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ABSTRACT One of the most challenging predictive data analysis efforts is an accurate prediction of depth of
anesthesia (DOA) indicators which has attracted growing attention since it provides patients a safe surgical
environment in case of secondary damage caused by intraoperative awareness or brain injury. However,
many researchers put heavily handcraft feature extraction or carefully tailored feature engineering to each
patient to achieve very high sensitivity and low false prediction rate for a particular dataset. This limits the
benefit of the proposed approaches if a different dataset is used. Recently, representations learned using
the deep convolutional neural network (CNN) for object recognition are becoming a widely used model
of the processing hierarchy in the human visual system. The correspondence between models and brain
signals that holds the acquired activity at high temporal resolution has been explored less exhaustively. In this
paper, deep learning CNN with a range of different architectures is designed for identifying related activities
from raw electroencephalography (EEG). Specifically, an improved short-time Fourier transform is used to
stand for the time-frequency information after extracting the spectral images of the original EEG as input to
CNN. Then CNN models are designed and trained to predict the DOA levels from EEG spectrum without
handcrafted features, which presents an intuitive mapping process with high efficiency and reliability. As a
result, the best trained CNN model achieved an accuracy of 93.50%, interpreted as CNN’s deep learning to
approximate the DOA by senior anesthesiologists, which highlights the potential of deep CNN combined
with advanced visualization techniques for EEG-based brain mapping.

INDEX TERMS Depth of anesthesia, convolutional neural network, electroencephalography, short-time
Fourier transform.

I. INTRODUCTION
Anesthesia is a crucial procedure for doctors in the surgical
environment, which enables doctors to perform surgery on
patients with unconsciousness and painlessness [1], [2].
The earliest depth of anesthesia (DOA) monitoring methods
are mainly estimated by the experienced anesthesiologists
through patient’s physiological response, and these evalua-
tion methods lack clear quantitative indicators and ability to
avoid external interference. The results will lead to inaccurate
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anesthesia, which brings clinical safety hazards to patients
during surgery [3]. Thus, scientists have been looking for
parameters that characterize the DOA from medical signals,
so that anesthetic drugs can be used more accurately for
achieving anesthesia. However, from which the study of
electroencephalogram (EEG) parameters is the most effec-
tive [4]–[6], it is still non-standard and no any best solution
so far.

Recently, EEG-based DOA assessment method has been
rapidly developed. With the reason that general anesthe-
sia makes the brain’s conscious activity disappear mainly
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through the inhibition of the central nervous system and EEG
is the main physiological signal that reflects the activity of
brain consciousness. Even then, there is no effective way that
is approved by clinical anesthesiologists to define DOA.

Since the 1960s, some emerging EEG-based DOA mon-
itoring technologies (including spectral peak frequency,
median frequency, marginal frequency, etc.) [7]–[10] were
based on the evaluation of EEG nonlinearity under anesthesia
within a specific medical dataset, which helps to explore
the potential dynamics of EEG signals in DOA according
to the non-linear and random nature of EEG signals [11].
Zhang et al. [4] used Lempel–Ziv complexity analysis to
quantify the relationship between the brain activity patterns
and DOA, which achieved 93% accuracy on discriminating
awake and asleep states. Lalitha and Eswaran [12] adopted
correlation dimension (CD), Lyapunov exponent (LE) and
Hurst exponent (HE) to extract DOA features and two neural
network models, i.e., multi-layer perceptron network (feed
forward model) and Elman network (feedback model) for
classification. Which finally producing an overall accuracy
of 99% at the anesthesia levels (Low, Medium, and High).
Moreover, Peker et al. [13] divided the anesthesia levels
into six categories and achieves 99.05% classification accu-
racy by using effective feature extraction and classification
algorithms in high-performance GPU computing systems.
In general, these complex analysis methods on EEG-based
DOA monitoring promote the progress of precision anes-
thesia within the local dataset. However, these research on
EEG in anesthesia is within a small sample size or specific
dataset, resulting in the inability to resolve patients’ individ-
ual differences due to the large sample size of patients in the
actual application process. Besides, excellent feature extrac-
tion methods are time-consuming, computing-intensive and
difficult to be promoted when used for commercial purpose.
Therefore, considering a DOA monitoring technique based
on large sample data or a small amount of work for feature
extraction is of great significance for accurate anesthesia to
various patients in clinical surgery.

As a result of rapid development of machine vision and
the graphics cards, deep learning, i.e., convolutional neural
network (CNN) has gradually evolved into the mainstream
in EEG. Some studies [15] have shown that deep learning
technology is expected to surpass traditional machine-based
classification and feature extraction algorithms. Of which the
use of CNN model has made a good development in the state
of brain falling asleep, but it has still not broken through the
theory of ‘‘a fixed state’’ [16], [17]. Moreover, CNN has
been further developed in the medical field including seizure,
brain coma, imagination, etc. [18]–[20]. However, the appli-
cation of deep learning is seldom studied on anesthesia. This
is because it is not easy for researchers to have the patient’s
total anesthetic state, apart from the extremely strict require-
ments of CNN on the operating environment. There are only
few research teams that can meet the above conditions. How-
ever, our research team has had decades of experience inDOA
research with published achievements [21]–[24] and our lab

also satisfies the hardware conditions for CNN operation.
Hence, if a breakthrough can be made on the DOA, it will
be a great attempt at success.

As for CNN, one of its attractive property is to learn from
large sample data without any priori feature selection, which
happened to hit our conjecture. However, raw EEG is not suit-
able for deep learning training directly in anesthesia since the
EEG time domain data has no intuitive anesthesia informa-
tion. The reason is that when the DOA changes from shallow
to moderate, the main changes including β-wave (13–30 Hz)
and α-wave (8–13 Hz) are all manifested in the frequency
domain characteristics [14]. In addition, the EEG signal has a
relatively low signal-to-noise ratio, that is to say sources with-
out task-related information typically reflect EEG signals
more strongly than task-related sources. These characteristics
maymake the input-to-output learning functionmore difficult
for EEG signals than for images. Therefore, looking at the
existing CNN architecture from the field of computer vision,
the form of the EEG input requires being changed to its
spectrogram. EEG research applying to the medical field in
the time-frequency domain has constantly brought surprises
to people [25]. The simplest time-frequency domain analysis
method, short-time Fourier transforms (STFT) [26] can be
used to explain the time-varying law of EEG signal spectrum
in different states. Särkelä et al. [27] used the STFT method
for spectral analysis to effectively detect the burst suppres-
sion caused by different anesthetics. Yuan and Cao [19] and
Truong et al. [28] adopted the STFT analysis method to per-
form spectrogram conversion on the EEG signal and obtained
good disease prediction results after training. This indicates
that it is an effective measure to applying STFT to EEG
analysis, which also well explain the real-time changes of
anesthetic features in the frequency domain. Therefore, in this
study, application of STFT to DOA is being attempted which
result in the classification accuracy requiring more rigorous
evaluation than traditional feature extraction methods. For
this reason, a clear classification criterion is crucial. As a
medical DOA indicator, BIS has been widely used to detect
patients’ conscious awareness although it is still not per-
fect [29], [30]. In this study, the average value of ‘‘the state
of anesthetic depth’’ called expert assessment of conscious
level (EACL) which is decided by five senior anesthesiolo-
gists based on detailed records during surgery is used as the
classification standard to train CNN [21].

In general, the aim of this research is to form a set of
CNN-based DOA assessment index theories and methods as
clinical application demonstration for anesthesia patients via
applying CNNmodel to EEG-based DOAmonitoring. There-
fore, this article started from the EEG signal acquisition and
proposed corresponding pre-processing methods for various
artifacts [31]–[33] in rawEEG signal. Then, a series of differ-
ent CNNmodels were created and adjusted to an optimal and
specific CNN structure for DOA assessment system, so as to
assist the anesthesiologist in fully understanding the patient’s
physiological state at different stages of surgery and giving
the patient better care.
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FIGURE 1. Data preprocessing. (a) Raw EEG; (b) 0.5-30 Hz filter of (a); (c) Signals that have been lost due to fragment loss in the signal; (d) Signals
caused by interference from environmental factors.

II. EXPERIMENTAL SECTION
A. THE ANESTHETIC DATASET
This work collects two types of data sets: one is the dataset for
the complete surgery of general anesthesia raw EEG signals
and anesthesia record sheets collected from the National
Taiwan University Hospital (NTUH) anesthesiology depart-
ment; the other is the DOA dataset of the patient’s surgical
procedure drawn by experienced senior anesthesiologists,
which is called expert assessment of conscious level (EACL)
dataset. These datasets contain 50 patient data (their ages
range from 23 to 72 years old who received ENT surgery
at NTUH) as a database for this study [22]. In these data,
the average EEG signal collected from each patient is about
2.5 hours. The data is processed every 30s (i.e., window
size). Thus, it gives an approximately 14100 sample data,
contributing enough data for this study.

TABLE 1. Range of average EACL value for different levels of DOA.

Since medical datasets are often ‘‘biased’’, in that the num-
ber of conventional samples is much larger than the number
of unconventional instances, or that the numbers of images
per class are uneven. Thus, the structure of anesthesia sample
from each patient differs in different DOA levels with the

same contribution, which is shown in Table 1 [12]. Similarly,
the average EACL value between 40 and 60 is defined as
anesthetic OK (AO) named ‘‘suitable for surgery’’, a value
below 40 is anesthetic deep (AD) indicating that the DOA
value is low, and a value between 60 and 100 is anesthetic
light (AL) indicating that the DOAvalue is light andmay only
be suitable for certain types of surgery. Of course, some exter-
nal interference may exist in the EEG signals collected from
a complex environment (i.e., patch off, external frequency
interference, etc.), which called signal polluted (SP).

B. PRE-PROCESSING
Since two-dimensional CNN will be applied to our work,
it is necessary to convert raw EEG signal into a matrix
(i.e., image-like format) and its corresponding DOA level
(i.e., tag data). After understanding the purpose of prepro-
cessing, the first work is to divide the sample data into
four categories including AL, AO, AD, and SP. Secondly,
the first three categories (AL, AO, AD) of data are filtered:
the raw EEG signal collected by each patient contains all
message, as shown in Figure 1 (a). Then it is channel filtered
from 0.5 to 30 Hz, with the reason that most of the EEG
features occur at these frequencies during anesthesia [34].
Figure 1 (b) is the EEG signal filtered by 0.5 to 30 Hz of
Figure 1 (a). For SP data, it is contaminated signal fragments
through the manual selection. Figure 1 (c) is a form of SP
data, which shows that the signal is lost during the collection
phase. It can be due to many reasons, such as the loss of wires
and poor contact of connectors. Figure 1 (d) is another form
of SP data, which demonstrates that the signal is interfered
by environmental noise other than physiological interference,
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such as equipment and instrument frequency interference,
machine self-interference and so on. Accordingly, EEG data
during pre-operation and operation stages are filtered and
picked up as mentioned above. All 50 patients’ data are used
to obtain a new DOA index reflecting four consciousness
level (including AL, AO, AD and SP) through CNN method.

Generally speaking, wavelet transforms and Fourier trans-
forms are often used to convert time series EEG signals into
image formats. Considering the integrity of the original infor-
mation, the conversion of EEG should be purely reflected
in the time-frequency domain. Thus, STFT is the best way
to preserve the most complete anesthetic feature of the EEG
signal. However, it has the problem of blindness selection in
window type and window length, which will seriously distort
the time-frequency spectrum due to the frequency aliasing
caused by the strong time-variable signal [35]. Therefore,
time-variable window based STFT method is designed for
the characteristics of EEG signals in anesthesia. As shown
in Figure 2, for the original EEG signal, by setting a varying
window function R(t), multiplying the EEG signal in the
window and then performing Fourier Transforms with the
sliding window along the time axis. The improved STFT was
implemented in the following steps:

FIGURE 2. Design of time-varying window function in short-time Fourier
transform, where Ri (t) represents the time-varying window function.

Step 1) The raw EEG sequence can be treated as a col-
lection of sequence segments at 5s intervals. Which can be
defined as

x(t) = [X1,X2, . . . ,Xp], (1)

where p represents the number of the 5s EEG envelope.
Step 2) In order to solve inconsistent EEG length in every

envelope due to burst suppression in anesthesia, a cubic spline
interpolation method is applied for its re-sampling advan-
tage. The windowed Fourier transform of improved STFT is
calculated as

R′(t) = r(t)× exp(jS(t)), (2)

where S(t) is the cubic spline interpolation function. In addi-
tion, the size of window function is 1s EEG envelope as
shown in Figure 2.

Step 3) The improved STFT is computed by

STFT =
∫
∞

−∞

Xk1−km(τ )× R′(t − τ )× e−j2π f τdτ, (3)

where k1 -km represents the interval of consecutive 5s EEG
envelope, that is, m consecutive envelopes.
Eventually, a series of Fourier Transforms results are

arranged into a two-dimensional matrix, whose horizontal
quantity represents the time sample point and its vertical
quantity represents the frequency of the corresponding sam-
ple point of the segment signal. Furthermore, it is important
to note that the size of the computing window (i.e., m value)
really influences the STFT transform, which will cause inter-
leaving effects between signals when it is too large or cause
the EEG frequency to be more dispersed when it is too small.
Therefore, the best setting for m is 24 (per m is 5s EEG
envelope) through multiple trials, that is to say, the comput-
ing window of STFT is 120s. Moreover, 75% overlapped
computing window is set to enrich medical data [19]. Thus,
a well anesthetic spectrum is generated. As shown in Figure 3,
four categories of anesthesia spectrogram are generated by
modified STFT. These results are from the corresponding
classification samples in Table 1. Furthermore, it is worth
noting in this study, that the anesthetic map (i.e., EACL)
drawn by clinical experienced senior anesthesiologists was
digitized, averaged and used to train the neural networks as
training targets, with the reason that it was used as a gold
standard for determining DOA.

FIGURE 3. Anesthesia spectrogram from: (a) Anesthetic Light patients’
EEG; (b) Anesthetic OK patients’ EEG; (c) Anesthetic Deep patients’ EEG;
(d) Signal Polluted patients’ EEG. The level of DOA power decreases with
signal-to-noise ratio from 35 to 0 decibel (dB) with step −1 dB. Moreover,
the distribution of spectrogram from STFT processing of EEG signal is
shown with uniform standards in the four figures.

C. CONVOLUTIONAL NEURAL NETWORK MODEL
Since the target is anesthesia spectrum classification,
a generic CNN model framework has been designed to rec-
ognize the DOA levels in the EEG spectrogram. However,
the work of selecting the right model is not as simple as the
classification of cats and dogs diagram, which needs to be
continuously improved from the results of multiple training.
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FIGURE 4. Three different network layer structures. (a) CifarNet model;
(b) AlexNet model; (c) VGGNet model. The number in the lower right
corner of the box indicates the kernel size, the above number is filter size.
The number on the sticks represents dense full connection weight
parameter. The number of CNN layers in the paper is represented by the
convolution layer and MaxPolling layer.

In particular, judging from the ImageNet Large Scale Visual
Recognition Competition (ILSVRC) in recent years, it seems
that well performance mostly depends on the complexity of
CNNs. However, it is not worth completing the identification
of small sample characteristics at great cost, i.e., overall
latency caused by insufficient memory capacity. In other
words, based on the GPU capacity and small sample data in
this paper, themost basic CNNmodel architectures need to be
considered on DOA levels classification. As for identification
of the earliest RGB image, CifarNet effectively promoted the
advancement of machine vision with a simple structure [36],
while LeNet is only excellent in the handwriting dataset [37]
that is different from ours. As shown in Figure 4 (a), it has the
characteristics of simple structure and low operating environ-
ment requirements. So, CifarNet-based model is preferred to
promote our work. However, considering the versatility and
reliability of the framework in this paper on the classification
of DOA levels, a single CNN model framework is far from
enough. AlexNet scaled the insights of LeNet into a much
larger neural network that could be used to learn much more
complex inputs and complicate problems like deciding the
depth of anesthesia. Also, AlexNet has won by a large margin
the difficult ImageNet competition in 2012 championship in
ILSVRC [38]. Although the VGG networks won runner-up
in ILSVRC competition in 2014 [38], this networks from
Oxford were the first to use much smaller 3×3 filters in each
convolutional layers and also combined them as a sequence

of convolutions. It makes the improvement over AlexNet by
replacing large kernel-sized filters with multiple 3×3 kernel-
sized filters one after another. Because, multiple stacked
smaller size kernel is better than the one with a larger size
kernel. With a given smaller receptive field of the effective
area size of input image where output depends, this multiple
non-linear layers can increase the depth of the network which
enables it to learn more complex features with a lower cost.
Therefore, AlexNet-based model and VGGNet-based model,
as shown in Figures 4 (b), (c), are also applied to this work
for the comparison.

The number of convolution layers and MaxPolling layers
of the three CNNs are from 5 deep CNN (CifarNet) to 8 layers
deep CNN (AlexNet) and to 15 layers deep CNN (VGGNet),
whose structures distribute from shallow to deep for training
the EEG spectrograms. Also, a corresponding modifications
have been made based on the existing CNN model instead
of directly using the CNNs package in Theano which is a
Python library that allows you to define, optimize, and eval-
uate mathematical expressions involving multi-dimensional
arrays. Taking VGGNet for example, the input and output
size were set to 224×224, delete the three-layer convolutional
network layer, and change some function of active layer
(i.e., Relu to tanh), etc. The purpose of our work on these
CNNs is to testify the versatility, reliability and difference
of their architectures on performance in DOA. Therefore,
statistical comparison of their decoding accuracy in the same
dataset is performed. On this basis, the same size of the input
image is set to 224×224×3, and output is four classes. In all
cases, minimal preprocessing is used in order to perform fair
CNN input-to-output comparisons.

III. RESULTS
A. PREDICTION PERFORMANCE
In this section, for purpose of verifying the performance of
themodified STFT presented in Figure 2, 10 patients’ data are
randomly selected from Table 2. Obviously, each patient has

TABLE 2. Classification on DOA result through using original STFT and
modified STFT prior to CNN.
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different anesthesia interval time while the same contribution
to sample categories (i.e., data structure in Table 1). Then a
well-trained CNN (here is VGGNet, see Figure 4 (c)) is used
to test the performance of modified STFT method compared
with the original STFT with a fixed window function. As a
result, Table 2 summarizes the performance of the classifi-
cation on DOA for CNN with original and modified STFT
analyses. By applying signal interruption noise removal and
classifying the signal into one category, prediction accuracy
is 84.73% ±0.011 and sensitivity is 82.20% ±0.010. When
improving the STFT prior to CNN greatly improves predic-
tion performance with accuracy increased to 92.26% ±0.004
and sensitivity increased to 87.97% ±0.007. It is worth not-
ing that in this study, the proposed approach works without
any de-noising processing except signal interruption noise
removal.

As for the CNNs, limited to dependence on efficient com-
puting environment, Nvidia Tesla k40 GPU from Lenovo
Technology B.V. Taiwan Branch is used to our work, which
reduces the process of CNN training to nearly its one-tenth
(i.e., 36h to 3.4h). Under such conditions, three different
depth CNN models mentioned in section II(C) are prepared
to train EEG spectrogram image datasets which has been set
to the same CNN input and output. These depth of CNNs
have many convolutional layers and has large-scale input that
can receive data from high-pixel images, with the advantage
that universal feature can be obtained from big data through
different CNN structures. Fortunately, this characteristic is
just being used to reduce the differences between the datasets
and the obtained universal feature is just called DOA feature.

At the beginning of the training step, small amount of
data is selected to test the initial performance of these net-
works, and then the parameters need to be constantly changed
according to the effects of multiple tests. These parameters
include learning rate, batch size, epoch size, convolution
kernel size, step size, sub-sampling layer size, step size, etc.
The advantage of doing so is that it can improve the efficiency
of CNN model building, which provides the possibility to
adjust parameters of CNN model so as to achieve the optimal
execution of the training model. As for the dataset, 70% of
them was used as a training sample, 20% as a validation sam-
ple, and 10% as a test sample. The maximum epoch is based
on the training of all images at least once (as determined
by the model’s training results eventually reaching steady
state). Once the parameters of the model are adjusted, it will
begin normal training. To clearly understand the changes in
the performance of the CNN model during the training pro-
cess, ModelCheckpoint instruction is used from the callback
function. Its main task is to save the CNN model and all the
weight values after each epoch, so that the model framework
and weights can be saved when the model is in optimal
performance.

After completing the training process of the CNN model,
the testing stage of each model is started for the test dataset.
The results are shown in Figure 5, which can be clearly
seen that for the shallow to deep CNN model architecture,

FIGURE 5. Performance in Training of Three Model Structures.

the classification effect for the DOA is better. In detail, Cifar-
Net’s best classification accuracy is approximately 87.50%,
AlexNet’s best accuracy is approximately 92.35%, and
VGGNet’s best accuracy is approximately 93.30%. In these
three models (Figure 4), the result is getting better and bet-
ter as the network gets deeper and deeper on the whole.
Of course, special circumstances are not excluded, such as
between 20–40 epochs and approximately 44 epochs, and
so on. This performance also proves that CifarNet, AlexNet,
and VGGNet are the benefits of the classic models of the
era. Moreover, as the training process progresses, each CNN
model presents a shift toward better performance, and the
final model performance tends to be stable. Which explains
that the model has achieved optimal performance at this stage
and is consistent with CNN’s own characteristics.

CNN training is implemented through the Tensorflow deep
learning framework, using the NVidia K40 GPU utilizing
the Ubuntu 14.04 Linux operating system. All models have
undergone the training of the early stop criteria, with a high
validation accuracy model for the final model. In addition
to VGG-13, other batch-size sizes are set to 128, which
is the maximum batch size of the NVidia K40 GPU with
12 GB of memory capacity. Table 3 shows the training time
and memory requirements of the three CNN architectures
for DOA classification based on the EEG spectrum images,
normalized up to a maximum of 100 periods.

TABLE 3. Training time and memory requirements of the three CNN
architectures on DOA-based classification up to 100 epochs.

This paper uses 10-fold cross-validation method [39] to
evaluate the performance of the three trained CNN models.
First, the time-frequency maps taken from each category of
the EEG (AL, AO, AD, and SP) are individually and ran-
domly divided into ten equal parts. Nine of these parts are
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TABLE 4. Cross validation of three CNN framework.

used to train the CNN while the remaining one part is used to
test the performance of the system. After each training of the
CNN model is completed, the model is evaluated using data
not used to train the CNN model. This strategy is repeated
ten times by disrupting and rearranging test and training data
sets. The accuracy, sensitivity, and specificity values reported
in this paper are averages obtained from these 10 assessments.
Table 4 shows the accuracy of the cross-validation results for
each experiment. From the results, the ten groups are almost
all close to a constant, the std values are all below 0.0079,
indicating that the experiment is successful and reliable.
Therefore, it’s reasonable to consider that the classification
results obtained by the EEG spectrum after the CNN coding
model can establish the degree of similarity with the DOA
assessment.

B. TESTING THE NETWORK ON THE REMAINING
PATIENTS’ RECORDS
The datasets in this paper are maintained similar distributions
in the training and testing procedure to avoid over- and under-
representation of classes due to dataset imbalance. Moreover,
it is expected that our method will provide reliable reference
for anesthetists in the classification of DOA levels. The errors
in each prediction phase can be displayed by analyzing the
confusion matrix, as shown in Figure 6. In general, there
is an agreement among the proposed CNNs. All deeper
CNNs perform better in different structures of CNN. Most
of the errors are due to distinguishing AD / AO and AL /
AO. The confusion matrix based on EEG spectrum images
datasets for classification of DOA shows much variability
in its category distribution, thus exhibiting a pattern that the
sensitivity and precision of each category are less consistent,
possibly because of the beauty of each CNN model, or its
individualism.

In detail, the most striking finding from Figure 6 is that
the samples with the highest classification error rate are AO
and AD samples. For CifarNet (seen from Figure 6 (a)),

FIGURE 6. Confusion matrices for CNN-based decoding. (a) CifarNet;
(b) AlexNet; (c) VGGNet. Results are shown for the high-accuracy dataset
on DOA-based classification. Each entry of row r and column c for upper
left 4×4-square: Number of trials of target r predicted as class c (also
written in percent of all trials). Rightmost column corresponds to the
accuracy of the prediction of the sample data. Bottom row indicates the
accuracy of the predicted sample. The lower-right value corresponds to
overall accuracy. The color depth of the right energy bar indicates the
sample percentage (0–100%) in the overall sample.

21.66% of the model’s AO samples were predicted to be
AL, AD and SP class (with distributions of 5.67%, 8.70%
and 7.29%), while 23.28% of AlexNet’s AO samples (seen
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from Figure 6 (b)) were predicted to be AD and SP class
(with distributions of 10.93% and 12.35%) and 7.09% of
VGGNet’s AO samples (i.e., Figure 6 (c)) were predicted
to be AL and AD class (with distributions of 3.64% and
3.44%). This counter-intuitive error becomes more reason-
able when viewing the corresponding EEG spectrum infor-
mation. Thus, when the classification error of the AO sample
was expanded, it was found that the DOA corresponding to
the category predicted to be AD class was mostly AO, whose
standard category values are 0–40 and 40–60, respectively.
In other words, these categories are too close in the distribu-
tion of some certain values, which leads to a more ambigu-
ous classification. Moreover, there is no absolute anesthetic
boundary in medicine. In addition, anesthesiologists who
personally assess the DOA will have different opinions in
assessing the DOA, which also increase the rationality of
this result. While most spectrum images corresponding to
categories predicted to be SP class have noisy interferences
(i.e., Figure 1 (c) and (d)), for the reason that 80% of patients’
anesthesia time are in AO class during surgery, during this
period, environmental factors are more or less recorded
together with EEG signals. At this time, it is difficult to
accomplish the goal of correct classification even if manual
selection is joined for selection.

Similarly, 26.43%, 17.14% and 21.43% of AD samples in
these CNNs were predicted to AO class. Obviously, this is
a terrible error rate on a small test data. However, since AO
data is much larger than AD data in anesthesia medicine, the
data imbalance problem leads to the unconventional result.
Furthermore, most of the misclassified samples also corre-
spond to a DOA value of approximately 40 (i.e., the boundary
between AD and AO), where it is difficult for the patient to
reach anesthetic deep state during anesthesia according to
the condition of the patient. In addition, during AD state,
burst suppression in EEG is recognized as light anesthesia
which is a serious problem in EEG based indicators when
othermethods are used such asmedian frequency and spectral
edge frequency [40]. Therefore, the frequent confusion of
the system is due to the fact that the EEG-based spectrum
images is non-standardized (long span time, noisy existing).
The AL category and the SP category had the best prediction
effect (83.20% and 84.57% in CifarNet, 94.98% and 82.22%
in AlexNet, 85.89% and 100.0% in VGGNet). In all the clas-
sifications, the AO sample is the most likely object to be pre-
dicted with 90.21%, 92.31% and 91.62% probability. Also,
it has 78.34%, 75.30% and 92.91% sensitivity, which proves
that AO class is frequently confused with other classes. This
seems plausible because the AO state is located in the center
of the DOA space, what makes the discrimination from other
classes difficult. However, the SP class with shallower CNN
(CifarNet and AlexNet), there is a higher false negative in the
AO class reaching 10.29% and 16.94% respectively. When
combined with the data structure in Table 1, the AO class
and SP classes account for 43% and 26% of the total sample.
Hence, it is reasonable to believe that a high percentage of
data will always result in a slightly higher percentage of false

negatives when it comes to the non-equilibriummedical data.
Of course, it also shows that the performance of these two
CNN models needs to be further strengthened.

Finally, each category in these CNNs show different classi-
fication accuracy and sensitivity, but they are still statistically
significant. For the same input sample, the three CNNmodels
perform different preferences in each category respectively.
From Table 4, it can be seen that the prediction accuracy of
CNN increases with the increase of its layers. And for the
confusion matrices of three CNN models its performance is
analogous as for overall accuracy. From the perspective of
CNN structure, the reason for this type of result may be that
the more complex the model structure, the more features it
can store, and thus it is very attractive for regional-block
classification of DOA. In general, almost all categories have
reasonable errors and corresponding external factors and the
overall classification accuracy can be considered as success-
ful DOA prediction.

C. METHOD COMPARATIVE PERFORMANCE
In view of the creativity of the proposed method, its perfor-
mance was compared with the recent DOA level assessment
in the literature listed in Table 5 to highlight this article. It’s
difficult to judge which method is better with the reason that
one method is usually adapted to one dataset that is limited
in another dataset. In other words, one method can perform
well with this dataset but probably poorly on other dataset.
Therefore, the efficiency of the method is analyzed while
ensuring high DOA level assessment accuracy. Thus, these
methods listed in Table 5 are qualitatively analyzed for DOA
assessment. Research reported in [4] has only used some
traditional feature extraction projects and statistical methods
to classify twoDOA levels and achieved 93% accuracy, which
got lower performance compared to the literatures [12], [13]
and similar to our proposed methods. The authors in lit-
eratures [12], [13] were clever in corresponding feature
extraction for patients. However, this leads to the need for
sufficient expertise and time to run the feature extraction
projects for new dataset. Finally, it gave a 99% accuracy
rate via ANN or Forward Neural Network on three more
DOA levels. Nevertheless, these methods are limited to fea-
ture acquisition or certain datasets. When applied to other
datasets, they are not certain to perform well. Therefore, it’s
reasonable to believe that even if the accuracy performance
of proposed method in this article not as good as the methods
from literatures [12], [13], it cannot denies the progress of
our method.

Furthermore, in this study, data reconstruction method
was used instead of excellent feature extraction engineering,
which greatly simplifies the complex process of manual fea-
tures and mathematical calculation. It is believed that this
study offers a motivational contribution to the anesthesia
field, since it gave a 93. 50 % accuracy on three DOA levels.
In terms of overall classification accuracy, the application of
our method in anesthesiology is desirable and also provides
some reference for the subsequent linear classification of
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DOA. Moreover, there is no work being reported on success-
fully using similar methods on DOA assessment.

IV. DISCUSSION
From the performance of our work, it is creative to convert
the time domain signal into a time-frequency signal in a DOA
evaluation when the modified STFT is applied for this study.
For the reason that it needn’t complex manual feature design
processes in promoting the performance of CNN in DOA
assessment, the performance of our study was with the recent
studies included in Table 5. This table shows that this paper
uses data reconstruction method, which greatly simplifies
the complex process of manual features and mathematical
calculations, to achieve an accuracy of 93.50% when com-
pared with the methods in [4], [12], [13], whose high accu-
racy is based on complex feature extraction. Furthermore,
different layers of CNNs are used to explore the effectiveness
of the proposed method. Considering the GPU environment
for avoiding the overall delay caused by insufficient storage
capacity and the non-specificity of a single CNNmodel, three
infrastructures of CNNs are chosen to state the versatility and
reliability of the DOA level classification rather than unique-
ness. Of course, the purpose of this paper is not to design the
CNN application, some modifications have been introduced
based on the existing CNN model to adapt to the research
in this paper. From the performance of CNNs in Figure 5 at
DOA levels, as shown in Table 4, it is believed that CNN
applied to our work provides novel ideas to the anesthesia
field, since it gave a 93.50% accuracy rate on three DOA
levels. In general, the advantage of our work is as follows:
from the perspective of method complexity, the proposed
method does not need complicated manual feature design
process compared to the methods listed in Table 5.

In this paper, a modified STFT method is proposed com-
bined with enhanced CNN model with satisfactory result,
but there are still some challenges that should be solved.
First, as an alternative to the conversion of EEG time domain
to time-frequency domain, STFT is an optional but perhaps
not the best information conversion method. In addition,
the selection of the window function in the STFT may influ-
ence on the performance of the learning method [26]. Sec-
ond, in the case of traditional CNN structure functions and
simple design, it does not always produce good performance,
especially when it comes to unbalanced datasets that are com-
mon problems in health informatics [41]. Finally, the EEG
signal of patients on anesthesia changes significantly depend-
ing on the different anesthetic drugs, making it difficult to
have a categorized quantitative standard. When infiltrated
into the study in detail, for example, a well-trained CNN
model does not perform well in the transition phase of DOA
(i.e., from AL state to AO state or from AO state to AL state).
The reason is that, in the transitional phase, the patient’s
consciousness state during the operation is manifesting as a
conscious state to a coma or a coma to a conscious state,
whose state transition becomes extremely unstable. Thus,
the corresponding discrete spectrum images will lose certain

characteristics and behave confusingly, leaving it more dif-
ficult to do classification. Therefore, the data in this part
will show slightly higher misjudgment rate when tested, seen
Section III (B) in detail.

In fact, the used datasets are from our research team [22],
and it lacked certain standards. To some extent, it affects
the accuracy of our method when comparing the recent
research (see Table 5). Moreover, the traditional deep learn-
ing [42]–[44] is based on the specific objects in the image.
For this paper, the characteristic of DOA level is uncertain,
so it is difficult to design a specific CNN structure suitable for
our work. As a result, three different CNN model structures
are tested its performance in DOA. As described in [45], these
architectures exhibit high-precision classical CNN models
from existing image classifications, but it is unpredictable
whether they exhibit high efficiency in the characteristic
spectrum of physiological data. Therefore, the decoding per-
formance of the three models was analyzed in the EEG spec-
trogram image set (see Section III (A) for details). In these
cases, input-to-output comparisons of CNN was performed
with minimal preprocessing. In addition to the whole CNN
architecture, the designs were systematically evaluated of
a series of important choices. Based on recent advances in
learning and research on deep learning, the focused is on var-
ious network layer parameters, optimization algorithms, reg-
ularization strategies, batch normalization, and exponential
linear unit activation parameters of the CNN training process
to evaluate CNN’s potential performance improvement in
anesthesia assessments. From the training results in Table 4,
it shows that the deep CNN can accurately identify the DOA
features in the EEG signals of the entire anesthesia patient,
and the wrong classification results are within acceptable
error. It proves that the designed CNN framework can be used
for the DOA classification, which may enrich commercial
research on DOA.

In addition, the three architectural models all showed good
performance with the accuracy above 85%, and the best accu-
racy is reaching 93% or more (Figure 5). This is an excellent
phenomenon. It shows that deep CNN is used to perform
DOA classification through EEG spectrum images and it is
obvious that CNN displayed superior performance at the field
of DOA. At the same time, once the CNN weight parameters
are extracted and reshaped into CNN framework models by
EEG data export equipment, patient’s DOA state will be
immediately displayed without complicated computational
processes. Thus, the performance of CNN could achieve uni-
versal and highly-efficient levels when compared with other
conventional feature extraction methods showed in Table 5,
as well as in robustness. Moreover, there were three key
factors being used and extensively evaluated in the process
of no-regular coding of EEG to DOA: dataset characteristics,
CNN’s architecture, and CNN’s parameters. As described
in section II.C, three different depths of CNN frameworks
were evaluated in training to identify the performance of
the DOA features in the spectrum images from EEG, all
of which were constantly updated CNN network parameters
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TABLE 5. Comparison of the current study with the proposed methods.

for achieving rapid and accurate patient’s conscious status
coding of anesthesia. The most exciting thing is that CNN
can automatically complete the learning process of the target
after the model learning parameters were adjusted. And filter
weights in CNN are automatically adjusted during the train-
ing phase, making CNN like an automatic method of feature
extraction. However, this paper still needs to further study
CNN’s performance features, such as experimental evalua-
tion, CNN performance analysis, so that the classification
process of CNNs on DOA can be explained in more detail,
which perhaps enhance the accuracy and stability in DOA
classification.

In the futurework, high accuracy,more classification levels
and efficient performance requires further research, i.e., the
DOA level is divided into 6 units or more. The grouping
of classes is critical to the CNN supporting scalability with
multiple classes. In general, high-level organizations can be
easily identified in the visualization of the hierarchy because
their labels can be described more precisely. Therefore, in the
next step, deeper CNN will be attempted (such as GoogleNet
and ResetNet) to build and test a deep CNN for DOA assess-
ment in a high-speed GPU environment. In addition, in the
case of processing large amounts of data, a method of auto-
matically classifying spectrum images should be proposed
instead of manually selecting and classifying EEG spectrum
images. Moreover, more kinds of patient samples should be
tested using trained CNNs to improve the reliability of the
method. Alternatively, the transfer learning approach can be

considered for a pre-trained CNN to be fine-tuned with the
pre-processed dataset in order to reduce the patient samples.

V. CONCLUSION
The ability to assess the DOA has been studied and improved
in the past few years. From their development, it can be seen
that a large number of them are extracted from the EEG using
the manual feature extraction method, and a few are directly
evaluated through the feature from the EEG time-frequency
map. It rarely encountered that CNNs with very strong learn-
ing abilities were applying to assessment of DOA. Although
only a qualitative analysis of DOA assessment is currently
performed, that is, the three anesthesia levels classified as AL,
AO, and AD have not yet reached the quantitative analysis
requirements, but for the current CNN performance in DOA
prediction. It is useful to provide physicians with reference
information, which qualified with a senior anesthesiologist
assessment. In this way, they can take some preparatory
measures to prevent the influence brought by drug differences
and individual patient differences to the dose of anesthetic
drugs on the unique guidance from the anesthesia apparatus,
in purpose to ensure the safety of the patient’s surgery. This
paper presents a new approach using CNN and minimal
feature engineering. This proposal shows that it has a good
relationship with the DOA characteristics in the EEG signals
which opens up opportunities to have a safer intraoperative
environment via building a simple DOA prediction device.

53740 VOLUME 7, 2019



Q. Liu et al.: Spectrum Analysis of EEG Signals Using CNN to Model Patient’s Consciousness Level

REFERENCES
[1] J. A. Campagna, K. W. Miller, and S. A. Forman, ‘‘Mechanisms of

actions of inhaled anesthetics,’’ New England J. Med., vol. 348, no. 21,
pp. 2110–2124, 2003.

[2] E. R. John and L. S. Prichep, ‘‘The anesthetic cascade: A theory of how
anesthesia suppresses consciousness,’’ Anesthesiology, vol. 102, no. 2,
pp. 447–471, 2005.

[3] V. Bonhomme and P. Hans, ‘‘Monitoring the depth of anaesthesia:
Why, how and at which cost?’’ Rev. Med. Liege, vol. 62, pp. 33–39,
Jan. 2007.

[4] X.-S. Zhang, R. J. Roy, and E. W. Jensen, ‘‘EEG complexity as a measure
of depth of anesthesia for patients,’’ IEEE Trans. Biomed. Eng., vol. 48,
no. 12, pp. 1424–1433, Dec. 2001.

[5] O. Ortolani et al., ‘‘EEG signal processing in anaesthesia. Use of a neural
network technique for monitoring depth of anaesthesia,’’ in Proc. 11th Eur.
Signal Process. Conf., 2002, pp. II-1625–II-1628.

[6] Z. Liang et al., ‘‘EEG entropy measures in anesthesia,’’ Frontiers Comput.
Neurosci., vol. 9, p. 16, Feb. 2015.

[7] B. S. Richardson and M. G. Frasch, ‘‘EEG monitor of fetal health,’’
U.S. 9 215 999, Dec. 22, 2015.

[8] R. J. Gajraj, M. Doi, H. Mantzaridis, and G. N. Kenny, ‘‘Comparison of
bispectral EEG analysis and auditory evoked potentials for monitoring
depth of anaesthesia during propofol anaesthesia,’’ Brit. J. Anaesthesia,
vol. 82, no. 5, pp. 672–678, 1999.

[9] A. H. Bell, B. G. Mcclure, P. J. Mccullagh, and R. J. Mcclelland,
‘‘Spectral edge frequency of the EEG in healthy neonates and varia-
tion with behavioural state,’’ Neonatology, vol. 60, no. 2, pp. 69–74,
1991.

[10] A. D. Jakab, ‘‘Development of a portable and easy-to-use EEG
system to be employed in emergency situations,’’ M.S. thesis,
Dept. Biomed. Eng., Tampere Univ. Technol., Tampere, Finland,
2011.

[11] A. Hutt, ‘‘The anesthetic propofol shifts the frequency of maximum
spectral power in EEG during general anesthesia: Analytical insights
from a linear model,’’ Frontiers Comput. Neurosci., vol. 7, p. 2,
Feb. 2013.

[12] V. Lalitha and C. Eswaran, ‘‘Automated detection of anesthetic depth
levels using chaotic features with artificial neural networks,’’ J. Med. Syst.,
vol. 31, no. 6, pp. 52–445, 2007.

[13] M. Peker, B. Şen, and H. Gürüler, ‘‘Rapid automated classification of anes-
thetic depth levels using GPU based parallelization of neural networks,’’
J. Med. Syst., vol. 39, no. 2, p. 18, 2015.

[14] D. Jordan, ‘‘Method for consciousness and pain monitoring, module for
analyzing EEG signals, and EEG anesthesia monitor,’’ U.S. Patent 2014
0 081 094 A1, Mar. 20, 2014.

[15] Y. Bengio, A. Courville, and P. Vincent, ‘‘Representation learning:
A review and new perspectives,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 8, pp. 1798–1828, Aug. 2013.

[16] O. Tsinalis, P. M. Matthews, Y. Guo, and S. Zafeiriou. (2016). ‘‘Automatic
sleep stage scoring with single-channel EEG using convolutional neural
networks.’’ [Online]. Available: https://arxiv.org/abs/1610.01683

[17] A. Supratak, H. Dong, C. Wu, and Y. Guo, ‘‘DeepSleepNet: A model
for automatic sleep stage scoring based on raw single-channel EEG,’’
IEEE Trans. Neural Syst. Rehabil. Eng., vol. 25, no. 11, pp. 1998–2008,
Nov. 2017.

[18] R. Tetzlaff, R. Kunz, and C. Niederhöfer, ‘‘Cellular neural networks (CNN)
with linear weight functions for a prediction of epileptic seizures,’’ Int. J.
Neural Syst., vol. 13, no. 6, pp. 489–498, 2003.

[19] L. Yuan and J. Cao, ‘‘Patients’ EEG data analysis via spectrogram image
with a convolution neural network,’’ in Proc. Int. Conf. Intell. Decis.
Technol., 2017, pp. 13–21.

[20] Y. R. Tabar and U. Halici, ‘‘A novel deep learning approach for classi-
fication of EEG motor imagery signals,’’ J. Neural Eng., vol. 14, no. 1,
p. 016003, 2017.

[21] Q. Liu, Y.-F. Chen, S.-Z. Fan, M. F. Abbod, and J.-S. Shieh, ‘‘EEG signals
analysis usingmultiscale entropy for depth of anesthesiamonitoring during
surgery through artificial neural networks,’’Comput. Math. Methods Med.,
vol. 2015, 2015, Art. no. 232381.

[22] Q. Wei et al., ‘‘A critical care monitoring system for depth of anaes-
thesia analysis based on entropy analysis and physiological information
database,’’ Australas. Phys. Eng. Sci. Med., vol. 37, no. 3, pp. 591–605,
2014.

[23] Q. Liu, Y. F. Chen, and S. Z. Fan, ‘‘Improved spectrum analysis in EEG for
measure of depth of anesthesia based on phase-rectified signal averaging,’’
Physiol. Meas., vol. 38, no. 2, pp. 116–138, 2017.

[24] J.-R. Huang, S.-Z. Fan, M. F. Abbod, K.-K. Jen, J.-F. Wu, and J.-S. Shieh,
‘‘Application of multivariate empirical mode decomposition and sample
entropy in EEG signals via artificial neural networks for interpreting depth
of anesthesia,’’ Entropy, vol. 15, no. 9, pp. 3325–3339, 2013.

[25] Q. Zhang and M. Lee, ‘‘Emotion development system by interacting with
human EEG and natural scene understanding,’’ Cogn. Syst. Res., vol. 14,
no. 1, pp. 37–49, 2012.

[26] Y. Yuan, G. Xun, K. Jia, and A. Zhang, ‘‘A multi-view deep learning
method for epileptic seizure detection using short-time Fourier transform,’’
in Proc. ACM Int. Conf., Aug. 2017, pp. 213–222.

[27] M. Särkelä et al., ‘‘Automatic analysis and monitoring of burst suppression
in anesthesia,’’ J. Clin.Monitor. Comput., vol. 17, no. 2, pp. 125–134, 2002.

[28] N. D. Truong, A. D. Nguyen, L. Kuhlmann, M. R. Bonyadi, J. Yang, and
O. Kavehei. (2017). ‘‘A generalised seizure prediction with convolutional
neural networks for intracranial and scalp electroencephalogram data anal-
ysis.’’ [Online]. Available: https://arxiv.org/abs/1707.01976

[29] T. J. Mcculloch, ‘‘Use of BIS monitoring was not associated with a
reduced incidence of awareness,’’ Anesthesia Analgesia, vol. 100, no. 4,
pp. 1221–1222, 2005.

[30] M. S. Avidan et al., ‘‘Anesthesia awareness and the bispectral index,’’ New
England J. Med., vol. 358, pp. 1097–1108, Mar. 2008.

[31] J. A. Jiang, C. F. Chao, M. J. Chiu, R. G. Lee, C. L. Tseng, and R. Lin,
‘‘An automatic analysis method for detecting and eliminating ECG artifacts
in EEG,’’ Comput. Biol. Med., vol. 37, no. 11, pp. 1660–1671, 2007.

[32] S. Devuyst, T. Dutoit, P. Stenuit, M. Kerkhofs, and E. Stanus, ‘‘Removal of
ECG artifacts fromEEG using amodified independent component analysis
approach,’’ in Proc. Int. Conf. IEEE Eng. Med. Biol. Soc., Aug. 2008,
pp. 5204–5207.

[33] X. Navarro, F. Porée, and G. Carrault, ‘‘ECG removal in preterm EEG
combining empirical mode decomposition and adaptive filtering,’’ in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process., Mar. 2012, pp. 661–664.

[34] S.-J. Jeong, J. I. Han, H.-J. Baik, H. Lee, G. Y. Lee, and J.-H. Kim,
‘‘The effect of pyridostigmine on bispectral index during recovery
from sevoflurane anesthesia,’’ Korean J. Anesthesiol., vol. 61, no. 6,
pp. 460–464, 2011.

[35] J. Kochupillai, N. Ganesan, and C. Padmanabhan, ‘‘A new finite element
formulation based on the velocity of flow for water hammer problems,’’
Int. J. Pressure Vessels Piping, vol. 82, no. 1, pp. 1–14, 2005.

[36] A. Krizhevsky, ‘‘Learning multiple layers of features from tiny images,’’
M.S. thesis, Dept. Comput. Sci., Univ. Toronto, Toronto, ON, Canada,
2009.

[37] X. Liu, D. H. Kim, C. Wu, and D. Chen, ‘‘Resource and data optimization
for hardware implementation of deep neural networks targeting FPGA-
based edge devices,’’ in Proc. 20th Syst. Level Interconnect Predict. Work-
shop, 2018, p. 1.

[38] S. H. Hasanpour, M. Rouhani, M. Fayyaz, and M. Sabokrou. (2016).
‘‘Lets keep it simple, using simple architectures to outperform deeper and
more complex architectures.’’ [Online]. Available: https://arxiv.org/abs/
1608.06037

[39] M. Pritt and G. Chern, ‘‘Satellite image classification with deep learn-
ing,’’ in Proc. IEEE Appl. Imagery Pattern Recognit. Workshop (AIPR),
Oct. 2017, pp. 1–7.

[40] J. Bruhn, H. Röpcke, B. Rehberg, T. Bouillon, and A. Hoeft, ‘‘Electroen-
cephalogram approximate entropy correctly classifies the occurrence of
burst suppression pattern as increasing anesthetic drug effect,’’ Anesthesi-
ology, vol. 93, no. 4, pp. 981–985, 2000.

[41] T. N. Alotaiby, S. A. Alshebeili, T. Alshawi, I. Ahmad, and
F. E. A. El-Samie, ‘‘EEG seizure detection and prediction algorithms: A
survey,’’ EURASIP J. Adv. Signal Process., vol. 2014, no. 1, p. 183, 2014.

[42] P. L. Callet, C. Viard-Gaudin, and D. Barba, ‘‘A convolutional neural
network approach for objective video quality assessment,’’ IEEE Trans.
Neural Netw., vol. 17, no. 5, pp. 1316–1327, Sep. 2006.

[43] C. C. Dan, U. Meier, L. M. Gambardella, and R. Schmidhuber, ‘‘Convolu-
tional neural network committees for handwritten character classification,’’
in Proc. Int. Conf. Document Anal. Recognit., Sep. 2011, pp. 1135–1139.

[44] N. Kalchbrenner, E. Grefenstette, and P. Blunsom. (2014). ‘‘A convo-
lutional neural network for modelling sentences.’’ [Online]. Available:
https://arxiv.org/abs/1404.2188

[45] A. Devarakonda, M. Naumov, and M. Garland. (2017). ‘‘AdaBatch: Adap-
tive batch sizes for training deep neural networks.’’ [Online]. Available:
https://arxiv.org/abs/1712.02029

VOLUME 7, 2019 53741



Q. Liu et al.: Spectrum Analysis of EEG Signals Using CNN to Model Patient’s Consciousness Level

QUAN LIU received the Ph.D. degree in mechan-
ical engineering from the Wuhan University of
Technology, Wuhan, China, in 2003, where she
is currently a Professor. During recent years, she
authored more than 60 technical publications, pro-
ceedings, editorials, and books. She has directed
more than 20 research projects. Her research inter-
ests include signal processing, embedded sys-
tems, and robots and electronics. She received two
national awards and three provincial and minis-

terial awards. She is a Council Member of the Chinese Association of
Electromagnetic Compatibility and the Hubei Institute of Electronics. She
received the National Excellent Teacher, in 2007.

JIFA CAI received the B.S. degree from the School
of Information Engineering, Wuhan University of
Technology, Wuhan, China, in 2016, where he
is pursuing the M.S. degree in information and
communication engineering.

From 2017 to 2018, he was a M.S. Exchange
Student with Yuan Ze University, Taoyuan,
Taiwan. His research interests include the biomed-
ical signal processing, especially in brain mon-
itoring during anesthesia, brain modeling, and
brain–computer interfaces.

SHOU-ZEN FAN received the Ph.D. degree from
National Taiwan University, in 1994, where he
is currently an Associate Professor and also the
Director of general anesthesiology with National
Taiwan University Hospital. His research interests
include pediatric anesthesia and painmanagement,
airway management, anesthesia for liver trans-
plantation, and anesthetic automatic control and
expert systems.

MAYSAM F. ABBOD received the Ph.D. degree
in control engineering from The University of
Sheffield, U.K., in 1992. He is currently a Reader
of electronic systems with the Department of Elec-
tronic and Computer Engineering, Brunel Univer-
sity London, U.K. He has authored more than
50 papers in journals, nine chapters in edited
books, and more than 50 papers in refereed con-
ferences. His current research interests include
intelligent systems for modeling and optimization.

He is a member of the IET, U.K., and a Chartered Engineer in U.K. He is
serving as an Associate Editor for the Engineering Application of Artificial
Intelligence Elsevier.

JIANN-SHING SHIEH received the B.S. and
M.S. degrees in chemical engineering from
National Cheng Kung University, Taiwan,
in 1983 and 1986, respectively, and the Ph.D.
degree in automatic control and systems engi-
neering from The University of Sheffield, U.K.,
in 1995. He is currently a Professor with the
Department of Mechanical Engineering, also a
Joint Professor with the Graduate School of
Biotechnology and Bioengineering, and also

serves as the Dean of the College of Engineering, Yuan Ze University,
Taiwan. His research interests include biomedical engineering, particularly
in bio-signal processing, intelligent analysis and control, medical automa-
tion, pain model and control, critical care medicine monitoring and control,
dynamic cerebral autoregulation research, and brain death index research.

YUCHEN KUNG received the Ph.D. degree in
mechanical engineering from Yuan Ze University,
Taoyuan, Taiwan, in 2003. He was an exchange
Ph.D. Student with the University of California
at Berkeley, USA. His Ph.D. research was on
microscale thermal physics. He is currently the
Thermal Architect for the Lenovo Global Technol-
ogy Ltd., Taipei, Taiwan. Before Lenovo’s acqui-
sition of IBM’s System X Division, his career
at IBM spanned over seven years, where he was

responsible for system cooling design and its architecture and also helping
succeeding the products delivering. Besides thermal development, he is also
the Key Leader in Lenovo Academia Alliance focusing on AI research.

LONGSONG LIN received the Ph.D. and
M.S.E.E. degrees in electrical & computer engi-
neering from Purdue University, West Lafayette,
USA, and the E.M.B.A. degree from National
Taiwan University, Taiwan. He is currently the
Chairman of the Taiwan Network Information
Center, a non-profit organization supervising the
Taiwan Internet governance, policy, and develop-
ment for Taiwan internet service providers. He is
also a Chairperson and the Executive Director of

Lenovo Global Technology Ltd., a subsidiary of Lenovo Group. In 2004,
he was expatriated by Intel from California bay area to Taiwan and appointed
as theGeneralManager for Intel Taiwan Subsidiary inwhich hewas in charge
of embedded wireless computing products for Intel. He was a recipient of the
Taiwan National Information Elite Award.

53742 VOLUME 7, 2019


	INTRODUCTION
	EXPERIMENTAL SECTION
	THE ANESTHETIC DATASET
	PRE-PROCESSING
	CONVOLUTIONAL NEURAL NETWORK MODEL

	RESULTS
	PREDICTION PERFORMANCE
	TESTING THE NETWORK ON THE REMAINING PATIENTS' RECORDS
	METHOD COMPARATIVE PERFORMANCE

	DISCUSSION
	CONCLUSION
	REFERENCES
	Biographies
	QUAN LIU
	JIFA CAI
	SHOU-ZEN FAN
	MAYSAM F. ABBOD
	JIANN-SHING SHIEH
	YUCHEN KUNG
	LONGSONG LIN


