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ABSTRACT Early faults in rolling bearings tend to result in periodic impulse components in the collected
vibration signals. However, these fault features are always distorted by noise interferences. Feature extraction
from vibration signals is an effective means to detect early defects in rolling bearings. A new morphological
filter (MF), called enhanced difference morphological filter (EDMF) is proposed for vibration signal
processing and then implementing bearing fault diagnosis. EDMF is capable of depressing noise and
preserving effective impulsive components, where four new basic morphological operators are integrated
effectively. The experimental results on simulation and bearing vibration signals verify that EDMF is
effective for defect detection of rolling bearings. The comparison results show that the new MF can extract
fault features more effectively from vibration signals with much noise than other typical MFs.

INDEX TERMS Bearing fault diagnosis, fault feature extraction, vibration signal, morphological filter,

impact components.

I. INTRODUCTION

Vibration signal analysis is often used as an effective method
in bearing fault diagnosis. If a localized defect occurs in a
rolling bearing, an impulse of short duration will be gen-
erated and this will excite resonance of the bearing in the
machine. These periodic impulses in vibration signals pro-
vide an important indicator of machinery faults [1]. However,
these impulses are exceedingly weak in the early phase of
defects because they are inevitably overwhelmed by various
noise [2], [3]. Thus, the fault feature extraction from vibra-
tion signals with heavy noise becomes an important issue in
machine defect detection.

Morphological filter (MF) [4], [5] is an extremely effective
tool to modify the geometry of a signal by its intersection
with structure element (SE). MFs have been applied success-
fully in image processing and analysis. In recent years, MFs
were employed for impact feature extraction from various
vibration signals. In general, they concentrate on the con-
struction of morphological operators and the selection of SE.
Nikolaou and Antoniadis [6] used MF with a flat SE to
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analyze vibration signals. Hao and Chu [7] used morpholog-
ical un-decimated wavelet for fault diagnosis. Li et al. [8]
proposed a weighted multi-scale morphological gradient fil-
ter for defect detection of bearing. Li ef al. [9] developed
weighted multiscale MF and fractal dimension based on mor-
phological covering technique for machinery fault diagno-
sis. Li et al. [10] proposed multiscale autocorrelation based
on morphological wavelet slice for detecting fault features
from bearing vibration signals. Average operator (AVG) [11]
was proposed for the impulse components extraction, and
the length of SE was determined by using signal noise
ratio (SNR). Morphological gradient (MG) [12] operator is
also developed to extract harmonic waveform in a period.
The geometry of SE has a significant effect on analysis
results of MF. Kurtosis is used for selection of SE [13].
Particle swarm optimization was used to setup the opti-
mal SE by Yan and Jia [14] in their morphology operator.
Wang et al. [15] gave a concept called ‘morphogram’ to
setup the SE. Lv and Yu [16] developed a new MF, aver-
age combination difference morphological filter (ACDIF) to
extract impulsive components from bearing vibration signals.
Yu et al. [17] employed morphological component analysis
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to extract tool edge with continuous and complete contour.
In recent years, multiscale MF [10], [18]-[20] has been
applied to extract fault features at different scales, which often
gives a better performance for machinery fault diagnosis.
Although no prior knowledge is required for multiscale MF,
the computation complexity limits its wide applications.

Because the fault signals of rolling bearing always suffer
from the noise and harmonics interferences, the focus of this
work is to propose a new MF, called enhanced difference
morphological filter (EDMF) for defect feature extraction of
vibration signals. The main contributions of the paper are
as follows: (1) Four new basic morphological operators are
developed to extract positive or negative impulsive compo-
nents in the vibration signals; (2) To make the impact features
be prominent, a new morphological operator, i.e., EDMF that
combines the four new operators is further proposed to extract
both positive and negative impulses of vibration signals. The
results on the simulation signal and bearing vibration signals
illustrate that EDMF is effective to extract periodic impulses
and then to perform bearing defect detections.

The rest of this paper is organized as: The basic theory of
MF is introduced in Section I. The new MF, i.e., EDMF is
proposed in Section II. In Section III, the simulation signal
is firstly used to verify the effectiveness of EDMF. Vibration
signals from rolling bearings are further used to verify effec-
tiveness of EDMF in Section IV. Finally, the conclusions are
given in Section V.

Il. ENHANCED DIFFERENCE MORPHOLOGICAL FILTER
Set theory-based mathematical morphology (MM) was ini-
tially used for image processing [21], [22]. Recently, MM
has been used as a demodulation method in machinery fault
diagnosis [6], [23]. The four basic morphological operators,
namely erosion, dilation, opening and closing are often used
for various applications. Let f(n) be the signal that is the
function over a domain F = (0, 1,--- , N — 1). Let g(m) be
the SE over a domain G = (0, 1,--- ,M — 1)(M < N). The
four operators are defined:

Erosion:
(f ©g)(n) = min{f (n + m) — g(m)} 6]
Dilation:
(f ® g)(n) = max {f(n —m) + g(m)} 2
Opening:
(f o )(n) = (fOL S g)(n) 3)
Closing:
(f o 8)(n) = (f ® gOL)n) )

where ®, @, o and e denote the erosion, dilation, opening and
closing operator, respectively. They are capable of picking up
positive or negative impulses from vibration signals. Based
on the four basic operators, these typical MFs, i.e., MG,
Difference filter (DIF), opening-closing and closing-opening
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FIGURE 1. Flowchart of EDMF calculation.

(OCCO) [8], [24], [25] are developed for machine fault
diagnosis.

In this study, four new MF operators are firstly proposed to
extract positive or negative impact components of vibration
signals. Then, EDMF integrates the four new operators as
a new MF, which takes their own strengths in extracting
impact components. Finally, it not only effectively suppresses
the noise, but keeps the impact components of the vibration
signals.

The EDMF calculation is shown in Fig. 1, where this sim-
ulation signal xy = cos(24xt) + 1.5 cos(40r¢) is employed
to illustrate effectiveness of EDMF for impulsive component
extraction.

Considering the different effect of the four basic operators
on impulse, they can be divided into two categories. One
can retain the positive impulses and suppress the negative
impulses: dilation and closing operator. The other can retain
the negative pulse and remove the positive impulses: erosion
and opening operator. Thus, these operators can be integrated
to enhance the effect of positive or negative impulses in
vibration signals.

Firstly, in order to extract positive impulse and keep the
shape of the signal as much as possible, the cascades of dila-
tion, closing and erosion (i.e. closing-dilation-erosion (CDE)
and dilation-closing-erosion (DCE)) are defined:

Fepe(f(n) = (f ¢ g © gOg)(n) ®)

Fpce(f(n) = (f © g e g0g)(n) (6)

Secondly, in order to extract negative impulse and keep

shape of the signal as much as possible, the cascades of

erosion, opening and dilation (i.e. erosion-opening-dilation
(EOD) and opening-erosion-dilation (OED) are defined:

Frop(f(n)) = (fOg o g ® g)(n) (N

Foep(f(m) = (f 0 gOg @ g)(n) (®)
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In theory, CDE and DCE integrate the dilation and clos-
ing operators on the signal f(n) to enhance the effect of
suppressing the negative impulses, and the erosion operator
corrects the retained positive impulses. EOD and OED inte-
grates erosions and opening operators on the signal f(n) to
effectively suppress the positive impulses, and the dilation
operator corrects the retained positive impulses. Thus, the
four new operators, i.e., CDE, CDE, EOD and OED can
enhance the ability to extract positive and negative impulses
from a signal.

To extract positive and negative impact components
simultaneously, the difference between Fcpr (Fpceg) and
Frop(Fokgp) are generated as the difference operators:

Fepe—oep(f(n)) = (Fcpe(f(n)) — Foep(f(m))/2  (9)
Fpce—eop(f(n)) = (Fpce(f(n)) — Feop(f(n)))/2  (10)

The difference between the two types of combined opera-
tors with different effects will further improve the ability to
extract and suppress impulses from vibration signals. Finally,
the average of Fpce—gop and Fepe—oEgp is used as output of
EDMEF:

F _ F _
EDMF — LPCE 50042- CDE—OED (a0

EDMF integrates the two new operators as a new MF, which
takes their own strengths while overcoming their respective
limitations for extraction of impulsive components in vibra-
tion signals. As shown in Fig. 1, the results of the CDE and
DCE operators are basically positive impulses above the zero
line, and it is obvious that CDE and DCE outperform the basic
operators. EOD and OED can obtain the similar effect. The
final result (i.e. EDMF) shows clear periodic features.

The SE setup affects performance of MF significantly. Its
attributes are determined by the following three elements, i.e.,
shape, height and length. Generally, the shape of SE has little
affection on the filtering outcome [26]. In order to simplify
the calculation and preserve the shape features of a signal
completely, the flat SE is used for EDMF. We define impact
feature amplitude as:

A=A +Ay+...+AN)/N (12)

where A; is the magnitude of the ith faulty frequency. The
larger the A of the filtered signal is, the better the extracted
fault feature is. Thus, the length of SE for EDMF will be setup
when the used MF obtains the largest A. This indication is also
used for parameter setting of SE of these comparative meth-
ods (e.g., DIF, MG, AVG and OCCO). The N is the number
of the faulty frequencies considered for evaluation. As shown
in Fig. 2, the sensitivity analysis of N and the best length of SE
shows that the optimal length of SE tends to be stable when
N reaches 5, and the filtered result is no longer affected by
N. Because of the observability of spectrum analysis in the
experimental section, the number of fault frequencies used
for evaluation should be as small as possible. Thus, N = 5 is
used to catch the most fault features from a vibration signal
in this study.
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FIGURE 2. Sensitivity analysis to the number of the selected fault
frequencies.

FIGURE 3. The simulation signal and its spectrum. (a) The signal without
noise. (b) The signal with noise. (c) Amplitude spectrum.

Ill. SIMULATION SIGNAL ANALYSIS
A simulation signal is firstly employed to verify effectiveness
of EDMF for impulsive feature extraction:

x1(1) = 2.5¢10mod (¢/20000,00D) i (0 3777)  (13)
x2(t) = 2c0s(0.27¢) 4+ 2 sin(0.127¢) (14)
x() = x1(t) + x2(1) + x3(2) (15)

where ¢ is sampling point and x; is a periodic exponentially
decaying signal with the frequency 100Hz, x, is the sum of
two harmonic waves, and x3 is a Gauss white noise with
SNR(5dB). The sampling frequency is 20000Hz.

Fig. 3 shows this simulation signal with 2000 points and
its FFT spectrum. We see that the impulsive features (i.e.,
Fig. 3(a)) in this simulation signal are very weak and are
submerged in various interference components and noise
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FIGURE 4. Case 1: Spectrum analysis on the filtered signal by EDMF:
(a) filtered signal and (b) FFT spectrum.

in Fig. 3(b). Thus, it is difficult to observe periodic pulses
directly. It is clear that the impulsive frequency (i.e., 100Hz)
as well as its multiplication frequencies (200Hz, 300Hz, etc.)
cannot be detected effectively in Fig. 3(c).

EDMF is performed on this signal to extract impul-
sive components and simultaneously suppress interference
components. The filtered signal by EDMF and the cor-
responding FFT spectrum are presented in Fig. 4. From
Fig. 4(a), the periodical impacts become more evident on
the filtered signal than that of the original signal. EDMF is
capable of eliminating the harmonic components and noise
interferences. Meanwhile, both of the positive and nega-
tive impulse components are well preserved. It should be
noted from Fig. 4(b) that the impulsive features (97.77,
205.1, 302.7, 404.4Hz, etc.) are extracted effectively and the
Gauss white noise is also eliminated effectively. The result
on this simulation signal illustrates that EDMF is effective
to remove the noise interferences and then extract defect
features.

In order to illustrate the effectiveness of EDMF, the con-
ventional MFs, i.e., DIF [8], [13], MG [12], AVG [11]
and OCCO [25] are also performed on the simulation sig-
nal. Fig. 5-8 present the filtered results of DIF, MG, AVG
and OCCO, respectively. From Figs. 5(a)-8(a), the filtered
signal by DIF, MG, AVG and OCCO is still mixed with
much Gaussian noise and the periodic impulses are not
clear.

The corresponding FFT spectrums of these methods are
presented in Figs. 5(b)-8(b). Except for MG and DIF, other
MFs can not detect these defect frequencies from the signal.
Moreover, we can see from Figs. 4(a)-6(a) that EDMF is
more effective than MG and DIF to extract fault features,
because the latter extracts only part of the impact features.
These comparisons illustrate that EDMF outperforms these
typical MFs, DIF, AVG, MG and OCCO that are often used
for machine fault detection.
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FIGURE 5. Case 1: Spectrum analysis on the filtered signal by DIF: (a)
time-domain waveform and (b) FFT spectrum.

FIGURE 6. Case 1: Spectrum analysis on the filtered signal by MG:
(a) filtered signal and (b) FFT spectrum.

The typical fault detection method, i.e., EMD-Hilbert [27]
is also considered for comparison purpose. The generated
intrinsic mode functions (IMF) by EMD are shown in Fig. 9.
It is clear that the random noise as well as signal energy are
concentrated in the high-frequency IMF components. Hilbert
demodulation is performed on the first three IMFs selected
by Kurtosis. Fig. 10 shows the filtered result of EMD-Hilbert
and it is similar to the result of DIF, AVG, MG and OCCO.
There is still much noise in the filtered signal in Fig. 10(a).
From the FFT spectrum shown in Fig. 10(a), only the fault
frequency at 205.1Hz can be extracted by EMD-Hilbert.

An effective indicator i.e., energy ration (ER) (.e.,
the proportion of energy of the main defect frequencies in
their respective spectrum) is further employed to evaluate
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FIGURE 7. Case 1: Spectrum analysis on the filtered signal by AVG:
(a) filtered signal and (b) FFT spectrum.

FIGURE 8. Case 1: Spectrum analysis on the filtered signal by 0CCO:
(a) filtered signal and (b) FFT spectrum.

FIGURE 9. The EMD decomposition of the outer race fault signal.

effectiveness of EDMF:
ER=(E +E+---+E)/E (16)
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FIGURE 10. Case 1: Spectrum analysis on the filtered signal by
EMD-Hilbert: (a) filtered signal and (b) FFT spectrum.

TABLE 1. Case 1: ERs (%) of EDMF, DIF, MG, AVG, 0CCO and EMD-Hilbert.

EMD-
Hilbert

26.7 18.6  23.0 8.2 5.7 13.8

EDMF DIF MG AVG 0OCCO

where Ey + E» + -+ + E, are all the energy of the defect
frequency and its harmonics, and E is the total energy of the
signal in the frequency band (0 ~ 1000 Hz). The larger the
ER, the better the method. Table 1 shows ERs of these meth-
ods on the signal. EDMF with ER value of 26.7% exhibits
excellent feature extraction and denoising ability. The ER
values of MG, DIF and EMD-Hilbert are 23.0%, 18.6% and
13.8%, respectively, which indicates that the performance
of these methods was inferior to that of EDMF. The ER
values of AVG (8.2%) and OCCO (5.7%) show that noise is
still dominant in the filtered signals. This comparison further
illustrates that EDMF outperforms all other methods and is
effective in extracting bidirectional impulses from this signal.

IV. EXPERIMENT AND RESULT ANALYSIS

A. CASE 1: BEARING WITH OUTER RACE DEFECT

In order to verify the effectiveness of EDMF to remove
noise and defect feature extraction from bearing vibration
signals, the vibration data collected from bearing test-bed are
shown in Fig. 10. This test performed bearing run-to-failure
tests under constant load conditions on a full life tester that
is also produced by HBRC. The 6307-2Z single row deep
groove ball bearings were tested. The load used on the bears
was 12.744KN. Rolling speed (4000 r/min) and sampling
frequency (20 kHz) were measured on the rolling bearings
driven by AC motor. Vibration data were collected every
1 min by a data acquisition card. The bearing with outer
race defect was tested. Bearing parameters and fault infor-
mation (rotation frequency and fault frequency are 66.67 and
205.27 Hz respectively) are shown in Table 2.
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TABLE 2. Case 1: Bearing parameters and the corresponding defect
frequencies.

Pitch Ball Ball  Contact
Load diameter diameter number angle / o
12.7KN 65.5mm 15.08mm 8 0 66.67 205.27

Channel2 Channel0

i

>

X[ X I @
Bearing4 Bearing3  Bearing2
P2 P,

FIGURE 11. Case 1: Bearing test-bed.

Channell

caringl

/2

FIGURE 12. Case 1: The vibration signal and amplitude spectrum:
(a) vibration signal and (b) FFT spectrum.

The vibration signal and its amplitude spectrum are pre-
sented in Fig. 12. There is obviously a large amount of noise
that disturbs the defect feature information in Fig. 12(a).
Moreover, it is difficult to obtain the fault frequency in the
spectrum in Fig. 12(b).

The filtered signal by the EDMF and its FFT spectrum
are presented in Fig. 13. The time domain graph (i.e.
Fig. 13(a)) shows periodic signals, where most noise effec-
tively can be eliminated and the impulse features can be
retained by EDMF. These impact features are clear on the
signal filtered by EDMF. The corresponding spectrum (i.e.
Fig. 13(b)) on the filtered signal shows that the outer defect
frequency 205.1Hz and its multiplication frequencies (i.e.,
410.2, 615.2Hz and 810.5 Hz) are all presented. Thus, there
is a good coincidence between the expected defect features
of the spectrum and the actual defect features of the bearing.
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FIGURE 13. Case 1: Spectrum analysis on the filtered signal by EDMF:
(a) filtered signal and (b) FFT spectrum.

FIGURE 14. Case 1: Spectrum analysis on the filtered signal by DIF:
(a) filtered signal and (b) FFT spectrum.

Both the results of noise filtering and fault feature extraction
prove the effectiveness of EDMF.

To further verify the effectiveness of EDMF, Figs. 14-17
present the filtered results of DIF, MG, AVG and OCCO,
respectively. Compared with EDMEF, it is clear that these
signals are still mixed with some noise and the peri-
odic impulses are not clear. Their FFT spectrums (i.e.
Fig. 14(b)-17(b)) can only identify fault frequencies of
205.1Hz. It is also difficult for AVG and OCCO to obtain fea-
tures due to many noise interferences. These analysis results
indicate that EDMF is more effective than these typical MFs,
i.e., DIF, AVG, MG and OCCO.

EMD-Hilbert is finally performed on this vibration signal.
A set of IMFs is generated in Fig. 18. The random noise as
well as signal energy are concentrated in the high-frequency
IMF components. Hilbert demodulation is performed on the
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FIGURE 15. Case 1: Spectrum analysis on the filtered signal by MG:
(a) filtered signal and (b) FFT spectrum.

FIGURE 16. Case 1: Spectrum analysis on the filtered signal by AVG:
(a) Filtered signal, and (b) FFT spectrum.

first three IMFs. The signal and its amplitude spectrums are
displayed in Fig. 19. Itis clear that lots of noise is still existing
in the filtered signal by EMD-Hilbert. This indicates that
EDMF outperforms Hilbert demodulation on this vibration
signal.

To further illustrate the effectiveness of EDMF, Table 3
presents ERs of these methods on this bearing fault signal.
The ERs of EDMEF, DIF and MG are 39.7%, 32.2% and
36.8% respectively. Thus, EDMF is capable of extracting
fault features well and reduces the noise energy greatly. The
small ERs of AVG, OCCO and EMD-Hilbert confirm the
analysis results in the spectrum. This ER comparison further
illustrates that EDMF outperforms all other methods and is
effective in extracting bidirectional impulsive components
from bearing vibration signal with much noise.
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FIGURE 17. Case 1: Spectrum analysis on the filtered signal by 0CCO:
(a) Time-domain waveform, and (b) FFT spectrum.

FIGURE 18. The EMD decomposition of the outer race fault signal.

FIGURE 19. Case 1: Spectrum analysis on the filtered signal by
EMD-Hilbert: (a) Time-domain waveform, and (b) FFT spectrum.

B. CASE 2: BEARING WITH INNER RACE DEFECT

The vibration signal from a bearing test-bed [28] is further
considered to test performance of EDMF. Fig. 20 shows
the experimental setup consisting of a Reliance Electric
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TABLE 3. Case 1: ERs (%) of EDMF, DIF, MG, AVG, 0CCO and EMD-Hilbert.

EMD-
EDMF DIF MG AVG 0OCCO Hilbert
39.7 322 36.8 12.3 9.0 18.5
FIGURE 20. Case 2: Bearing test-bed.
TABLE 4. Case 2: Structural parameters of the bearing.
Inside  Outer Thick Pitch Ball Ball  Contact
diameter diameter O °>° diameter diameter number angle
25mm  52mm I5Smm  39mm  8mm 9 0

FIGURE 21. Case 2: The vibration signal and amplitude spectrum:
(a) vibration signal, and (b) FFT spectrum.

2-HP motor connected to a dynamometer. The deep groove
ball bearing (6205-2RS SKF) is adopted with a speed
of 1797 rpm. Bearing vibration data were collected at a
sampling rate of 12kHz and 2048 points were collected for
each sampling at a time. Table 4 shows the bearing parameters
and related information, i.e. the fault frequency (164.1 Hz)
and rotation frequency (29.95 Hz) of the inner race.

Fig. 21 presents the signal and its spectrum. As can be
seen from Fig. 21(b), although we can identify a defect
frequency (164.1Hz) that is close to fy, bearing fault diagnosis
is confused by some interfering components that also appear
in Fig. 21(a). Thus, EDMF is performed on the signal to filter
the noise and extract the fault-related impulsive components.
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FIGURE 22. Case 2: Spectrum analysis on the filtered signal by EDMF:
(a) The filtered signal, and (b) FFT spectrum.

FIGURE 23. Case 2: Spectrum analysis on the filtered signal by DIF:
(a) The filtered signal, and (b) FFT spectrum.

The filtered signal and its amplitude spectrum by EDMF
are presented in Fig. 22, respectively. After the original signal
with a lot of noise is filtered by EDMF, the signal shows clear
impulsive features in Fig. 22(a). From Fig. 22(b), the defect-
induced frequency(i.e. 164.1Hz) and its second harmonic
(i.e., 322.3Hz) are presented clearly. In addition, 58.59Hz,
99.61Hz and 263.7Hz corresponding to 2f,, 4f, and 4f, + fo
exactly are also extracted effectively. Thus it can draw a
conclusion that there is a fault defect in the inner race of the
bearing and EDMF accurately extracts the fault features from
the vibration signal.

The analysis results of DIF, MG, AVG, OCCO and EMD-
Hilbert are also plotted in Figs. 23-26, respectively. The filter-
ing results of DIF and MG are similar to those of EDMF, and
the noise is basically eliminated, meanwhile defect frequency,
rotational frequency and second harmonic are presented in
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FIGURE 24. Case 2: Spectrum analysis on the filtered signal by MG:
(a) The filtered signal, and (b) FFT spectrum.

FIGURE 25. Case 2: Spectrum analysis on the filtered signal by AVG:
(a) The filtered signal, and (b) FFT spectrum.

TABLE 5. Case 2: ERs (%) of EDMF, DIF, MG, AVG, OCCO and EMD-Hilbert.

EMD-
EDMF DIF MG AVG 0OCCO Hilbert
422 259 31.0 0.5 4.7 233

the FFT spectrum. As shown in Table 5, however, the ER
value of EDMF(42.2%) is higher than that of DIF(25.9%)
and MG(31.0%), which indicates that EDMF has better abil-
ity to eliminate noise and extract fault features. However,
the ER value of AVG(0.5%) and OCCO(4.7%) are quite
small. Because much noise still covers the fault information,
it is difficult to carry out an accurate fault diagnosis. These
results further indicate that the EDMF-based impact extrac-
tion is more effective for bearing fault diagnosis than others.
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FIGURE 26. Case 2: Spectrum analysis on the filtered signal by 0CCO:
(a) The filtered signal, and (b) FFT spectrum.

FIGURE 27. The EMD decomposition of the inner race fault signal.

FIGURE 28. Case 2: Spectrum analysis on the filtered signal by
EMD-Hilbert: (a) Results of EMD, (b) The filtered signal, and (c) FFT
spectrum.

In the process of EMD-Hilbert denoising, the first three
high frequency IMF components in Fig. 27 are demodu-
lated by Hilbert to obtain the filtering results in Fig. 28.
Although it also extracts fault features, it can still see a lot
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of noise in Fig. 28(a). In addition, the ER value of EMD-
Hilbert(23.3%) also shows that it has more noise than EDMF
in the filtered signals.

V. CONCLUSIONS

The vibration signal of bearings in a machine is always influ-
enced by various noise interferences. In this paper, a new MF
called EDMF is proposed for impact component extraction
from vibration signals. EDMF is capable of detecting the
fault features of interest in complex working conditions that
are invisible to regular MFs. The experimental results verify
that EDMF is very effective for bearing defect detection.
The comparison results demonstrate that EDMF outperforms
these typical MFs (e.g., DIF, MG, AVG, OCCO). It has been
proved that EDMF has good ability of noise elimination
and fault feature extraction for vibration signal, thus it will
be applied to other important mechanical components (e.g.,
gearbox) in the future. However, the single-scale frame in
EDMF usually limits its effectiveness in fault feature extrac-
tion from bearing vibration signals. It is still difficult to
setup the structure element of EDMF. An interesting studying
will develop multiple-scale EDMF to solve these issues in
machine fault diagnosis.
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