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ABSTRACT Image processing and analysis techniques have drawn increasing attention since they enable
a non-extractive and non-lethal approach to collecting fisheries data, such as fish size measurement,
catch estimation, regulatory compliance, species recognition, and population counting. Measuring fish size
accurately requires reliable image segmentation. Major challenges that can easily affect the segmentation
include blurring of image areas due to water drops on the camera lens and parts of a fish body being out of
the camera view. In this paper, we address each of these issues with an innovative and effective contour-based
segmentation and a missing shape recovery method from an arbitrary initial segmentation. The refinement
is processed from the coarse level to the fine level. At the coarse level, we align the entire fish contour of
the initial segmentation with trained representative contours by using iteratively reweighted least squares
(IRLS). At finer levels, we iteratively refine contour segments to represent poorly segmented or missing
shape parts. This method addresses the problems listed above and generates promising results with highly
robust segmentation performance and length measurement.

INDEX TERMS Contour, refinement, regression, segmentation.

I. INTRODUCTION
The potential of using automatic image processing systems
in fisheries has drawn attention from both industry and
aquaculture science [1] –[3], [30]–[32]. Counting, measure-
ment, and isolation of captured fish are normally carried
out directly on fishing vessels. The conventional, laborious
manual process is time-consuming and limits the efficiency
of fisheries data collection for either commercial or research
purposes. An automated chute-based fish monitoring sys-
tem can systematically perform fish body segmentation and
length measurement. Therefore, the development of segmen-
tation and measurement algorithms will be beneficial and
will significantly speed up this indispensable process on fish-
ing vessels. Compared to conventional manual sorting and
measurement, the automatic image processing system can
be faster, less error-prone, more scalable, and more usable
by those without specialized training. In one such system,
the Camera Chute being developed by the Alaska Fisheries
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Science Center, a static camera automatically captures images
of fish passed through an onboard, enclosed chute with
controlled lighting, as shown in Figure 1. Images are only
taken when fish trigger an infrared sensor just before exiting
the chute. One important application of the Camera Chute,
requiring robust segmentation, has been counting and mea-
suring lengths of fish bycatch during release from trawlers
in Alaska fisheries. Fixed limits on fish bycatch are a key
constraint on Alaska trawl fisheries and accurate monitoring
is difficult with conventional catch sampling. While auto-
matic image processing systems provide many advantages
in fishery or aquaculture, challenges remain for segmenta-
tion and accurate measurement [1]. Examples of challenges
experienced during extensive Camera Chute testing on fish
bycatch include: 1), the environmentmay have dynamic light-
ing changes with restricted visibility, 2) the cameras may
be occasionally splashed by water, leaving water drops that
blur parts of subsequent images, 3) parts of the fish body
may be out of the camera view when the infrared sensor
is triggered, and 4) the fish has some body part (e.g., tail)
not completely flat on the chute surface. Some examples of
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FIGURE 1. Chute with a static camera. (a) Interior view with checkboard
for calibration. (b) Installation with cover on board.

bad segmentations and distorted fish images due to these
challenges are shown in Figure 2. In order to measure the size
and length of the fish, we needed to develop both a robust
segmentation method and a method to estimate the fish body
when part of the fish is out of the view of the camera or
distorted by fish posture.

FIGURE 2. Examples of bad segmentation in a chute monitoring system.
First row: Images with water drops. Second row: Images with part of fish
out of the camera field.

In this paper, we propose a coarse-to-fine, contour-based
method for segmentation refinement andmissing body recov-
ery for chute-based electronic monitoring (EM) of fisheries
as shown in Figure 3. First, a segmentation method, such
as [4]–[7], is applied to the input image to get the initial seg-
mentation mask, whose contour is aligned with a pre-trained
representative contour via an affine transform by iteratively
solving reweighted least squares (IRLS) [33]. This constitutes
the coarsest level for the entire contour alignment. At the finer
level, rather than aligning the entire contour, we align two
adjacent contour segments iteratively, which can recover the
local structure of the fish body. At the finest level, we select
the best match from all the training contours to replace each
generated contour segment, which can recover the details of
each contour segment. From coarse to fine, the segmentation
refinement focuses more on specific parts of the fish, allow-
ing more variations of the fish shape. We iteratively perform
the minimization until convergence.

We summarize the contribution of our proposed method as
follows.

1) The proposed method does not require large datasets for
training. Unlike neural network-based methods, the proposed
method can take advantage of the prior knowledge of the

fish shape. As a result, a few samples are enough for shape
modeling.

2) The segmentation refinement can be built on any
initially-blurred segmentations. We can take any kind of ini-
tial segmentation as the input to our proposed refinement
processes. Although the initial segmentationmay be not accu-
rate due to the blurring artifacts of water drops and lighting
changes, as long as a rough contour is provided, the refine-
ment can perform well.

3) The refinement is conducted at three levels from coarse
to fine. At the coarse level, a general shape model can be
easily aligned with the initial segmentation mask, while local
features can be emphasized at finer levels.

4) The segmentation can also be refined when part of the
fish is out of the camera view. By taking advantage of prior
knowledge of the fish shape, the missing part of the fish can
be reliably recovered. This recovery of missing parts is very
important when we want to obtain accurate size and length
measurement of the fish.

The outline of the paper is as follows: In Section II,
we review some previous related work of image segmen-
tation. The segmentation refinement method is then intro-
duced in Section III. Experimental results are presented in
Section IV. Finally, we provide some conclusions and future
work in Section V.

II. RELATED WORK
Measuring fish size and length requires a robust segmentation
approach. Depending on whether annotated training data
are required, the segmentation methods can be roughly
divided into two major categories, i.e., unsupervised
approaches [13]–[19] and supervised approaches [6], [7],
[20], [21], [24], [25], [35].

The advantages of unsupervised approaches are obvious.
First, it does not need any human effort to annotate the ground
truth labels for each image pixel. Second, it can easily seg-
ment a new class object that is not represented in the labeled
training data. The drawbacks are also obvious. Without the
supervision of the ground truth, suchmethods can not achieve
very good performance. Most unsupervised segmentation
methods adopt clustering approaches to cluster pixels into
different groups. For example, Achanta et al. [13] proposed
a simple linear iterative clustering (SLIC) approach, which
adapts a k-means clustering to efficiently generate super-
pixels. However, this method can only be used to generate
superpixels, but not to segment the entire object. Graph-cut
based approaches [14], [15], [18], [19] use graph models to
minimize the energy on the edges to perform the segmenta-
tion. However, graph-based methods usually require a lot of
computation time, especially for images with high resolution.
Moreover, the mean-shift method [16] is also utilized to clus-
ter pixels of the image, but it is sensitive to the bandwidth of
the mean-shift kernels. While Arbelaez et al. [17] reduce the
problem of image segmentation to contour detection, the seg-
mented objects are not class specific and it is not clear how to
extract the foreground object out of the image. Although these
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FIGURE 3. The flowchart of the contour refinement. From left to right is a coarse-to-fine process.

unsupervised methods are efficient even without training,
they are not suitable for our task. They are still easily affected
by water drops and do not address the situation when the part
of fish is out of the view of the camera.

With more andmore labeled datasets [22], [23] available in
recent years, supervised learning-based approaches become
more powerful in dealing with segmentation. With the super-
vision of the ground truth labels, more complexmodels can be
trained to achieve higher segmentation accuracy, like neural
network-based approaches [6], [7], [20], [21], [24]–[26], [35].
Long et al. [6], [7] adopt fully convolutional networks (FCNs)
for image segmentation, which can take an input of arbitrary
size and produce correspondingly-sized output with efficient
inference and learning. However, this approach treats the seg-
mentation as pixel classification without any other constraints
in the cost function, resulting in non-sharp boundaries and
blob-like shapes. In [21], Zheng et al. combine the strengths
of FCN and Conditional Random Fields (CRFs)-based proba-
bilistic graphical modeling and formulate mean-field approx-
imate inference for the Conditional Random Fields with
Gaussian pairwise potentials as Recurrent Neural Networks.
Similarly, Chen et al. [24] combine deep networks with fully
connected CRFs to perform the segmentation. Combining
CRF can recover detailed information near the boundaries,
which achieves better performance. However, FCN-based
architectures still cannot perform as well as deconvolu-
tional networks [35]. Badrinarayanan et al. [25] propose
encoder-decoder architecture networks, in which the decoder
uses pooling indices computed in the max-pooling step of
the corresponding encoder to perform non-linear upsam-
pling. This eliminates the need for learning to upsample in
the deconvolution. Although neural network-based methods
show promising results, they rely on large training data and
cannot segment a new class object that is not in the training
ground truth labels. Still, such methods are not suitable for
our task, which require large datasets for training, cannot

better utilize the prior knowledge of fish shapes, and cannot
segment blur regions well or recover missing fish parts.

Apart from the general segmentation methods, there
are also some methods that specifically deal with water
drop segmentations and fish body segmentations. Some
works [8]–[12] have been done for water drop detections
or blur detections. For example, Alippi et al. [8] propose
a method which detects external disturbances on camera
lenses by comparing the blur measures of a series of frames
which contain the same scene acquired from a static camera.
Kanchev et al. [9] propose an algorithm for detecting blurred
regions in images by using wavelet-based histograms and
SVM. Blur measure is defined on the fish contour to locate
the water drop region by Huang et al. [10]. Moreover, Liu et
al. [11] develop several blur features to detect blur regions for
general images. However, such water drop detection methods
do not address how to deal with the issue in terms of segmen-
tation. Chan et al. [12] propose a two-stage image segmenta-
tion method for blurry images with Poisson or multiplicative
gamma noise. However, the water drop issue in our images
for fish length measurement only occurs locally, which is
not suitable for this setting. As for fish body segmentation,
Chuang et al. [5] propose the double local thresholding (DLT)
method which uses the color histogram to distinguish fore-
ground and background. Similarly, Huang et al. [10] com-
bine the DLT and Gaussian mixture model (GMM) [4] to
model the static background to help extract the foreground
fish object. However, these two methods purely rely on unsu-
pervised approaches and do not take advantage of fish shape
priors, and therefore still cannot recover the missing fish
bodies.

To better address the segmentation challenges, the prior
knowledge of the fish shape needs to be exploited in the
segmentation. If we have a shape contour model with pose
variations, the water drop region can be estimated and pre-
dicted with the help of other parts of the fish body based on
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FIGURE 4. Twenty representative contours generated by the k-means
algorithm.

the shape contours. Similarly, when dealing with the missing
shape issue, where part of the fish is out of the camera view,
we can also efficiently predict missing parts with the help of
the rest of the fish body based on the contour model even with
very limited training data.

III. THE PROPOSED METHOD
The flowchart of the coarse-to-fine refinement method
is shown in Figure 3. Given trained shape models
(see Section III.A.), first, we align the contour of the initial
segmentation mask with one of the pre-trained representative
contours (see Section III.B.) via the affine transform esti-
mated by IRLS, aligning the entire contour at the coarsest
level. On a finer level, the refinement proceeds by estimat-
ing the affine transform only for each set of two adjacent
contour segments, using the same routine as the coarsest
level (see Section III.C.). On the finest level, we match each
generated contour segment with the corresponding segments
from all the training data and choose the best match to replace
the generated contour segment (see Section III.C.). The final
contour result is shown on the right side of the figure. Note
that the refinement proceeds from coarse to fine, focusing
more on finer details of the fish. As a result, the segmentation
can be refined even with variant postures.

A. SHAPE MODELS TRAINING
Before processing the segmentation refinement, we illus-
trate how we train the shape models. As shown in the top
of Figure 3, the shape models contain three components,
i.e., representative contours, landmark regression, and all
the training contours. For each training contour, we uni-
formly sample the contour points to a fixed length size,
1000. Then 20 representative contours are generated using
the k-means algorithm based on all the training contours,
as shown in Figure 4. Note that these representative contours
are smoothed contours with diverse different poses which can
roughly represent the shape of the fish, although some details
are lost.

As for the landmark regressionmodel, we first define seven
landmarks with highest curvatures, on the contour of the fish
segmentation. Landmarks 1 and 7 are located at the end of the
tail; landmarks 2 and 6 are located at the connection between
the fish tail and fish body; landmarks 3 and 5 are the turning
points of the fish body while landmark 4 is located at the fish
mouth. An example is shown in Figure 5.

FIGURE 5. An example of defined seven landmarks in the shape model
(red dots).

In the case that part of the fish is missing, some landmarks
may not be accessible in the initial segmentation, as shown in
the second row in Figure 2. To deal with such issues, we train
a linear regression to estimate the missing landmark location
based on the other 6 landmarks. For example, if we want
to estimate the location of the j-th landmark, the regression
model can be expressed as

ĉj (x) = argmin
cj(x)

∥∥∥BTj cj (x)− vj (x)∥∥∥22 , (1)

ĉj (y) = argmin
cj(y)

∥∥∥BTj cj (y)− vj (y)∥∥∥22 , (2)

with

Bj =
[
bj,1, bj,2, . . . , bj,i, . . . , bj,Ntr

]
, (3)

where each column of Bj, i.e., bj,i, contains the
(x, y)-coordinates of all the other 6 landmarks except the
j-th landmark with 12 dimensions; vj (x) and vj (y) are
(x, y)-coordinates of the j-th landmark of all training data,
respectively; ĉj (x) and ĉj (y) are the learned coefficients of
the regression model; Ntr is the number of training data.
Moreover, we also want to make the model invariant to
both the scale s and the shift

(
sx , sy

)T . Then the learned
coefficients should satisfy the following conditions,(

sbj,i − d
)T cj (x) = svj,i (x)− sx , (4)(

sbj,i − d
)T cj (y) = svj,i (y)− sy, (5)

where d =
(
sx , sy, sx , sy, . . .

)T is a concatenated vector for
an arbitrary shift

(
sx , sy

)T with 12 dimensions. Combining
the above two equations with the following two solutions, i.e.,

bTj,i cj (x) = vj,i (x) , (6)

bTj,i cj (y) = vj,i (y) , (7)

we can derive the following constraints for the coefficients,

uT1 cj (x) = 1, (8)

uT2 cj (x) = 0, (9)

uT1 cj (y) = 0, (10)

uT2 cj (y) = 1, (11)

where u1 = (1, 0, 1, 0, . . .)T with elements in odd indices
equal to 1 and u2 = (0, 1, 0, 1, . . .)T with elements in even
indices equal to 1. Both u1 and u2 have the same dimension
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with cj (x) and cj (y). After the scale and shift invariant mod-
ification, Eq. (1) and Eq. (2) can be rewritten as,

ĉj (x) = argmin
cj

∥∥Bjcj (x)− vj (x)∥∥22 ,
s.t. uT1 cj (x) = 1, uT2 cj (x) = 0, (12)

and

ĉj (y) = argmin
cj

∥∥Bjcj (y)− vj (y)∥∥22 ,
s.t. uT1 cj (y) = 0, uT2 cj (y) = 1. (13)

This linear constraint least square problem can be solved
by constructing a Karush–Kuhn–Tucker (KKT) matrix as
illustrated in [27].

In the testing stage, we can estimate the missing location
of the j-th landmark by

v∗j (x) = bTj ĉj (x) , (14)

v∗j (y) = bTj ĉj (y) . (15)

We will use this regression model to estimate the landmark
locations when we refine the contour segments in the later
section.

B. CONTOUR ALIGNMENT
It is a challenging task to align the initial segmentation mask
using shape models since water drops and missing body
part can largely affect the initial segmentation. Before the
alignment, we rotate the fish to the horizontal orientation
based on the principal component analysis (PCA) using the
initial segmentation mask as a pre-processing step. This
pre-processing gives a good starting point and largely simpli-
fies the alignment. Here, we propose an iteratively reweighted
least squares (IRLS) [33] algorithm to align the segmentation
mask p with representative contour models {pm} via an affine
transform H , which is robust to outliers. We are interested
in the affine transformation (6 degrees of freedom) rather
than the projective transform (8 degrees of freedom) because
the projective transform is more sensitive to outliers with
2 more degrees of freedom than the affine transform. Since
we have 20 representative contours generated by the k-means
algorithm, these 20 contours have diversity shapes, which still
can address the limitations of affine transformations without
skewing and shear deformations. Given the pre-trained shape
models, the affine transform [29] can be estimated by

Ĥ = argmin
H

∑
i

∥∥Hpi − pmi ∥∥22 , (16)

with

H =

 h1 h2 h3
h4 h5 h6
0 0 1

 , (17)

where pi = (xi, yi, 1)T is the contour point in the ini-
tial segmentation without touching the image boundary and
pmi is a contour point that closest to Hpi from the m-th
(m = 1, 2, . . . , 20) representative contour as defined in

Section III.A. If we concatenate the 6 parameters in H to a
vector h, then the affine transform can be estimated by a least
square problem as

ĥ = argmin
h

∥∥Ah− pm∥∥22 , (18)

where A contains the information of (x, y)-coordinates of all
contour points of the initial segmentation (from 1 to N ), i.e.,

A = [aT1 , . . . , a
T
i , . . . , a

T
N ]

T
, (19)

ai =
[
xi yi 1 0 0 0
0 0 0 xi yi 1

]
(20)

where N is the number of contour points.
If water drops occur along the segmentation contour, then

the affine transform can be largely affected by these unre-
liable contour points. Inspired by M-estimator [28]–[34],
to avoid the influence by water drops and also to avoid
the outliers from the initial contour points, we reformulate
the cost function and obtain the solution by using IRLS as
follows,

f (W,A, h,m) =
∥∥W (

Ah− pm
)∥∥2

2 , (21)

whereW is a diagonal matrix in which the diagonal elements
represent the weights of each observation. To minimize the
cost above, we conduct the following steps iteratively.
Step 1: Select the best model mt that gives the lowest error

based on the previous estimation, i.e.,

mt = arg min
mε{1,2,...,20}

∥∥∥W t−1
(
At−1ht−1 − pm

)∥∥∥2
2
. (22)

Step 2: For each contour point pm
t

i from the representative
contour model, find the corresponding transformed point that
achieves maximum weight combining both spatial distance
error and gradient magnitude,

pti = argmax
pi

exp
(
−

∥∥∥H t−1pi − p
mt
i

∥∥∥2
2

)
wg
(
pi
)
, (23)

where wg
(
pi
)
is the gradient magnitude of pi. The point

selection is based on two criteria, i.e., 1) it should be close to
pm

t

i after the transformation, which is the spatial weighting,
2) it should have high gradient magnitude, based on the
assumption that the contour point should have high gradient
magnitude. Then At is updated based on pti .
Step 3: Obtain the weight of each selected point by

W t
i = exp

(
−

∥∥∥H t−1pti − p
mt
i

∥∥∥2
2

)
wg
(
pti
)
, (24)

whereW t
i is the i-th diagonal element inW t .

Step 4: Update the affine transform by

ht =
(
At

T
W tTW tAt

)−1
At

T
W tTW tpm

t
. (25)

We use IRLS to measure the affine transform, which is
similar to M-estimator. However, there are two major dif-
ferences between the proposed approach and the standard
M-estimator. First, the weight function is not only based on
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the spatial error, but also combines the gradient magnitude
of the contour point. Second, the matched contour points
are allowed to change for each iteration, which can largely
remove the outliers, while the samples from the standard
M-estimator is always fixed. We conduct the above opti-
mization steps iteratively until convergence. An example of
contour alignment is shown in Figure 6.

FIGURE 6. Contour alignment. Green points are the contour points from
the initial segmentation. Red contour is the best match from the
representative contour models.

C. CONTOUR REFINEMENT
For the coarsest level of contour alignment, the initial seg-
mentation contour is represented by a general fish shape
defined by the selected representative contour model, which
cannot precisely match the segmented fish. In this subsection,
the segmentation contour is refined with more local details
recovered at two finer levels.

For the finer level refinement, the affine transform is esti-
mated only for two adjacent contour segments as shown
in Figure 7. To be specific, the affine transform is estimated
from

f
(
W j−1,j+1,Aj−1,j+1,hj,m

)
=

∥∥∥W j−1,j+1

(
Aj−1,j+1hj − pmj−1,j+1

)∥∥∥2
2

(26)

where pmj−1,j+1 are the representative contour points between
the (j − 1)-th landmark and (j + 1)-th landmark, which con-
tains two adjacent contour segments; Aj−1, j+1 contains the
information of (x, y)-coordinates of matched contour points
between the (j− 1)-th landmark and (j+ 1)-th landmark and
W j−1, j+1 is the diagonal matrix with the diagonal elements
equal to theweights of the two contour segments. To constrain
the contour in a regular shape, the same affine transform
hj between two adjacent contour segments is shared in the
estimation.

FIGURE 7. Contour refinement. An affine transform is estimated for every
two adjacent contour segments. (a) Before (b) After.

Additionally, if the j-th landmark is missing, the above
estimation is not reliable. To deal with such issue, a regu-
larization term is added to the cost function to restrict the

FIGURE 8. Contour segment replacement. Use the best contour segment
chosen from one segment of all the training data to match the generated
contour segment. (a) Before (b) After.

missing landmark location to follow the general fish shape
from shape models, i.e.,

f
(
W j−1,j,Aj−1,j,hj,m

)
=

∥∥∥W j−1,j

(
Aj−1,jhj − pmj−1,j

)∥∥∥2
2

+λ

∥∥∥(Djhj − v∗j )∥∥∥22 , (27)

and

Dj =
[
v(x j) v(yj) 1 0 0 0
0 0 0 v(xj) v(yj) 1

]
(28)

where v∗j is the estimated location of the j-th landmark which
can be computed by Eq. (14) and Eq. (15) from the repre-
sentative contour models and Dj contains the information of
the j-th landmark coordinates. Similarly, we adopt IRLS to
estimate the affine transform as presented in III.B. In the
step 4, the affine transform is estimated by

htj =
(
At

T

j−1,jW
tT
j−1,jW

t
j−1,jA

t
j−1,j + λD

T
j Dj

)−1
×

(
At

T

j−1,jW
tT
j−1,jW

t
j−1,jp

mt
j−1,j + D

T
j v
∗
j

)
. (29)

At the finest level, we search all the segments from all the
training data to find the best contour segment that matches the
generated contour segment. Then we replace the generated
contour segment with the matched segment from the training
data. In this way, the detail information can be recovered.
An example is shown in Figure 8.

Note that for each iteration, the affine transform ĥj is
estimated alternatively with j = 1, 2, . . . , 7. Then we alter-
natively update generated contour points between finer and
finest levels iteratively until convergence.

IV. EXPERIMENTS AND RESULTS
A. IMPLEMENTATION DETAILS
We manually label 583 segmentation masks in the experi-
ments. 489 segmentation masks are used to train the shape
models while the remaining 94 images are used for testing.
We store seven landmark locations and the segments between
every two adjacent landmarks for all the training data. More-
over, we use linear interpolation for all the segments to make
them have equal points across the training data. For hype-
parameters, we set λ = 0.1.

To check the efficiency of the proposed method, we use
two initial segmentation masks as a comparison, namely
double local thresholding (DLT) [5] and fully convolutional
networks (FCN) [7]. For training FCN, we first resize each
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TABLE 1. Average IoU before and after refinement.

training image into 224 × 224 and adopt the VGG network
with 8-stride (FCN-8s). In the testing stage, after obtaining
the predicted segmentation mask, we resize it back to the
original image size. For the data augmentation, we use ran-
dom rotation (±10◦), random flip (horizontal and vertical)
and random crop (with at most 1/4 variations of width and
height of the image size) in the training. In total, we aug-
ment the training data 10 times. We set the batch size to 2,
the learning rate to 1e-4 with Adam Optimizer. We plot the
loss curve for training and validation in Figure 9. After around
1000 iterations, the validation loss does not decrease, hence,
we adopt the model trained at the 1000-th iteration as the final
FCN model.

FIGURE 9. Training and validation loss for FCN.

B. HANDLING WATERDROPS
We use the average intersection over union (IoU) to test the
performance of the proposed refined segmentation method.
The average IoU is defined as,

Avg IoU =
1
N

N∑
i=1

Area
(
GT i ∩ PredSegi

)
Area

(
GT i ∪ PredSegi

) , (30)

whereGT i is the ground truth segmentation of the i-th image,
PredSegi is the predicted segmentation, ∩ and ∪ represent
intersection and union, respectively. Note that our optimiza-
tion is based on a weakly supervised approach, which means
we do not use pixel labels as the supervision in the training.
Without the pixel label supervision, the IoU metric cannot be
directly used in the cost function. Instead, the cost function

FIGURE 10. Acceptance rate along with the IoU threshold.

FIGURE 11. Examples of segmentation refinement related to water drops.
Left column: Green contours are initial input segmentation contours with
DLT; red contours are refined segmentation contours; yellow contours are
ground truth. Right column: Green contours are initial input segmentation
contours with FCN; red contours are refined segmentation contours;
yellow contours are ground truth.

we are using is to align the generated fish shape with rep-
resentative contours as much as possible. In general cases,
a good alignment with the object contours usually ensures
a good measure of IoU, although these two metrics are not
exactly the same. In the experiments, we will show that our
proposed method can also achieve promising results with IoU
metric.
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FIGURE 12. Acceptance rate along with the IoU threshold.

FIGURE 13. Acceptance rate along with the length error threshold.

The results of refinement are shown in Table 1. We can see
the average IoU achieves over 95% after refinement with both
of the two initial segmentations. Although FCN seems more
reliable than DLT, the results after refinement are roughly
similar, which means the proposed refinement is robust to the
initial segmentation.

Assume the segmentation mask is acceptable if the IoU is
above a certain threshold. Then we define the acceptance rate
as the ratio between the number of acceptable segmentation
masks and the total number of the testing data given the
threshold. We plot the acceptance rate with the increase of
the threshold as shown in Figure 10. We can see that the
refined segmentation result is much better than the initial
segmentation.

We also show some qualitative results of the refined seg-
mentation dealing with water drops in Figure 11, where the
refinement can effectively recover the contour in the blur
regions.

C. MISSING PART RECOVERY
To test the performance of the proposed method when a part
of the fish body is out of the camera view, we randomly
cut off about 1/3 of the fish body 10 times for each testing

FIGURE 14. Examples of segmentation refinement related to part of fish
out of camera view. Transparent part of the image is cut off in the
simulation. Left column: Green contours are initial input segmentation
contours with DLT; red contours are refined segmentation contours;
yellow contours are ground truth. Right column: Green contours are initial
input segmentation contours with FCN; red contours are refined
segmentation contours; yellow contours are ground truth.

TABLE 2. Measurement of IoU and length error.

data. For 940 (94 × 10) testing data in total, we evaluate the
segmentation performance of the proposed method. We mea-
sure the mean absolute error of the length and IoU of the
segmentation, whose results are shown in Table 2.

Similarly, we define the acceptance rate for different
thresholds of IoU and length error. We plot the results in
Figure 12 and Figure 13, where we can see no large differ-
ence with two initial segmentation approaches, which further
proves that the proposed refinement is also robust to the initial
segmentationwhen recovering themissing part.We also show
some qualitative examples in Figure 14.

V. CONCLUSIONS AND FUTURE WORK
In this paper, a coarse-to-fine contour-based segmentation
refinement is proposed to deal with segmentation challenges
in fish measurement. There are three key components for
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the proposed refinement: 1) we refine the segmentation from
the coarse level to the fine level to deal with variant fish
shapes; 2) the refinement is processed iteratively via affine
transforms; 3) shape models provide rich prior knowledge
when estimating the segmentation contours. In our experi-
ments, we compare two initial segmentation approaches in
the refinement, which shows the robustness of the refinement
to different initial segmentations. The refinement also shows
the effectiveness in the segmentation dealingwithwater drops
and missing part recovery for flat fish.

There are also some limitations of our proposed method.
In the current settings, all the testing images are from flat fish,
like halibut and flounder. When we have more categories that
have large shape difference, wemay need to usemore clusters
in the k-means to generate more representative contours,
which will increase the running time in the testing stage
to find the best alignment. In future work, we are going to
combine the fish classifier to address this issue and create the
shape models for each fish category.
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