influence of the whole
network. Moreover, these algorithms assume that different
communities are isolated. However, obviously, they ignore
the flow of information among different communities which
reduces the influence spread of algorithm obviously.

Following the above analyses, we attempt to find suitable
ways, such as combining the community structure and the
advantages of the heuristic and the greedy algorithms effi-
ciently, to solve the efficiency problem of the existing algo-
rithms in influence maximization. In this paper, we propose a
three-phase algorithm PHG for influence maximization based
on community structure. Moreover, we divide our algorithm
into partition, heuristic and greedy three phases which will be
discussed in next section.

C. COMMUNITY DETECTION

A community is characterized as a subset of nodes which
are more linked to each other closely than other nodes out-
side the community. In order to identify a good community
structure in a network, a large number of outstanding algo-
rithms such as FPMQA[17], MECM[ 18] and BiLPA[19] have
been proposed in the last decade years. Among these algo-
rithms, the modularity-based algorithms such as Newman
Fast algorithm[20] and Louvain algorithm[21] are popular
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and widely used in community detection. Modularity (Q) as
the objective function is used to measure the quality of the
community partition. Moreover, the value of Q is greater,
indicating that the network community detecting is better.
Although using modularity to detect community achieves a
good result, it turns out to be computationally expensive for
the whole networks[26]. Thus, some works focus on utiliz-
ing the modularity increment function to detect community
which is computed as follows:

D in thiin (th +ki>2]

A0 =1 2m 2m

(G- e

where ) is the sum of the weights of the links inside the
community to which the node i is assigned, ) ,, is the sum of
the weights of the links incident to nodes in the community,
k; is the sum of weights of the edges connected to the node i,
ki in 1s the sum of weights of links from node i to nodes in
community, and m is the total weights in the network.

In this paper, we select Louvain algorithm with low time
complexity O(n log n) as our community detection algorithm.
Owing to the simplicity of this algorithm, it can be computed
extremely fast even in a large-scale network. Moreover, this
algorithm obtains close to the nature communities in net-
works. Thus, we use Louvain algorithm to detect community.
The Louvain algorithm consists of two steps, namely modu-
larity optimization and new graph construction respectively.
The detail of the Louvain algorithm is summarized below by
its description using Algorithm 2.

Algorithm 2 Louvain Algorithm

Input: Network G = (V, E)

Output: community structure C

1: Initialize each node with its own community C;, AQ =0
2: while AQ > 0 do//stepl: modularity optimization

3: foreachv e Vdo

4: Put the node v into its each neighbor’s
community C;

5: Compute AQ

6: C; = max (AQ)

7 Ci=CU{}

8: for each C; € C do // step2: new graph construction

9: each C; as a new node input step1 to construct a new
graph

10: Return C

Algorithm 2 detailedly outlines the calculation process of
the Louvain algorithm. First, for each node of the network,
the algorithm initially allocates it for its own community
and removes it from its original community to its neighbor’s
community according to modularity increment(AQ) maxi-
mization standard(lines 1-7). After finishing the modular-
ity optimization, the network is divided into a number of
communities. And then, for obtained each new community,
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the algorithm constructs a new graph by inputting it as a new
node into step1(lines 8-9). This process is repeated iteratively
until communities of all nodes no longer change. The Louvain
algorithm performs well in community detection. Besides,
it is proved to be successful when applying on many different
types of large-scale networks[25].

lll. PHG ALGORITHM

In this section, we firstly present the design of algo-
rithm PHG. Then, based on community structure, we divide
our algorithm into three phases which are detailed in the
following section.

A. THE DESIGN OF ALGORITHM PHG

The proposed algorithm is comprised of three phases, i.e., the
partition phase, the heuristic phase and the greedy phase.
In the partition phase, we deign an efficient algorithm CCSC
that constructs a candidate set by detecting community struc-
ture. Based on community structure, in the heuristic phase,
we select seeds from a candidate set by considering influence
weight of nodes and the community influence of nodes. In the
greedy phase, we select seeds with maximization marginal
gain from the candidate set. The framework of the proposed
algorithm is shown in FIGURE 1.

Partition phase for Heuristic phase for selecting
constructing a candidate set seeds based on community
by CCSC algorithm structure

Greedy phase for selecting
seeds with maximization
marginal gain

FIGURE 1. Framework of the proposed algorith.

In the partition phase of our proposed algorithm, we find
key nodes to construct a candidate set by detecting commu-
nity structure. The key nodes include the core nodes and
boundary nodes which can spread information quickly in
its own community and easily spread information among
different communities respectively. In the real world, there
is a same phenomenon with our proposed algorithm: a part of
people spread information often rely on their circle of friends.
In other words, the more friends a person has in his circle of
friends, the faster the information spreads. While there are
still some other people who are not in the same circle of
friends with their friends due to the difference in interests,
regions and so on. This part of people spread information
from a circle to another circle by their friends which expands
the breadth of the information transmission. For example,
in Figure2, it shows two different-sized communities, com-
munityl and community2, which contains {1, 2, 3, 4, 5, 6}
and {7, 8, 9} respectively. The color node means we select
it as a member of the candidate set. As in Figure2(a), if we
only choose nodel to join in the candidate set, the commu-
nityl will obtain considerable amount gains while the com-
munity2 will gain a little. However, if we choose nodel and
node3 to influence other nodes, as in Figure2(b), the prob-
ability of information spread to the community2 will be
increased considerably. The reason for selecting nodel and
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(a)

(b)

FIGURE 2. Examples of selection of seeds. (a): Select node1 as a see.
(b): Select node1 and node3 as seeds.

node3 instead of selecting nodel to influence other nodes is
that the nodel as a core node can only spread the information
in its own community, while the node3 as a boundary node in
communityl can spread information to the community2 by
its neighbor node7.Thus, we select core nodes and boundary
nodes to construct a candidate set, in order to further expand
the influence spread of nodes.

B. PARTITION PHASE
We have introduced the importance of key nodes during
the process of influence propagation in the previous part.
Notice that as social networks in real world are extremely
large, the search space for selecting seeds is a difficult task.
Therefore, it is necessary to construct a candidate set by
detecting community structure to reduce the scope of seeds
search. In order to describe CCSC algorithm, we will first
give the following definitions.

Definition 1 (Community Label): For a social network
G = (V, E) contains M communities C = (Cy, C3, ...Cy),
the community label of node v is defined as

CGw.j=1,2,...M A3)

Obviously, the community label describes the approximate
location of nodes in the network. Moreover, it is an impor-
tant indication to determine nodes’ attributes, especially the
boundary nodes. As we have discussed in above, the bound-
ary nodes connect two different communities which expand
the breadth of the information transmission. Thus, based on
community label, we define boundary label as follows:
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Definition 2 (Boundary Label): For eachnode v € V with
its neighbor w, the boundary label of node v is defined as

B(v)=1, C@)#Cw) @)
B(v)=0, C@)=Cw)
where C(v) represents the community label of node v. If the
node v has different boundary label from its neighbor w,
B(v) = 1, otherwise, B(v) = 0.

In terms of the community label and the boundary label,
we have identified the boundary nodes. Based on the above
analysis, we know that the candidate node set is composed of
the boundary nodes and the core nodes. What criteria do we
rely on to identify core nodes? Degree centrality is the most
direct metric for characterizing node centrality in network
analysis. Moreover, the greater the degree of a node, the more
important the location of a node in the network. Therefore,
we consider the degree centrality to identify the core nodes
which is defined as follows:

Definition 3 (Degree Centrality): For a social network
G = (V, E) with n nodes, the degree centrality of node is
defined as

Co) =D eV # W) 5)

w=1
where Cp(v) denotes as the degree centrality of node v,
n

> ey is used to compute the number of direct connection

ggtlween the node v and the other n — 1 nodes w.

Depending on Definition 2 and Definition 3, we can deter-
mine the boundary nodes and the core nodes in each commu-
nity. Moreover, the main purpose of the partition phase is to
construct a candidate set by finding the boundary nodes and
the core nodes. In order to describe the construction of the
candidate set, we give the following definition.

Definition 4 (CS): Given a network G = (V, E) with M
communities C = (Cy, Cy, ... Cy), where S.oe is the sum
of core node set and Spoundary is the sum of boundary node
set. The candidate set is defined as

CS = (Score U Sbouna’ary) (6)

In formula (6), the sum of core node set is defined as
M
Score = kL—Jl CCk (7)

Cc, denotes the core node set in each community.
The sum of boundary node set is defined as

M
Sboundary = kL;Jl BCk (8)

Bc, denotes the boundary node set in each community.
Based on above definitions, the candidate set can be con-
structed by CCSC algorithm. Given a directed graph G =
(V, E) and parameters P denoted as the size of the core node
set in each community. Noticed that P = 10% of commu-
nity size is enough for selecting good nodes in most cases.
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The CCSC algorithm with finding a candidate set can be
described as follows.

Algorithm 3 CCSC Algorithm

Input: Network G = (V, E), parameters P
Output: a candidate set CS

1:.CS <~ @

2: C = (Cy, C3, ...Cy) < Louvain algorithm
3: for each Cj, do

4. foreach v € Cy do

5: if (B(v) == 1) then

6: B¢, = B¢, U {v}

7 else

8: while P |C¢, | < P do
9: vg < max (Cp(v))
10: Cc, = C¢, U {vo}

M M
11: Sboundary <~ kL—Jl BC/(’ Score < kgl CCk

12: CS <« (Score LjShOundary)
13: return CS

The core idea of the CCSC algorithm is to divide into
M communities in which finding key nodes to construct a
candidate set. Firstly, we conduct the Louvain algorithm used
to divide communities, denoted as C = (Cy, Co,...Cy),
which was described in Algorithm 2, (lines 1-2). In order to
find key nodes which is consist of core nodes and boundary
nodes in each community. Secondly, we need to determine
each node’s boundary attribute for each community, if the
node is a boundary node, we will add the node to the boundary
node set, that is B¢, 1 < k < M (lines 3-6). Otherwise,
we will select the top-P degree nodes to join in the core node
set Cc,1 < k < M (lines 7-10). Finally, we integrate each
boundary node set B¢, and each core node set C¢, in each
community to form Score and Spoundary respectively, and then
add the two sets to the candidate set CS (lines 11-13).

C. HEURISTIC PHASE

In light of the constructed the candidate set, the heuristic
phase aims to find a part of the most potential influence nodes
from a candidate set based on community structure. Notice
that the candidate set is composed of core nodes and bound-
ary nodes which can provide more information about the
community structure. Especially, the boundary nodes are the
bridge connecting the different communities which are very
useful for influence maximization. Therefore, it needs to con-
sider community structure information to measure a node’s
influence. Specifically, we estimate the community influence
of nodes by combining the degree of nodes, the number of
communities that nodes connected directly, and the size of
the community. Community influence not only considers the
degree of nodes but also combines the location and con-
nectivity of nodes in the network, which can better evaluate
the importance of nodes to influence transmission. Based on

62515



IEEE Access

L. Qiu et al.: PHG: Three-Phase Algorithm for Influence Maximization Based on Community Structure

above attributes, the community influence can be measured
as follows.

Definition 5 (Community Influence): For a node v, the
community influence is defined as

Cp(v) + Cn(v) + AvgNs(v)/3,
Cp(v) + Cs(v)/2,

Ve Sboundary
v € Score

Cl(v) = {
€))

In formula(9), Cp(v) is the degree of the nodes,
Cy(v) denotes the number of communities which the node
v connected directly, AvgNg(v) denotes the average size of
the community which the node v’s neighbors belong to, and
Cs represents the size of the community which the node v
belongs to. The Cy (v) and AvgNs(v) are defined as below,

Cn () = > en (10)

wg Cj(v),weneighbor(v)
where e, denotes the number of neighbors of the node v.

X ICi(w)
AvgNS(v) _ i#j,weneughbor (v),wgCj(v) (1 1
Cn(v)
where |C;(w)| represents the size of community which the
node w belongs to.

In order to ensure that the contribution of each attribute
in formula(9) to the final result is same. We adopt Min-Max
normalization to handle original data that make the value of
each attribute is mapped to [0-1] space. The formula can be
listed as follows:

(x — min value)

y (12)

" (max value — min value)

where x and y represent the value before and after conversion
respectively.

Community influence describes the topology and impor-
tance of nodes in the whole network. However, we still can
not ignore the influence weight which provides an important
impact on inactive nodes[8]. Thus, we take the community
influence and the influence weight into account to measure
the potential influence. The potential influence can be mea-
sured as follows.

Definition 6 (Potential Influence): For anode v, the poten-
tial influence is defined as

P() = >

weneighbor(v),w¢A(v)

byy - CI(v) (13)

where b,,, represents the influence weight of node v on its
neighbor w, A(v) denotes the set of active neighbors of node v.

With the purpose of finding the most potential nodes in
the heuristic phase, our method is to evaluate the key node’s
(i.e., core nodes and boundary nodes) potential influence
by considering the community influence and the influence
weight. Notice that this potential influence will be accumu-
lated by activated nodes and will be maximized in the greedy
phase, which results in activating more nodes than classical
algorithms which will be discussed in section 4.
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D. GREEDY PHASE

After finishing the most potential nodes selection, we apply
the greedy algorithm(Algorithm 1) for finding the most influ-
ential nodes to achieve higher influence spread than the
heuristic phase. Notice that the task of seed selection in the
greedy algorithm is very time consuming. Therefore, we run
the CCSC algorithm(Algorithm 3) for pruning the insignif-
icant nodes to construct a candidate set. Different from the
classical greedy algorithm, we select seeds from the candidate
set instead of the entire network which effectively reduces the
time that the node computes influence. Moreover, we obtain a
better influence spread than other classical algorithms which
performs in the later experiments.

E. PHG ALGORITHM

Based on the preceding descriptions for each phase, the algo-
rithm for the PHG is shown in Algorithm 4.

Algorithm 4 PHG Algorithm

Input: Network G = (V, E), k, ¢, a candidate set CS
Output: a seed set S

1:S <« &, CS < D, ky = [ck], kp =k — [ck]
Partition phase:

2: CS <« CCSC algorithm

Heuristic phase:

3:fori=1tok; do

4. v = arg max(P (u))

ueCs\S
5:8; =81 U{v}
Greedy phase:

6: fori = 1to kp do

7. v = arg max(6(S U {u}) — §(S))
ueCs\S
8: Sitk1 = Si—14k1 U {v)

Given a directed graph G = (V, E), a parameter k and a
parameter ¢ denoted as the size of seed set and heuristic factor
respectively. The PHG algorithm can be described as follows.

Algorithm 4 shows the pseudo code of our solution. Firstly,
the information of the community structure and a candidate
set can be discovered by the CCSC algorithm. We prune some
insignificant nodes by detecting community structure in order
to reduce the running time for the next two phases (lines 1-2).
Then we select the most influential nodes with a number
of [ck] based on community structure information as initial
seeds in the heuristic phase (lines 3-5). At last, we conduct the
greedy algorithm to select the largest marginal gain nodes as
seeds in the greedy phase (lines 6-8). Notice that we select
the initial seeds from the candidate set which contains a large
amount of community structure information. The initial seeds
may have a high degree or have a good connectively in each
step through utilizing this community structure information
which performs a good result that shows in experiments part.

1) TIME COMPLEXITY
The total calculation of our PHG algorithm mainly consists of
three parts-partition phase, heuristic phase, and greedy phase.

VOLUME 7, 2019



L. Qiu et al.: PHG: Three-Phase Algorithm for Influence Maximization Based on Community Structure

IEEE Access

During partition phase, it spends O(nlog ) time to detect
community, where n represents the number of nodes. Then,
the computational complexity of O(n). And finally, in the
greedy phase, we select k influential seeds from candidate set
by greedy algorithm, thus the time complexity is O(kn'n?’),
where n’ denotes the number of candidate nodes and m’
represents the number of the candidate edges. Consequently,
the total time complexity of our algorithm is O(nlogn 4 n +
kn'm’).

IV. EXPERIMENTS AND RESULTS

In order to compare our algorithm with other algorithms,
we conduct our experiments on artificial and real-world social
networks. First of all, we introduce the experiments setup in
this experiment. Second, we analyze the performance of our
algorithms.

A. EXPERIMENTS SETUP

Our experiments setup consists of: (a)the datasets, (b) the
diffusion model, and (c) the algorithms to compare three
aspects.

1) DATASETS
We use five datasets which contains all kinds of sizes and
types data. The first one is called Amazon which was col-
lected on March 02,2003. There contains a directed edge
from i to j if a product i is frequently co-purchased with
product j. Epinions and Brightkite are two-medium sized
datasets with a who-trust-whom online social network and a
location-based social network respectively. In Epinions web-
site, all users may choose whether or not trust reviews which
are posted by other users and the Brightkite network was
collected using their public API. While the smaller dataset
is HepTh which is from the e-print arXiv and contains the
collaboration relations between authors in the High Energy
Physics Theory. Finally, we use the pajek software to generate
a Synthetic network at random.

All real-world datasets are available from SNAP library on
the Stanford University website and the statistical properties
of all datasets are summaries in TABLE 1.

2) DIFFUSION MODEL

We use the Linear Threshold model to evaluate our algorithm.
The influence weight b, ,, is usually defined as 1/Cp(v),
where Cp(v) is the normal degree of v. It means that for an
inactive node v, all its neighbors have the same contribution to
the node v. However, this is not in accord with the real world.
Thus, we give a new definition of the influence weight b, ,,,
we not only consider the number of neighbors of v but also
consider how these neighbors connect to each other.

Cp(v)
> Cpw)

weN (v)

bv,w = (14)

where N (v) represents the set of neighbors of node v.
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TABLE 1. Summary of the datasets.

Datasets Amazon Epinions  Brightkite ~ HepTh  Synthetic
#Node 262111 75879 58228 9877 53036
#Edge 1234877 508837 214078 25998 130738
Max. degree 366 3027 1134 1383 355
Avg. degree  9.009 13.412 7.353 10.020  4.93
#Connected 1 11 547 428 829
Components

Large 262111 75877 56739 8638 51241
component

size

Average 262111 6898 106 23 64
component

size

3) ALGORITHMS TO COMPARE

We compare the performance of our algorithm with five algo-
rithms which contain a hybrid algorithm, a greedy algorithm
and three heuristic algorithms. The following is a list of
algorithms we evaluate in our experiments.

« PHG: The algorithm presented in this paper. The section
of heuristic factor c is discussed in section 4.2.

« HPG: A hybrid algorithm[4] finds the influence of each
node as a combination of the heuristic algorithm and the
greedy algorithm to track the effect of each node in the
entire network. In this algorithm, heuristic factor ¢ sets
as same as our algorithm.

« Greedy: A highly effective in influence spread discussed
in Algorithm 1 which uses Monte Carlo simulations
to compute the influence of each node. This algorithm
chooses the largest marginal gain node to add it to the
seed set in each step.

o PageRank: It was first proposed to rank webpages.
We use this algorithm finds the most influential nodes as
seeds. The algorithm stops when the score vectors from
two consecutive iterations differ by at most 10-4 as every
L1 norm.

o Degree: The algorithm chooses the nodes with maxi-
mization degree as seeds which is a standard method
compared to other algorithms for social networks.

« Random: This algorithm chooses seeds at randomly.

The performances of these algorithms runs are discussed

in the next section. It is noted that HPG algorithm uses the
hybrid idea which is similar to our algorithm. The greedy
algorithm is a classical method to solve the influence max-
imization with a good influence spread. Other heuristic algo-
rithms PageRank, Degree and Random are basic algorithms
compared with most of the other works and have a good
running time.

B. EXPERIMENTAL RESULTS
Our proposed algorithm is evaluated in four domains: (a) the
community detection; (b) the tuning of the heuristic factor c;
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TABLE 2. The results of the community detection of the datasetsd.

Datasets Amazon Epinions Brightkite HepTh Synthetic
#Communities 218 1616 992 483 1029
Max. Com. Size 71532 10312 7653 791 1021
Min. Com. Size 4 1 2 1 1
Avg. Com. Size 1202.34 46.95 58.70 20.45 51.54
Modularity (Q) 0.915 0.897 0.874 0.768 0.815
Running time(s) 389 356 176 5 78
Parameter U 0.0006 0.00010 0.00026 0.00139 0.00098
PHG K=50 PHG K=50
eeelee Amazon HepTh eeclee Amazon HepTh
Epinions Brightkite Epinions Brightkite
Synthetic =@ Synthetic
10000 o 12000
'g ()
7}
P 10000
Q8000 <
vy @ 8000
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heuristic factor C
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FIGURE 3. The effect of factor c¢ on influence spread and running tim. (a): Spread of influence. (b): Running tim.

(c) the influence spread compared to other algorithms; and
(d) the running time compared to other algorithms.

1) COMMUNITY DETECTION
We first evaluate the effect of community detection. We con-
duct the Louvain algorithm(Algorithm 2) to detect commu-
nity which was proved that has a good performance [22].
In order to describe effectively the performance of the
Louvain algorithm on each dataset, we do our experiments
with a parameter u (the minimum/maximum size of the com-
munities (Smin/Smax)), denoted as the average proportion of
each node which does not belong to the same community with
its neighbors in the network. The results of the community
detection for different datasets are shown in TABLE 2.
TABLE 2 clearly shows the results of the community
detection. As the above mentioned, the parameter u directly
determines different types of the community structure, and
smaller # means that the community structure is stronger.
Moreover, the modularity Q is a metric to evaluate the quality
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of a community structure. Combing the performance of the
modularity and parameter u# in each dataset, we conclude
that the higher the value of modularity, the stronger of the
community structure. Moreover, the value of modularity of
five datasets range from 0.76 to 0.91 indicates the results of
the community detection are accurate. Because of the datasets
on influence maximization are large-scale networks, we must
consider the running time when detecting community. From
Table 2 we know that all datasets have a fast running,
especially in HepTh.

2) TUNING OF HEURISTIC FACTOR ¢

We evaluate the effect of the changing of the factor ¢ on influ-
ence spread and running time with five datasets and results
are shown in Figure3. It is clear that with the growth of c, the
influence spread on all datasets decreases gradually expect
the Epinions. Similarly, with the growth of ¢, the running
time on all datasets decreases quickly. This is accordance with
the characteristics of heuristic algorithms with low influence
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FIGURE 4. The influence spread on different datasets. (a): Amazon (b): Epinions. (c): Brightkite. (d): HepTh. (e): Synthetic.

spread and running time and greedy algorithms with high
influence spread and running time. Therefore, in order to
obtain a suitable influence spread and running time, we set the
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value of factor c on Amazon, Brightkite and Synthetic are 0.4,
0.4 and 0.5 respectively. Observed the Figure3, we discover
that the greedy element has little effect on the Epinions.
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FIGURE 5. Running time of different algorithms in four datasets.

Thus, we set the value of factor ¢ on Epinions is 1. Owing
to the small size of the HepTh, the running time is not a main
factor limiting the performance of this dataset. According to
the influence spread, we set the value of factor ¢ on HepTh
is 0.2.

3) INFLUENCE SPREAD

We compare our algorithm with other algorithms on five
datasets, as shown in FIGURE 4. We can discover that our
algorithm performs best among other algorithms according
to the influence spread. As our expectation, the Random
algorithm as the baseline performs worst on all datasets.
This primarily is because the Random algorithm does not
consider any feature of the network, while other algorithms
all effectively utilize the attributes of the network more or
less. The simple heuristic algorithms including PageRank
and Degree are better than Random, however, they are still
significantly worse than other algorithms including Greedy,
HPG and PHG on most datasets except for the Epinions
dataset. As high influence algorithms, HPG and Greedy have
a similar influence spread with our algorithm PHG when seed
set size is smaller. However, the performance of our algorithm
is becoming better and better as the seed set size is increasing.
For example, our algorithm is 10.50% and 22.78% better than
HPG and Greedy on Brightkite dataset when the seed set
size is 50. The result clearly shows that our algorithm can
effectively find top influential seeds by taking advantage of
community structure information which provides the degree,
the location and the connectivity of a node in a network.

4) RUNNING TIME

The FIGURE 5 shows the running time of different algo-
rithms on several datasets. Here the running time is the time
of selecting k = 50 seeds.

62520

From the results we see that the running time of PageRank,
Degree and Random are considerably low on all datasets.
The reason is probably that these algorithms only consider
the single element to heuristically choose seeds which can’t
provide any performance guarantee, greatly shortening the
running time in the information transmission process. Except
PageRank, Degree and Random, the PHG has the best run-
ning time among other algorithms. For example, the PHG
is 62.85% and 30.73 % lower than Greedy and HPG on
Amazon dataset. The reason is that, the PHG algorithm
prunes insignificant nodes with little community structure
information which leads to the reduction of the range of
seed selection. It is noticed that the PHG algorithm and
the HPG algorithm have a less running time on Epinions
dataset when comparing with other datasets. This difference
is mainly due to different values of the heuristic factor c. And
based on above analyze on the heuristic factor ¢, we know
that the larger the value of the heuristic factor c, the less the
greedy algorithm’s contribution to the PHG algorithm and the
HPG algorithm. Therefore, the greedy algorithm does not any
impact both on the PHG algorithm and the HPG algorithm
when ¢ = 1 on Epinions dataset, which reduces the running
time drastically.

V. CONCLUSIONS

In this paper, we propose a novel hybrid PHG, which is a
three-phase algorithm for influence maximization based on
community structure. Previous studies usually ignore the role
of community structure which captures a significant effect
on the process of influence propagation. Thus, we take the
community structure information into account and divide the
influence propagation process into three phases: (i): parti-
tion phase; (ii): heuristic phase; (iii): greedy phase. Firstly,
we design an efficient algorithm CCSC that finds key nodes
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in each community to construct a candidate set by detecting
community structure. And then we find the most poten-
tial influence nodes from a candidate set by combing the
influence weight of nodes and the community influence of
nodes through the analysis of the community structure of
the impact on nodes. At last, we greedily select the nodes
with maximization marginal gain from remaining a candidate
set. We evaluate the performance of our proposed algorithm
on the real datasets and synthetic dataset which achieves
excellent stability in influence spread as well as an acceptable
running time.

We believe our study in influence maximization problem
will provide more different directions in the future. First,
we use community detection method is non-overlapping,
while in the real world the community structure is over-
lap. Therefore, we should take into account how apply our
algorithm to the overlapping community. Second, we only
consider our algorithm on the linear threshold model with-
out other diffusion models such as the Independent Cascade
Model and the Weighted Cascade Model. Finally, we will
analyze the framework of our algorithm to future improve
influence spread and running time.
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