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ABSTRACT In this paper, a novel low voltage ride-through (LVRT) technique for three-phase grid-
connected inverters is proposed. The proposed technique consists of two parts: a nonlinear phase locked
loop based on complex-coefficient filters (NLCCF-PLL) and an LVRT control scheme. Generally, the syn-
chronization process of three-phase grid-connected inverters is performed via PLL with a relatively low
bandwidth, which delays the detection of voltage sag and recovery during the LVRT process. To accelerate
the synchronization process, the NLCCF-PLL with adaptive controller gains is proposed to improve both
the filtering capability and dynamic performance of PLL at the same time. The stability of the NLCCF-PLL
is validated by the second method of Lyapunov in the nonlinear model, and the superiority of its operating
performance is verified. The proposed LVRT control scheme consists of a reference current calculation block
to effectively suppress the power ripples and an inner loop controller with strong robustness as well as fast
dynamic response. By comparing the proposed LVRT technique with the existing LVRT technique on the
basis of experimental results, the superiority of the proposed LVRT technique is confirmed.

INDEX TERMS Low voltage ride-through (LVRT), phase-locked loops (PLL), nonlinear control, the second
method of Lyapunov, three-phase grid-connected inverters, power ripples.

I. INTRODUCTION
Many renewable energy generation systems (REGSs) have
been installed to address energy shortages and environmental
challenges [1]. Given the remarkable proliferation of REGSs,
the stability and safety of the power grid have encountered
serious obstacles due to the uncertainty and intermittence
of renewable energies, especially in the case of grid faults.
To support grid stability during grid faults, continuous con-
nection and fast response of grid-connected inverters are
essential [2]. Until now, many countries defined their own
low-voltage ride-through (LVRT) regulations to regulate the
operations of grid-connected inverters during sags in grid
voltage [3], [4]. Under these regulations, grid-connected
inverters must be able to participate in dynamic network
support during grid faults by injecting reactive currents con-
tinuously into the grid [5].

The associate editor coordinating the review of this manuscript and
approving it for publication was Shravana Musunuri.

Synchronous reference frame PLL (SRF-PLL) is the most
popular grid voltage detection technique for grid-connected
inverters to provide uninterrupted output power due to
its simplicity, effectiveness and robustness [6]. However,
SRF-PLL is highly sensitive to distorted and unbalanced
voltage [7]. Moreover, in the power grid, voltage sag dur-
ing grid faults is accomplished by phase shifts, frequency
variations, voltage imbalances and distortions [8]. Therefore,
the bandwidth of common SRF-PLLs in industrial convert-
ers is limited to 15Hz–75Hz to mitigate the influences of
unbalanced and distorted grid voltage, resulting in a longer
dynamic detection process [9]. The prolonged dynamic detec-
tion process of grid voltage causes large transit fluctuations
in the output current of the grid-connected inverter, and may
even destroy the stability of the power grid system.

To accelerate the synchronous process under distorted
and unbalanced voltage, by inserting additional filters into
the control loop of SRF-PLL or before its input, advanced
PLLs with enhanced filtering capabilities, (e.g., MAF-PLL,
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DCCF-PLL, DSOGI-PLL, MSRF-PLL, and DSC-PLL) have
been proposed [10]–[15]. However, inserted filters still con-
strain the dynamic response of PLLs, resulting in a relatively
long detection process and degraded the LVRT performance
of grid-connected inverters. Other efforts have been made
to improve the dynamic performance of PLLs by adopting
of specially-designed inserted filters [16], [17]. However,
an unavoidable tradeoff exists between the steady-state fil-
tering capability and dynamic performance of PLLs with
linear controllers above, which strictly restricts the practi-
cal application of these PLLs [18]. To avoid this problem,
a nonlinear PLL with adaptive controller gains (NLPI-PLL)
was proposed [19]. By regulating the open-loop controller
gains according to phase deviation, the steady-state filtering
capability and dynamic performance is improved simultane-
ously. Even so, concerns remain regarding the stability of
this NLPI-PLL, limiting its feasibility [20]. In summary,
it is difficult for existing PLLs to obtain both fast dynamic
responses and good disturbance rejections without compro-
mising PLLs’ stability; thus there is still room for improve-
ment in the LVRT performance of grid-connected inverters
associated with existing PLLs.

Despite PLL performance, advanced LVRT control
schemes are also capable of improving the LVRT perfor-
mance of grid-connected inverters. Regarding unbalanced
grid faults, to provide uninterrupted active power and reactive
power as regulated in [4], grid-connected inverters can gen-
erate positive-sequence currents during unbalanced voltage
sag [21]. However, output power ripples remain obvious due
to unbalanced grid voltage. To completely block these output
power ripples, together with the positive-sequence compo-
nent, negative-sequence component and harmonic compo-
nent are also included in output currents during voltage sag as
deduced in [22]. Yet these output harmonic currents further
deteriorate voltage quality during the grid faults. In [23],
without harmonic injections, positive-sequence and negative-
sequence output currents were optimized to eliminate active
power ripples without restraining the reactive power ripples.
In [24], a consolidated control scheme that can readily adjust
between eliminating real or reactive power ripples, or simply
generating the positive-sequence currents without harmonic
injections is proposed. However, according to the existing
researches above, the strategies for restraining the total power
ripples of both reactive power and active power of grid-
connected inverters are still worth discussing. On the other
hand, compared with the conventional inner loop controller
of grid-connected inverters, the inner loop controller in the
LVRT technique is expected to possess the following advan-
tages: 1) good dynamic performance in response to sudden
changes of grid voltage; 2) good robustness to remain stable
when grid faults substantially deteriorate the performance of
the pre-designed inner loop controller. Therefore, investiga-
tions of the specific inner loop controller in grid-connected
inverters during the LVRT process are also necessary.

In this paper, to improve the LVRT performance
of grid-connected inverters, a nonlinear PLL based on

complex-coefficient filters (NLCCF-PLL) is proposed by
introducing the adaptive controller gains into the PLL struc-
ture. The nonlinear control scheme of NLCCF-PLL guaran-
tees a fast dynamic response and good disturbance rejection
capability simultaneously. The stability of NLCCF-PLL is
validated with the second method of Lyapunov, and the
operating performance of NLCCF-PLL is analyzed in detail.
An improved LVRT control scheme is also proposed in this
paper. Among the LVRT control scheme, to ensure a proper
response under unbalanced voltage and improvements in
reliability, the reference currents with the fewest total power
ripples are derived by matrix calculations. Based on the
encouraging performance of NLCCF-PLL, an inner loop con-
troller is proposed, which is characterized by good robustness
and a fast dynamic response. Experiments are conducted to
verify the superiority in dynamic response and power ripple
restrictions of the proposed LVRT technique.

The rest of this paper is structured as follows. In Section II,
the structure and control scheme of NLCCF-PLL are
proposed, and the stability of NLCCF-PLL is verified.
In Section III, the proposed LVRT control scheme consisting
of a reference current calculation block and an inner loop con-
troller is presented. Finally in Section IV, the superiority of
the proposed NLCCF-PLL and LVRT technique is confirmed
by experimental results.

II. DESCRIPTION OF NLCCF-PLL
As the synchronous unit that significantly influences the
LVRT performance of grid-connected inverters, the proposed
NLCCF-PLL is discussed in this section.

A. OVERVIEW OF CONVENTIONAL DCCF-PLL
Among existing PLL techniques, complex-coefficient fil-
ters (CCFs) are characterized by an asymmetrical frequency
response around zero frequency, which implies that they can
extract positive or negative sequence components in the same
frequency [12]. By placing two paralleled bandpass CCFs
before the input of SRF-PLL, a dual complex-coefficient
filter-based PLL (DCCF-PLL) is established, as shown in
Fig.1 [12]. V+, ω̂g, θ̂g respectively denote the amplitude, fre-
quency, and phase angle of the fundamental positive sequence
component of the grid voltage estimated by DCCF-PLL;
ω̂ref represents the nominal frequency; CCF and PI are
the bandpass CCF and proportional–integral (PI) controller,
respectively. The transfer functions of the CCF block and
PI controller, GCCF(s) and GPI(s), can be written as

GCCF(s) =
ω̂b

s− jω̂g + ω̂b
(1)

GPI(s) = Kp +
Ki
s

(2)

where ω̂b is the bandwidth of CCF; Kp and Ki respectively
denote the proportional gain and integral gain of the PI con-
troller.

As shown in Fig.1, the CCF block acts as a pre-processing
filter by extracting the fundamental positive sequence
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FIGURE 1. Block diagram of the conventional DCCF-PLL.

FIGURE 2. Block diagram of the proposed NLCCF-PLL.

component of the grid voltage, whereas the other control
blocks of DCCF-PLL are identical to those of conventional
SRF-PLLs [12]. In this way, the harmonic and unbalanced
components of the grid voltage are simply and effectively
blocked without substantially degrading PLL dynamic
behaviors [20].

B. BASIC CONFIGURATION OF NLCCF-PLL
Although DCCF-PLL is characterized by its simplicity and
effectiveness, the tradeoff between the dynamic response and
filtering performance brought about by the linear controller
strictly restricts its PLL performance.

To further improve the dynamic response and filtering
capability, nonlinear controllers are introduced based on the
structure of DCCF-PLL in this paper. The basic configuration
of the proposed NLCCF-PLL is illustrated in Fig.2, in which
NCCF and NPI represent the adaptive bandpass complex-
coefficient filters (NCCF) and the nonlinear proportional–
integral (NPI) controller respectively. The transfer functions
of the NCCF and NPI controller can be expressed as

GNCCF(s) =
ω̂b(1ω̂g)

s− jω̂g + ω̂b(1ω̂g)
(3)

GNPI(s) = GKp(1ω̂g)+
GKi(1ω̂g)

s
(4)

where GNCCF(s) and GNPI(s) denote the transfer functions
of the NCCF and NPI controller respectively; ω̂b(1ω̂g) is
the adaptive bandwidth of NCCF; and GKp(1ω̂g),GKi(1ω̂g)
are adaptive proportional gain and integral gain of
NPI controller respectively. The specific transfer functions

for ω̂b(1ω̂g),GKp(1ω̂g),GKi(1ω̂g) are



ω̂b(1ω̂g) = ω̂bmin +
ω̂bmax − ω̂bmin

1ω̂g
f (1ω̂g)

GKp(1ω̂g) = Kpmin +
Kpmax − Kpmin

1ω̂g
f (1ω̂g)

GKi(1ω̂g) =
(
Kimin +

Kimax − Kimin

1ω̂g
f (1ω̂g)

)2

f (1ω̂g) =

{∣∣1ω̂g∣∣− ε (∣∣1ω̂g∣∣ > ε
)

0
(∣∣1ω̂g∣∣ ≤ ε)

ω̂bmax

ω̂bmin
=
Kpmax

Kpmin
=
Kimax

Kimin

(5)

where ω̂bmin, Kpmin, Kimin respectively denote the minimum
value of ω̂b(1ω̂g),GKp(1ω̂g), GKi(1ω̂g); ω̂bmax,KPmax and
Kimax are the maximum values of ω̂b(1ω̂g),GKp(1ω̂g) and
GKi(1ω̂g) respectively; ε is the threshold value of 1ω̂g.
Based on (5), variations of the nonlinear parameters accord-
ing to 1ω̂g are plotted in Fig.3.
As indicated in (5) and Fig.3, during the dynamic pro-

cess when the tracking error 1ω̂g is large, the bandwidths
of the NCCFs and nonlinear PI controllers enlarge simul-
taneously to increase the open-loop gain of NLCCF-PLL,
resulting in an accelerated dynamic response; during the
steady state when the tracking error 1ω̂g is small, the con-
trol parameters are decreased to inhibit the open-loop gain
of NLCCF-PLL, resulting in better steady-state filtering
performance.

Based on the control scheme depicted in (5), another
state variable 1V is introduced in to accelerate the dynamic
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FIGURE 3. Variations of the nonlinear parameters according to 1ω̂g.

response of NLCCF-PLL. The expression of 1V is

1V =
2
3
(Ua cos θ̂g + Ub cos(θ̂g − 120◦)

+Uc cos(θ̂g + 120◦)) (6)

As presented in (6), different from 1ω̂g, the defined state
variable 1V is characterized by a fast dynamic response
under the condition of a sudden change in grid voltage.
By comparing 1V with a threshold value T , the steady state
and dynamic process can be distinguished. Therefore, when
1V is larger than T , the NLCCF-PLL system is deemed to be
in a dynamic process, and the open-loop gain of NLCCF-PLL
is amplified to accelerate the dynamic response.

In this way, T should be larger than the largest amplitudes
of 1V in the steady state, which is caused by harmonics,
DC offsets, and negative-sequence voltages. The relation-
ships between 1V and harmonics, DC offset and negative-
sequence voltage in steady state is [25]

1V = Udc cos(θ̂g + ϕdc)+ U− cos(2θ̂g + ϕ−)

+

∑
n=2

Un cos((n± 1)θ̂g + ϕn) (7)

where Udc, U−, and Un respectively denote the amplitude of
DC offset, negative-sequence voltage and harmonic voltage.
According to (7), the range of the amplitude of1V in a steady
state is

|1V | ≤ amax + bmax + cmax (8)

where amax is the maximum amplitude of harmonic volt-
age, bmax is the maximum amplitude of negative-sequence
voltage, and cmax is the maximum amplitude of DC offset
voltage. Considering certain margins for 1V , T is selected
as

T = 1.3(amax + bmax + cmax) (9)

By introducing the state variable 1V into the control
scheme, the overall transfer functions of ω̂b(1ω̂g),GKp(1ω̂g),

and GKi(1ω̂g) are modified as

if 1V ≥ T ,


ω̂b(1ω̂g) = ω̂bmax

GKp(1ω̂g) = Kpmax

GKi(1ω̂g) = K 2
imax

else,



ω̂b(1ω̂g) = ω̂bmin +
ω̂bmax − ω̂bmin

1ω̂g
f (1ω̂g)

GKp(1ω̂g)=Kpmin+
Kpmax − Kpmin

1ω̂g
f (1ω̂g)

GKi(1ω̂g)=
(
Kimin+

Kimax−Kimin

1ω̂g
f (1ω̂g)

)2

f (1ω̂g) =

{∣∣1ω̂g∣∣− ε (∣∣1ω̂g∣∣ > ε
)

0
(∣∣1ω̂g∣∣ ≤ ε)

ω̂bmax

ω̂bmin
=
Kpmax

Kpmin
=
Kimax

Kimin

(10)

According to the parameter settings in (10), the relation-
ships between nonlinear expressions ω̂b(1ω̂g),GKp(1ω̂g),
GKi(1ω̂g) can be simplified as

ω̂b(1ω̂g) : GKp(1ω̂g) : GKi(1ω̂g) = kmax : Kpmax : K 2
imax

(11)

C. STABILITY ANALYSIS OF NLCCF-PLL
Based on the preceding analysis, a fast dynamic response
and good filtering performance can be achieved using the
proposed nonlinear control scheme. However, the stability of
existing PLLs with nonlinear controllers is questionable [20].
To ensure the feasibility of the proposed NLCCF-PLL, its
stability must be verified.

Clearly, the stability criteria for a conventional linear sys-
tem (e.g., the Routh-Hurwitz criterion) are no longer suitable
for NLCCF-PLL due to its highly nonlinearity. In this paper,
the second method of Lyapunov is applied to confirm the
stability of NLCCF-PLL. Compared with other stability cri-
teria for nonlinear systems, the second method of Lyapunov
is simpler to implement because it does not require specific
solutions to the nonlinear differential equations.

According to [26], themathematically equivalent nonlinear
model of DCCF-PLL is as depicted in Fig.4 (a). Corre-
spondingly, the nonlinear model of NLCCF-PLL is shown
in Fig.4 (b).

On the basis of Fig. 4(b), the necessary state variables are
determined as follows

x1 = θ̂gref − θ̂g

x2 =
ω̂b(1ω̂g)

s+ ω̂b(1ω̂g)
V+sin(x1)

x3 =

√
GKi(1ω̂g)

s
x2

(12)

where x1, x2, and x3 are the selected state variables in
the nonlinear model of NLCCF-PLL. State equations cor-
responding to this model in Fig.4 (b) with no external
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FIGURE 4. The equivalent nonlinear model of DCCF-PLL and NLCCF-PLL.
(a) DCCF-PLL. (b) NLCCF-PLL.

inputs (θ∗ = ωref = 0) are
x ′1 = −

√
GKi(1ω̂g)x3 − GKp(1ω̂g)x2

x ′2 = ω̂b(1ω̂g)V
+ sin(x1)− ω̂b(1ω̂g)x2

x ′3 =
√
GKi(1ω̂g)x2

(13)

To facilitate the stability analysis of NLCCF-PLL, by com-
bining (12) and (13), the nonlinear model of NLCCF-PLL
with state variables is redrawn in Fig.5.

The Lyapunov candidate function is constructed as

V (x1, x2, x3) =
∫ x1

0
sin(δ)dδ +

1
2
[x2x3]P[x2x3]T (14)

where P is a symmetric, positive definite, 2 × 2 matrix.
To invoke LaSalle’s Theorem [27] to prove the glob-
ally asymptotically stability of the nonlinear system, we
must have V̇ (x1, x2, x3) ≤ 0,V (x1, x2, x3) ≥ 0 with
V (0, 0, 0) = 0.

Assuming that P2×2 =

[
P1 P2
P2 P3

]
(P1 > 0 and P1P3 −

P22 > 0), then the expression of V̇ (x1, x2, x3) can be simpli-
fied as follows

V̇ (x1, x2, x3) = sin(x1)x ′1 + P1x2x
′

2

+P3x3x ′3 + P2x2x
′

3 + P2x3x
′

2 (15)

Substituting (13) into (15) yields

V̇ (x1, x2, x3)= (ω̂b(1ω̂g)V+P2 −
√
GKi(1ω̂g)) sin(x1)x3

+ (ω̂b(1ω̂g)V+P1 − GKp(1ω̂g)) sin(x1)x2

+ (
√
GKi(1ω̂g)P2 − ω̂b(1ω̂g)P1)x22

+ (
√
GKi(1ω̂g)P3 − ω̂b(1ω̂g)P2)x2x3 (16)

For all state variables x1, x2, and x3, to guarantee that
V̇ (x1, x2, x3) = −kx22 ≤ 0(k < 0), the following expressions

are derived

ω̂b(1ω̂g)V+P2 −
√
GKi(1ω̂g) = 0

ω̂b(1ω̂g)V+P1 − GKp(1ω̂g) = 0√
GKi(1ω̂g)P2 − ω̂b(1ω̂g)P1 < 0√
GKi(1ω̂g)P3 − ω̂b(1ω̂g)P2 = 0

P1P3 − P22 > 0

(17)

To satisfy the stability criterion of the second method
of Lyapunov, the following equations can be derived by
combining (11) and (17)

P1 =
Kpmax

V+ω̂bmax

P2 =
Kimax

V+ω̂bmax

P3 =
1
V+

Kpmaxω̂bmax − K 2
imax > 0

(18)

According to (18), when Kpmaxω̂bmax − K 2
imax > 0

and ω̂bmax,Kpmax,Kimax > 0, the nonlinear model of
NLCCF-PLL is globally asymptotically stable, which means
that the proposed PLL can stably track the reference phase at
any initial value.

D. PERFORMANCE ANALYSIS OF NLCCF-PLL
To discuss the operating performance of NLCCF-PLL,
the stability margins of NLCCF-PLL with different sets of
control parameters are analyzed in this section.

We assume there are two sets of control param-
eters, ω̂b(1ω̂g1),GKp(1ω̂g1),GKi(1ω̂g1), and ω̂b(1ω̂g2),
GKp(1ω̂g2),GKi(1ω̂g2), with the corresponding cutoff fre-
quencies ω1 and ω2. According to Fig.4 (b), the small-signal
open loop transfer function of Gopen(s) is

Gopen(s)=V+
ω̂b(1ω̂g)GKp(1ω̂g)s+ω̂b(1ω̂g)GKi(1ω̂g)

s2(s+ω̂b(1ω̂g))
(19)

Assuming that m = ω̂b(1ω̂g1)/ω̂b(1ω̂g2), we define

‖Gopen(jω1)‖

=

∥∥∥∥∥V+ ω̂b(1ω̂g1)GKp(1ω̂g1)s+ ω̂b(1ω̂g1)GKi(1ω̂g1)(jω1)2(jω1 + ω̂b(1ω̂g1))

∥∥∥∥∥
= 1 (20)

‖Gopen(jω2)‖

=

∥∥∥∥∥V+ ω̂b(1ω̂g2)GKp(1ω̂g2)s+ ω̂b(1ω̂g2)GKi(1ω̂g2)(jω2)2(jω2 + ω̂b(1ω̂g2))

∥∥∥∥∥
=

∥∥∥∥∥∥V+
ω̂b(1ω̂g1)GKp(1ω̂g1)

m2 (jω2)+
ω̂b(1ω̂g1)GKi(1ω̂g1)

m3

(jω2)2(jω2 +
ω̂b(1ω̂g1)

m )

∥∥∥∥∥∥ = 1

(21)

where ||Gopen(jω1)|| and ||Gopen(jω2)|| are the magnitudes of
Gopen(s) at the cutoff frequency with the control parameters
as shown in (10).
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FIGURE 5. The nonlinear model of NLCCF-PLL with state variables.

Upon comparing (20) and (21), we can see that (21) is
established when ω1 = mω2. On the other hand, ||Gopen(jω)||
declines as ω increases, as can be confirmed in Fig.6.
Therefore, only when ω1 = mω2, ||Gopen(jω1)|| = ||
Gopen(jω2)|| = 1 holds, and the following equation can be
derived

m =
ω1

ω2
=
ω̂b(1ω̂g1)
ω̂b(1ω̂g2)

(22)

On the basis of (22), PM1 and PM2, representing the phase
margin at ω1 and ω2, are deduced as follows:

PM1 = 6 Gopen(jω1)

= arctan
GKp(1ω̂g1)ω1

GKi(1ω̂g1)
− arctan

ω1

ω̂b(1ω̂g1)
− 180◦

(23)

PM2 = 6 Gopen(jω2)

= arctan
GKp(1ω̂g2)ω2

GKi(1ω̂g2)
− arctan

ω2

ω̂b(1ω̂g2)
− 180◦

= arctan
GKp(1ω̂g1)ω1

GKi(1ω̂g1)
− arctan

ω1

ω̂b(1ω̂g1)
− 180◦

(24)

It can be inferred from (23) and (24) that PM1 = PM2.
Therefore, when the control parameters of NLCCF-PLL vary,
the phase margin of the small-signal model is constant.
To intuitively highlight the advantage of NLCCF-PLL in the
phase margin, open-loop bode plots of NLCCF-PLL with
different sets of control parameters are presented in Fig.6.

As can be seen in Fig.6, the phase margin of
NLCCF-PLL is always 67.9◦ when the cutoff frequency
increases from 10.7Hz to 650Hz, furtherdemonstrating that
the proposed NLCCF-PLL is stable with sufficient stabil-
ity margins. Moreover, by setting the control scheme of
NLCCF-PLL as discussed above, its operating performance
can be estimated with good robustness.

During the grid faults, transit disturbance (e.g., voltage
sags and sudden drift in the frequency and phase of voltages)
and steady-state disturbance (e.g., unbalanced and distorted
voltages) should be considered by the LVRT performance of
grid-connected inverters [28]. As discussed above, with good
filtering capability, fast dynamic response and good robust-
ness, NLCCF-PLL could improve the LVRT performance of
inverters by accelerating the dynamic process when transit
disturbance occurs as well as decrease the tracking errors in
the steady state.

FIGURE 6. Open-loop bode plots of NLCCF-PLL with different sets of
control parameters.

FIGURE 7. Three-phase voltage source inverter connected to the power
grid.

III. THE PROPOSED LVRT CONTROL SCHEME
In addition to the proposed NLCCF-PLL, an advanced LVRT
control scheme is also important for the LVRT performance
of grid-connected inverters. The investigation of the proposed
LVRT control scheme is based on a three-phase voltage
source inverter connected to the power grid, as illustrated
in Fig. 7. In this paper, an LCL filter is inserted between the
grid and inverter to attenuate the high-frequency harmonics
injected into the grid [29]. At the same time, the DC-link
voltage is assumed to be constant under LVRT operation, and
supported by a DC source with constant DC voltage.

The proposed LVRT control scheme is composed of a
reference current calculation block and an inner loop control,
depicted in Fig.8. According to the grid voltage estimated
by the NLCCF-PLL, the reference current of the inner loop
controller is generated by the reference current calculation
block. Meanwhile, the proposed inner loop controller is also
conducted under αβ static coordinates. The specific design
procedure for reference current calculations and the inner
loop controller are discussed below.
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FIGURE 8. The specified control flow for LVRT operation.

FIGURE 9. LVRT requirements of grid connection.

A. REFERENCE CURRENT CALCULATIONS
As required in [5], grid-connected inverters should be able
to inject active and reactive currents into the grid during grid
faults in order to facilitate grid voltage recovery. The specific
operational requirements for grid connections in [5] during
the LVRT process are illustrated in Fig.9. The reference active
power Pref and Qref are stated as

Vp.u. =

√
(V+α )2 + (V+β )2 + (V−α )2 + (V−β )2

Vn

0 ≤ Vp.u. < 0.5

{
Pref = 0
Qref = Ppr

0.5 ≤ Vp.u. < 0.9

{
Pref =

√
P2max − Q

2
ref

Qref = 2(1− Vp.u.)Ppr

0.9 ≤ Vp.u. ≤ 1

{
Pref = Ppr
Qref = 0

(25)

where Vn is the per unit value of the grid voltage, and Ppr is
the output active power before a grid fault occurs.

As indicated in Fig.8 and (24), when unbalanced voltage
sag occurs, the specific relationships between the output
power and output currents are [23]{

P(t) = P0 + Pc cos(2ωt)+ Ps sin(2ωt)
Q(t) = Q0 + Qc cos(2ωt)+ Qs sin(2ωt)

where


P0
Q0
Pc
Ps
Qc
Qs

 =1.5


V+d V+q V−d V−q
V+q −V+d V−q −V−d
V−d V−q V+d V+q
V−q −V−d −V+q V+d
V−q −V−d V+q −V+d
−V−d −V−q V+d V+q



×


I+d
I+q
I−d
I−q

 (26)

where V+d ,V
+
q ,V

−

d ,V
−
q are the positive sequence and neg-

ative sequence components of the grid voltage in dq axis
respectively; I+d , I

+
q , I

−

d , I
−
q are the positive sequence and

negative sequence components of output currents in dq axis
respectively.
As shown in (26), inevitable power ripples occur during

unbalanced voltage sag. To suppress the total power ripples of
active power and reactive power, specific matrix calculations
are conducted below.
According to (26), the total power ripples Sf are deduced

as

Sf =
√
P2c + P2s +

√
Q2
c + Q2

s (27)

To obtain the minimum value of Sf in (27), Pc and Qc
in (26) are assumed to be 0 in the first place, the correspond-
ing output currents I+d1, I

+

q1, I
−

d1, I
−

q1 are


I+d1
I+q1
I−d1
I−q1

= 2
3


V+d V+q V−d V−q
V+q −V+d V−q −V−d
V−d V−q V+d V+q
V−q −V−d V+q −V+d


−1

P0

Q0

0

0

 (28)

By substituting (28) into (26), the relationships
between the output power and output currents can be
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rewritten as
P0
Q0
0
Ps1
0
Qs1

 = 1.5



V+d V+q V−d V−q
V+q −V+d V−q −V−d
V−d V−q V+d V+q
V−q −V−d −V

+
q V+d

V−q −V−d V+q −V+d
−V−d −V

−
q V+d V+q




I+d1
I+q1
I−d1
I−q1

 (29)

Similarly, assuming that Ps = Qs = 0, the corresponding
output currents I+d2, I

+

q2, I
−

d2, I
−

q2 are
I+d2
I+q2
I−d2
I−q2

 = 2
3


V+d V+q V−d V−q
V+q −V+d V−q −V−d
V−q −V−d −V

+
q V+d

−V−d −V
−
q V+d V+q


−1

P0
Q0
0
0

 (30)

Substituting (30) into (26) yields
P0
Q0
Pc2
0
Qc2
0

 = 1.5



V+d V+q V−d V−q
V+q −V+d V−q −V−d
V−d V−q V+d V+q
V−q −V−d −V

+
q V+d

V−q −V−d V+q −V+d
−V−d −V

−
q V+d V+q




I+d2
I+q2
I−d2
I−q2

 (31)

In such cases, assuming that the reference output currents
I+dref, I

+

Qref
, I−dref, I

−

Qref
are

I+dref
I+Qref

I−dref
I−Qref

=λ

I+d1
I+q1
I−d1
I−q1

+(1− λ)

I+d2
I+q2
I−d2
I−q2

 (0 =≤ λ ≤ 1)

(32)

By combining (28)-(32), the output power is
P0
Q0

(1− λ)Pc2
λPs1

(1− λ)Qc2
λQs1

 = 1.5



V+d V+q V−d V−q
V+q −V+d V−q −V−d
V−d V−q V+d V+q
V−q −V−d −V

+
q V+d

V−q −V−d V+q −V+d
−V−d −V

−
q V+d V+q




I+dref
I+Qref

I−dref
I−Qref


(33)

Correspondingly, the total power ripples are

Sf (λ)=
√
(1− λ)2Q2

c2+λ
2Q2

s1+

√
(1− λ)2P2c2+λ

2P2s1
(34)

When dSf (λ1)/d(λ1) = 0 (0 < λ1 < 1) holds, it can be
derived that Sf (λ1) is the minimum value of Sf (λ). According
to (34), the reference output currents with the fewest total
power ripples can be calculated under the condition where
λ = λ1.

In addition, considering the hard limit of the RMS value
of output currents, there is still one more step before obtain-
ing the final current references. To restrain current refer-
ences within the allowable range, the final reference currents
I+dreff, I

+

qreff, I
−

dreff, I
−

qreff are scaled down as follows:
I+dreff
I+qreff
I−dreff
I−qreff

 = f


I+dref
I+Qref

I−dref
I−Qref

 (f =

{
1 k < 1
1/k k ≥ 1

)

where k =

√
(I+dref)

2 + (I+Qref
)2 + (I−dref)

2 + (I−Qref
)2

Ilim

(35)

B. INNER LOOP CONTROLLER
When a grid fault occurs, the equivalent grid impedance and
grid voltage change substantially, seriously threatening the
stability of the pre-designed inner loop controller. Moreover,
the dynamic process of the inner loop controller during grid
faults can cause transit fluctuations in the output currents;
thus, good robustness and a fast dynamic response of the inner
loop controller is required during the LVRT process.

Based on the conventional proportional resonant (PR) con-
troller and harmonic compensators (HC) [30] under αβ static
coordinates, the proposed inner controller is structured as{

if Vp.u. < 0.9 GIN(s) = GPR1(s)
else GIN(s) = GPR(s)+ GHC(s)

(36)

where GIN(s) is the transfer function of the inner loop con-
troller in the s-domain; GPR1(s) is the PR controller dur-
ing LVRT process in s-domain,GPR(s) and GHC(s) are the
PR controller and HC controller under normal grid conditions
in the s-domain, respectively. The expressions of GPR(s),
GHC(s), and GPR1(s) are

GHC(s) =
∑
h=5,7

Krh
2ξhhω0s

s2 + 2ξhhω0s+ ω2
0

GPR(s) = Kp + Kr
2ξω0s

s2 + 2ξω0s+ ω2
0

GPR1(s) = k1Kp + k2Kr
2ξω0s

s2 + 2ξω0s+ ω2
0

(37)

where k1 > 1 and k2 < 1. GPR(s) and GPR1(s) in (37)
provide high open-loop gain at the fundamental frequency
to accurately track positive and negative sequence current
references at fundamental frequency, whereas GHC(s) offers
precise tuning at n-order (n = 5, 7) harmonics to improve the
power quality of the output current.

According to (36) and (37), during the LVRT process,
the HC controllers are blocked and parameters of the
PR controller are modified. Bode diagrams of the open-loop
inverter system with the proposed inner loop controller are
shown in Fig. 10. Detailed modeling and parameter designs
of the inner loop controller can be found in [31], [32].

As depicted in Fig.10, the proposed inner-loop controller
has the following advantages during the LVRT process: 1) the
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FIGURE 10. Bode diagrams of the open-loop inverter system with the
proposed inner loop controller.

phase margin is increased by blocking the HC controllers;
2) the bandwidth is improved by modifying the control
parameters of the PR controllers. Therefore, although the
tracking accuracy is sacrificed to some extent, better robust-
ness and a faster dynamic response can be expected during
the LVRT process for the proposed inner loop controller.

To elucidate improvements in the robustness of the pro-
posed inner loop controller, pole-zero maps of the closed
loop system with the proposed inner loop controller when the
equivalent grid impedance Lg declines are respectively illus-
trated in Fig. 11(a) and (b). The pole-zero maps intuitively
display the variation tendency of the system stability when
Lg declines.

When Lg is reduced in Fig.11 (a), two poles graduallymove
into the unit circle and then out of the unit circle. The ten-
dency of polesmoving into the unit circle in Fig.11 (a) implies
sufficient stability margins for the inverter systemwhen a grid
fault occurs. By contrast, in Fig.11 (b), the corresponding two
poles gradually move out of the unit circle as Lg declines. The
poles far from the zero point will inevitably deteriorate the
stability of the inverter system.

Therefore, during grid faults, the proposed LVRT inner
loop controller enhances the dynamic performance and
robustness of the inverter system simultaneously.

IV. EXPERIMENTAL VERIFICATIONS
In this section, the performance of the proposed NLCCF-PLL
and the overall proposed LVRT technique are respectively
evaluated on the basis of experimental results.

A. PERFORMANCE TEST OF NLCCF-PLL
The performance of the proposed NLCCF-PLL was tested
by a comparison based on the prototype controlled by a
TMS320F28335 digital signal processor (DSP). In this exper-
iment, the nominal frequency was 50 Hz, and the sampling
frequency was fixed at 10 kHz.

Throughout the experimental verifications, the DSP gen-
erated the three-phase input signals internally. They were
then fed to the external digital-to-analog (D/A) converter
AD7808 to generate analog signals. After performing the

FIGURE 11. Pole-zero maps of the closed-loop system when the
equivalent grid impedance Lg decreases. (a) When GIN (S) = GPR1(S).
(b) When GIN (S) = GPR (S) + GHC (S).

TABLE 1. Control parameters of PLLs in experiments.

proposed PLL algorithms with the signals acquired by DSP,
the signals were converted by another external D/A converter
DAC7724 and finally measured by an oscilloscope.

In the experiments, the PLL performances of the conven-
tional DCCF-PLL and the proposed NLCCF-PLL are com-
pared. Brief introductions and parameter design guidelines
for the conventional DCCF-PLL are provided in [12], and
parameter design guidelines for the proposed NLCCF-PLL
are mentioned in Section II. Control parameters of the PLLs
are listed in Table 1, where VN is the amplitude of nominal
voltage of the compared PLLs.

To compare the dynamic and steady-state performances of
the above PLLs, the test cases can be summarized as follows:
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TABLE 2. Summary of PLL performance in experiments.

1) Test case I: The grid voltage undergoes a frequency
jump from 45Hz to 55Hz and a phase-angle jump of +60◦

simultaneously, as illustrated in Fig. 12(a).
2) Test case II: The grid voltage is severely polluted by

imbalance and harmonics, as illustrated in Fig. 13(a).
In test case I, the obtained transit frequency responses for

compared PLLs are shown in Fig. 12(b). It takes approx-
imately 6ms for the estimated frequency of NLCCF-PLL
to reach the quasi-steady state (where the frequency track-
ing error is less than 0.5Hz). For DCCF-PLL, the time is
about 24ms. As indicated in Fig. 12(c), the tracking phase-
angle errors (i.e., difference between the real and estimated
phase angles) of the NLCCF-PLL and DCCF-PLL converge
to less than 5◦ in 5ms and 21ms, respectively.

As shown in Fig. 12(b) and (c), NLCCF-PLL achieves bet-
ter dynamic performance when the grid voltage experiences
a jump in the frequency and phase angle.

The experimental results of test case II are shown
in Fig. 13(b) and (c). The peak frequency offsets in the steady
state for DCCF-PLL andNLCCF-PLL in Fig. 13(b) are 1.3Hz
and 0.2Hz, respectively. The peak phase-angle tracking errors
in the steady state for DCCF-PLL and NLCCF-PLL are
Fig. 13(c) is 1.4◦ and 0.2◦, respectively.

As shown in Fig. 13(b) and (c), NLCCF-PLL demonstrates
better harmonic and imbalance rejection in the steady state
compared with DCCF-PLL.

To further reveal the fast dynamic response and excellent
disturbance rejection capability, detailed PLL performances
of the compared PLLs under the two test cases are shown
in Table 2.

B. PERFORMANCE TEST OF PROPOSED LVRT TECHNIQUE
The proposed LVRT technique is evaluated using an
11kW three-phase grid-connected converter prototype in this
section. The proposed converter prototype is controlled by a
DSP TMS320F28335. To simulate grid faults, a shunt passive
load that contains a nonlinear load, and an unbalanced three-
phase passive load, is connected between the inverter and
grid. When connected to the grid, the load can generate
voltage sag, imbalance and distortion. The adopted nonlinear
load is a three-phase diode rectifier with a resistance load at
the DC side. The hardware configuration of the laboratory
prototype is outlined in Table 3.

In the experiments, the performances of the proposed
LVRT technique and the conventional LVRT technique are

FIGURE 12. Experimental results under test case I. (a) Three phase grid
voltage. (b) Transit frequency response. (c) Phase-angle tracking error.
(X-axis:10ms/div).

compared. The proposed LVRT technique is realized as
shown in Fig.8. The conventional LVRT technique contains
a conventional DCCF-PLL, a positive sequence reference
current generator [21] and a PR+HC controller [30].

Experimental results of the converter prototype with the
above two LVRT techniques are shown in Fig. 14 and 15,
respectively.

Fig.14(a) and Fig.15(a) show that the grid voltage circum-
stances are similar under the two test cases. By comparing the
output currents in Fig.14 (b) and Fig.15 (b), it is clear that the
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FIGURE 13. Experimental results under test case II. (a) Three phase grid
voltage. (b) Estimated frequency error. (c) Estimated angle error. (X-axis:
10ms/div).

transit fluctuations of the output currents with the proposed
LVRT technique are much smaller than those with the con-
ventional LVRT technique during the LVRT process. Thanks
to the combination of the NLCCF-PLL and the LVRT inner
loop controller in the proposed LVRT technique, the tran-
sit current fluctuations are effectively restrained. Moreover,
different from the conventional LVRT technique, unbalanced
currents are generated by the proposed LVRT technique under
unbalanced voltage sag.

FIGURE 14. Experimental results with the conventional LVRT technique
under voltage sag. (a) Grid voltages. (b) Grid currents. (c) Instantaneous
active and reactive powers. (X-axis: 50ms/div).

In Fig.14 (c), the peak active and reactive power ripples
during voltage sag are respectively 1.1kvar and 1.7kvar using
the conventional LVRT technique. As shown in Fig.15(c), the
peak active and reactive power ripples during voltage sag are
respectively 0.6kvar and 0.9kvar with the proposed LVRT
technique. In addition, the transit power fluctuations of the
proposed LVRT technique are much smaller than those of
the conventional LVRT technique during the LVRT process.
By adopting the proposed LVRT technique, the steady-state
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FIGURE 15. Experimental results with the proposed LVRT technique under
voltage sag. (a) Grid voltages. (b) Grid currents. (c) Instantaneous active
and reactive powers. (X-axis: 50ms/div).

active and reactive power ripples and transit power fluctua-
tions are effectively restrained.

Detailed LVRT performances of the proposed LVRT tech-
nique compared with the conventional LVRT technique are
shown in Table 4. Compared with the conventional LVRT
technique, the proposed LVRT technique can afford grid-
connected inverters better dynamic performance in terms of
output currents. The ripples in active power and reactive
power are also effectively restrained by the proposed LVRT
technique as shown in Table 4.

TABLE 3. Experimental parameters of laboratory prototype.

TABLE 4. Summary of the LVRT performance in experiments.

V. CONCLUSION
In this paper, a nonlinear three-phase PLL (NLCCF-PLL)
with fast dynamic response, enhanced disturbance rejection
capability and good robustness, is presented. An LVRT con-
trol scheme based on NLCCF-PLL is also proposed. The
following conclusions can be drawn:

1) By adaptively adjusting the open-loop gain of the con-
ventional DCCF-PLL according to the magnitude of distur-
bance, the dynamic performance and steady state filtering
capability of the proposed NLCCF-PLL are substantially
improved.

2) The proposed NLCCF-PLL is certified to be stable by
the second method of Lyapunov, which guarantees a wide
range of parameter variations and good robustness.

3) The proposed LVRT control scheme can effectively
restrain the overall ripples in active power and reactive power
by matrix calculations.

4) The proposed inner loop controller further improves the
dynamic performance of the proposed LVRT technique and
guarantees good robustness of the inverter system.

The experimental results indicate good performance of
the proposed NLCCF-PLL together with the proposed
LVRT control scheme, confirming the availability and prac-
tical value of the proposed LVRT technique.
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