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ABSTRACT To overcome the premature-convergence of standard bat algorithm in solving the multi-
objective optimal power flow (MOOPF) problems, a novel hybrid bat algorithm (NHBA) is proposed in this
paper. The suggestedNHBAalgorithmmodifies the local searchmanner by amonotone randomfillingmodel
based on extreme (MRFME) and improves the population-diversity by mutation and crossover mechanisms.
To obtain the uniformly distributed Pareto optimal set (POS) with zero constraint-violation, an innovative
non-dominated sorting method combined with the constrained Pareto fuzzy dominant (CPFD) strategy is put
forward in this paper. To verify the superiority of the proposed NHBA-CPFD algorithm, which is federated
by the NHBA algorithm and the CPFD strategy, ten MOOPF simulation cases considering the basic fuel
cost, the fuel cost with value-point loadings, the total emission, and the active power loss are studied
on the IEEE 30-node, IEEE 57-node, and IEEE 118-node systems. In contrast to the NHBA, MOPSO,
and NSGA-III algorithms which adopt the constrain-prior Pareto-dominance method (CPM), numerous
results validate the NHBA-CPFD algorithm that can achieve more superior compromise solutions and
preferable Pareto fronts (PFs) even in the large-scale systems. Furthermore, two performance metrics of
generational distance (GD) and hyper-volume (HV) also demonstrate that the NHBA-CPFD algorithm has
great advantages to obtain the feasible POS with evenly distribution and favorable-diversity.

INDEX TERMS Novel hybrid bat algorithm, multi-objective optimal power flow problem, constrained
Pareto fuzzy dominant strategy, monotone random filling model based on extreme, performance metrics.

I. INTRODUCTION
The optimization problems in daily life usually have non-
linear features and discrete variables, which can be solved
efficiently by intelligent algorithms [1], [2]. Among them,
the optimal power flow (OPF) problem has great significance
to the optimization and planning of power system [3]–[5].
The safe and economical operation status without any
violation of system constraints can be achieved based on the
power flow calculation results [6], [7]. At present, the OPF
problems are mainly to minimize the power loss, fuel cost
or emission separately [8]–[10]. In order to evaluate the
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operating status of electric system more comprehensively,
the multi-objective optimal power flow (MOOPF) problems
have received widespread attention.

The MOOPF problem has strict constraints and takes mul-
tiple incompatible objectives into consideration at the same
time [11]–[14]. There are two key points of studying the
multi-objective optimizations, one is to seek an available
Pareto optimal set (POS), and the other is to determine a best
compromise (BC) solution from the obtained POS. Due to
the non-convex and high-dimensional features of MOOPF
problems, traditional approaches may not be applicable to
find a high-quality solution set. Consequently, it is imperative
to utilize some appropriate intelligent algorithms to handle
the MOOPF problems.
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Recently, some evolutionary algorithms have been
employed to solve the MOOPF problems successfully
such as the non-dominated sorting genetic algorithm III
(NSGA-III) [15], multi-objective harmony search algorithm
(MOHS) [16], non-dominated sortingmulti-objective opposi-
tion based gravitational search algorithm (NSMOOGSA) [17],
multi-objective evolutionary algorithm based decomposition
(MOEA/D) [18], hybrid DA-PSO optimization algorithm
(DA-PSO) [9] and multi-objective dimension-based firefly
algorithm (MODFA) [19].

The standard bat algorithm (SBA) is an innovative global
optimization algorithm inspired by biological echolocation
mechanism [20], [21]. Due to the simple structure and fast
convergence, the standard and improved bat algorithms have
been applied to various fields such as the goods distribution
and job shop scheduling problems [22], [23].

The optimal solution guiding mechanism of bat algorithm
enables it to deal with global optimizations such as MOOPF
problems more accurately and effectively. However, the SBA
algorithm is easy to fall into local optimum. In order to
solve the MOOPF problems successfully, a novel hybrid bat
algorithm (NHBA), which is improved by the mutation and
crossover mechanisms of DE algorithm, is proposed in this
paper. Meanwhile, a monotone random filling model based
on extreme (MRFME) is put forward to optimize the local
search manner of SBA algorithm, which is helpful to explore
a better solution near the current optimal solution.

To evaluate the practicability of NHBA algorithm, some
typical MOOPF simulation cases, such as the simultaneous
optimization of fuel cost (with value-point loadings) and
emission, the simultaneous optimization of fuel cost (with
value-point loadings) and active power loss, the simultaneous
optimization of fuel cost, emission and active power loss, are
carried out on the IEEE 30-node, IEEE 57-node and IEEE
118-node systems. The results clearly show that the NHBA
algorithm has better exploration ability than the common
MOPSO and NSGA-III algorithms in finding more compet-
itive BC solutions when utilizing the same Constrain-prior
Pareto-dominance method (CPM). The detailed description
of CPM can be found in literatures [24], [25].

Regrettably, the CPM method may not be very effective
in solving such MOOPF problems of IEEE 57-node and
IEEE 118-node systemswith higher dimension. On this basis,
a non-dominated sorting method with constrained Pareto
fuzzy dominant (CPFD) strategy is put forward in this paper.
The presented CPFD strategy gives priority to the constraints-
violation value (viol) and then considers the fuzzy eigenvalue
(9), which is quite different from the typical penalty function
method and CPM method. The results clearly state that the
proposed sorting rule is valuable to obtain a fine-quality POS
without any constraints violation in the large-scale systems.

The presented NHBA-CPFD algorithm, which combines
the advantages of the NHBA algorithm and the CPFD strat-
egy, can improve the performance of determining satisfactory
POS in different scale electric systems. Moreover, the gen-
erational distance (GD) and hyper-volume (HV) metrics are

employed to measure the distribution of obtained POS and
the convergence to the real Pareto fronts (PF). Based on
the evaluation results, the competitive superiority of NHBA-
CPFD algorithm in seeking the uniformly-distributed POS
can be verified.

The rest of this article is organized as follows. The math-
ematical model of MOOPF problem is shown in Section 2.
The detailed description of NHBA algorithm is presented
in Section 3. Section 4 proposes the novel CPFD strategy
and a non-dominated sorting rule to seek satisfactory POS.
Section 4 also generalizes the application of NHBA-CPFD
algorithm on the MOOPF problems. Section 5 shows the
results of ten MOOPF trials on different scale systems. The
GD and HV metrics are adopted to measure the performance
of obtained POS in Section 6. Section 6 also discusses the
computational complexity represented by the CPU time and
the dominant relationship of obtained BC solutions. Eventu-
ally, the conclusions are made in Section 7.

II. MATHEMATICAL MODEL OF MOOPF PROBLEMS
The objective functions and system constraints of MOOPF
mathematical model are summarized as follows [9], [25].

minimizeFobj = (f1(x, u), · · · , fi(x, u), · · · , fM (x, u)) (1)

Hk (x, u) = 0, k = 1, 2, · · · , h (2)

Gj(x, u) ≤ 0, j = 1, 2, · · · , g (3)

where fi (x,u) represents the ith objective function and
M (M ≥ 2) is the amount of objects which are optimized at
the same time. Hk is the kth equality constraint (EC) and h is
the amount of ECs.Gj is the jth inequality constraint (IC) and
g is the total number of ICs.

The state variables x includes generator active power at
slack node PG1, load node voltage VL , generator reactive
powerQG and apparent power of transmission line S. Genera-
tor active power output at PV nodePG, generator node voltage
VG, tap ratios of transformer T and reactive power injection
QC are integrated into the control variables u. The vectors of
x and u are described as (4) and (5).

xT

=
[
PG1,VL1, · · · ,VLNPQ ,QG1, · · · ,QGNG , S1, · · · , SNL

]
(4)

uT

=
[
PG2, · · · ,PGNG ,VG1, · · · ,VGNG ,T1, · · · ,TNT ,QC1,

· · · ,QCNC
]

(5)

where NPQ, NG, NL , NT and NC indicate the amount of PQ
nodes, generators, transmission lines, transformers and shunt
compensators.

A. OBJECTIVE FUNCTIONS
Four objectives including the total emission, the active power
loss, the basic fuel cost and the fuel cost with value-point
loadings, are studied in this paper [9], [19].
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1) EMISSION

Obj1 : Fe =
NG∑
i=1

[αiP2Gi + βiPGi + γi + ηi exp(λiPGi)]ton/h

(6)

where Fe depicts the sum of emission in the unit of ton/h
while αi, βi, γi, ηi and λi represent the emission coefficients
of the ith generator.

2) ACTIVE POWER LOSS

Obj2 : FP =
NL∑
k=1

ck [V 2
i + V

2
j − 2ViVj cos(δi − δj)]MW

(7)

where FP indicates the power loss in the unit of MW. Vi, Vj
and δi, δj are, respectively, the voltage magnitude and angle
at node i and node j. ck is the conductance of the kth branch
that links node i to node j.

3) BASIC FUEL COST

Obj3 : Fc =
NG∑
i=1

(ai + biPGi + ciP2Gi)$/h (8)

where Fc is the basic fuel cost in the unit of $/h. And ai, bi
and ci represent the cost coefficients of the ith generator.

4) FUEL COST WITH VALUE-POINT LOADINGS

Obj4 : Fc_vp =
NG∑
i=1

(ai + biPGi + ciP2Gi

+

∣∣∣di × sin(ei × (Pmin
Gi − PGi))

∣∣∣)$/h (9)

where Fcvp indicates the fuel cost considering value-point
loadings in the unit of $/h. And di, ei and Pmin

Gi are the cost
coefficients and the lower active power at the ith generator
node.

B. SYSTEM CONSTRAINTS
The system constraints include equality constraints and
inequality ones [26]–[28]. The optimization schemes adopted
by decision-makers should not violate any EC and IC.

1) EC
The ECs, which can be described as (10) and (11), are essen-
tially the power balance equations.

PGi − PDi − Vi
∑
j∈Ni

Vj(Gij cos δij + Bij sin δij) = 0, i ∈ N

(10)

QGi − QDi − Vi
∑
j∈Ni

Vj(Gij sin δij−Bij cos δij)=0, i ∈ NPQ

δij=δi−δj (11)

where PGi and QGi are the injected active and reactive power
at node i. PDi and QDi denote the active and reactive load
demand at load node i.Gij and Bij denote the conductance and
susceptance between the ith and jth node. Ni is the amount of
nodes linked to node i and N is the number of nodes except
the slack one.

2) IC
Used to define the effective operating range of electric equip-
ment, the ICs include state variables and control ones.
(1) ICs of control variables
• active power at generator node

Pmax
Gi ≥ PGi ≥ P

min
Gi , i ∈ NG(i 6= 1) (12)

• voltage at generator node

Vmax
Gi ≥ VGi ≥ V

min
Gi , i ∈ NG (13)

• transformer tap-settings

Tmax
i ≥ Ti ≥ Tmin

i , i ∈ NT (14)

• reactive power injection

Qmax
Ci ≥ QCi ≥ Q

min
Ci , i ∈ NC (15)

(2) ICs of state variables
• active power at slack node

Pmax
G1 ≥ PG1 ≥ P

min
G1 (16)

• voltage at load node

Vmax
Li ≥ VLi ≥ V

min
Li , i ∈ NPQ (17)

• reactive power at generator node

Qmax
Gi ≥ QGi ≥ Q

min
Gi , i ∈ NG (18)

• apparent power

Smax
l − Sl ≥ 0, l ∈ NL (19)

III. STANDARD AND MODIFIED BAT ALGORITHMS
To overcome the premature-convergence and unsatisfactory-
diversity of SBA algorithm in dealing with the MOOPF prob-
lems, the NHBA algorithm is proposed.

A. STANDARD BAT ALGORITHM
The SBA algorithm is derived based on the echolocation
mechanism, and it makes bats keep close to the global opti-
mal individual continuously by adjusting the searching fre-
quency [20]. The frequencyfr(i), speed vi and position pi of
the ith individual are defined as (20), (21) and (22), respec-
tively [20], [29], [30].

fr(i) = frmin + µ ∗ (frmax − frmin) (20)

vi(t) = vi(t − 1)+ fr(i) ∗ (pi(t − 1)− pbest ) (21)

pi(t) = pi(t − 1)+ vi(t) (22)
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where frmin and frmax limit the range of frequency. pbest is the
current optimum individual while µ(µ ∈ (0, 1)) is a random
number.

After the location of bat population is updated, pbest will be
determined according to the established dominance strategy.
Local search, which relies on the pulse rateR and the loudness
L, aims to find a better scheme pper near the pbest one. The
update manners of L and R are shown as (23) and (24).

Li(t + 1) = τLi(t) (23)

Ri(t + 1) = R0(1− exp(−lt)) (24)

where R0 is the initial pulse rate. Two constants, l(l > 0)
and τ (τ ∈ (0, 1)), represent the increase coefficient of R and
the attenuation coefficient of L. To improve the searching
efficiency, L will decrease and R will increase when the pper
individual is found during the local search.

B. NHBA ALGORITHM
Like most global algorithms, the SBA algorithm is difficult
to jump out of the local optimum. The proposed NHBA
algorithm improves the performance of SBA method in the
following three aspects.

1) IMPROVEMENT OF SPEED UPDATING MANNER
The non-linear weight coefficient ωc, which can enhance
the population diversity, is introduced to improve the speed
model of SBA algorithm. The novel updated formulas of v
and ωc are defined as (25) and (26).

vi(t) = ωc(t)vi(t − 1)+ r1fr(i)(pbest − pi(t − 1)) (25)

ωc(t) = ωcmax − r2(ωcmax − ωcmin)

+r3(ωc(t − 1)− (ωcmax + ωcmin)/2) (26)

where r1 ∼ r3 are random constants between 0 and 1. ωcmin
and ωcmax set the valid range of weight coefficient.

2) INTEGRATION OF MUTATION AND CROSSOVER
MECHANISMS
To search for better optimization schemes, the mutation and
crossover mechanisms of DE algorithm are integrated into the
NHBA algorithm. The detailed description and application
of DE algorithm can be referred to literatures [31]–[33].
A new population is generated by mutation operation. The
ith mutant-individual pm(i) can be defined as (27).

pm(i) = pn1 + Fm(pn3 − pn2), i = 1, 2, · · ·Na (27)

where pn1,pn2 and pn3 are three different individuals. Fm is
the mutant weighting factor.

Subsequently, the bat population is cross-operated to gen-
erate the pcpopulation. The crossover mechanism can be
described as (28).

pc(i) =

{
pm(i), if ra ≤ Fcorj = q
pi, otherwise

j = 1, 2, · · · ,D (28)

where ra(ra ∈ (0, 1)) is a random number and Fc is the
crossover coefficient. D is the dimension of each individual
and q is a random D-dimensional vector.

3) IMPROVEMENT OF LOCAL PARAMETER UPDATING
MANNER
The MRFME model is put forward to improve the updated
manners of two local searching parameters, which can be
expressed as (29) and (30).

Ri = (Rmin − Rmax) ∗ (ite− itemax)/(1− itemax)+ Rmax

(29)

Li = (Lmax − Lmin) ∗ (ite− itemax)/(1− itemax)+ Lmin

(30)

where ite and itemax respectively indicate the current and
maximum iteration. Rmin and Rmax limit the range of pulse
rate while Lmin and Lmax specify the range of loudness.
Undoubtedly, the proposed MRFME strategy can meet the
basic requirement of bat algorithm, which requires the
increasing pulse and decreasing loudness when the pper indi-
vidual is accepted as the new optimal solution.

The pseudo codes of the innovative NHBA algorithm for
the minimization problems are summarized in Table 1.

IV. MULTI-OBJECTIVE OPTIMIZATION STRATEGIES
The penalty function method is commonly used to select
feasible POS when dealing with the MOOPF problems.
However, it is difficult to determine the appropriate penalty
coefficients and ensure every solution meet all system con-
straints. Then, the CPMmethod which measures the solution-
performance by objective and constraints-violation values is
proposed [24], [25]. The striking advantage of CPM method
is that it achieves zero-violation of obtained POS. Compared
with CPM method, the proposed CPFD strategy, which takes
both the fuzzy eigenvalue and the constraints-violation into
consideration, can seek more favorable Pareto non-inferior
solutions in IEEE 57-node and IEEE 118-node systems.

A. CONSTRAINED PARETO FUZZY DOMINANT RULE
The high-quality POS should realize none-violation of ECs
and ICs. The ECs can be satisfied when calculating the
Newton-Raphson power flow. The control variables of the ith
individual which violates the ICs can be adjusted as (31).

ui =

{
umax
i if ui > umax

i

umin
i if ui < umin

i
(31)

The CPFD strategy is proposed to handle the unqualified
state variables. Generally speaking, the smaller constraints-
violation value means the higher adoption-priority of corre-
sponding individual. The key steps to judge the dominant
relationship of two different solutions are arranged as follows.

(i) Clarify the violation of the ith solution based on (32).

viol(ui) =
∑
j∈c

max(Gj(x, ui), 0)c ∈ g (32)

where c is the amount of ICs on state variables.
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TABLE 1. Pseudo codes of NHBA algorithm.

(ii) Compare the values of viol (u1) and viol (u2), where
u1(u1 = (U1,U2,. . . ,UD)) and u2(u2 = (V1,V2,. . . ,VD)) are
two different sets of control variables.

(iii) When the condition (33) or (34) can be satisfied,
the judgment can be made that u1 will dominate u2.

viol(u1) < viol(u2) (33)

(viol(u1) = viol(u2)) ∩ (ψ(u1) > ψ(u2)) (34)

whereψ (ui) is the fuzzy eigenvalue of ui which can be cal-
culated as follows.

P(u1) = u1 − u2 = (U1 − V1, · · · ,UD − VD) (35)

ϕ(u1) = FM (P(u1)) = (ϕu11 , · · · , ϕ
u1
D ) (36)

ψ(u1) = ϕ
u1
1 × ϕ

u1
2 × · · ·ϕ

u1
D (37)

FM =


1, x ≤ −1
ϑ1x3 + ϑ2, −1 < x < 1
0, x ≥ 1

ϑ1 = −
1/2, ϑ2=−ϑ1

(38)

where P(u1) is the performance of u1 relative to u2. FM is the
adopted fuzzy membership function which can be expressed
as (38).ϕ (u1) represents the dominant degree of u1 relative to
u2. ψ (ui) is actually the product of each dominance degree.

B. NON-DOMINATED SORTING RULE BASED ON THE
CPFD STRATEGY
A reasonable technology of dealing with the multi-objective
optimization such as aero-assisted vehicle trajectory planning
is to assign priority factors to different objectives according
to the mission scenarios or the requirements of decision-
makers [32], [34]. Specifically, the priority factor of primary
task should be higher than the others.

The sorting rule proposed to handle the MOOPF problem
does not assign objective-priority factors in advance, but
determines the adoption-priority according to the rank index
and the Pareto fuzzy dominant fitness (cpfdf) value of each
control variable set.

In detail, the rank index which is essential to the presented
sorting rule can be determined based on mentioned CPFD
strategy.

1) RANK INDEX
In order to select high-performance Pareto solutions in multi-
objective optimization problems, it is necessary to set a pre-
specified priority requirement to rank candidate solutions. In
this paper, the CPFD strategy which clarifies the viol and 9
values is used to determine the rank index.
Learning from the non-dominated sorting method pro-

posed by Kalyanmoy Deb [35], [36], the rank of each indi-
vidual can be clarified as follows.
(i) Firstly, a hybrid population (HP) is composed of the

parent bat population (PBP) with size of Na and the
external archive population (EAP) with size of Na.

(ii) According to the CPFD strategy, these solutions which
are not dominated by other solutions in HP are deter-
mined and marked as rank=1.

(iii) Eliminate the individuals with rank=1. Based on the
same CPFD dominant relationship, another set of non-
inferior solutions which will be marked as rank=2 is
found.

(IV) Repeat the above operation till each individual in HP
has its own rank index.

2) CPFDF INDEX
To gain an evenly-distributed PF, the cpfdf index is taken into
account as well. The core steps to determine the cpfdf index
of each solution can be arranged as follows.

In the HP population with 2Na individuals, the ith
(i = 1, 2, . . . , 2Na) individual can be combined with the other
(2Na−1) individuals. For two different individuals i and j
(j = (1, 2, . . . , 2Na)∩ j 6= i), the fuzzy eigenvalue of i relative
to j (9ij) and the fuzzy eigenvalue of j relative to i (9ji) can
be obtained based on (37). Then, the standard performance
of i relative to j named as Hij can be calculated according to
formula (39). On this basis, the cpfdfindex can be determined
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based on (40).

Hij = 9ij/(9ij +9ji) (39)

cpfdf (i) =
j∑
Hij/2Na − 1, j = 1, 2, · · · 2Na ∩ j 6= i (40)

where cpfdf(i) represents the Pareto fuzzy dominant fitness
of the ith individual relative to the other (2Na-1) individuals.
It is actually the mean value of standard performance.

The priority of each individual can be determined based
on the suggested non-dominated sorting strategy. In detail,
the ith individual has higher adoption-priority than the jth one
when condition (41) or (42) can be met.

rank(i) < rank(j) (41)

rank(i) = rank(j) ∩ cpfdf (i) > cpfdf (j) (42)

The individuals which ranked in the former Na are the
obtained POS based on the CPFD strategy and they will form
the new EAPpopulation.
The obvious difference from the sorting method of

NSGA-II algorithm [35] is that, the suggested sorting rule
based on CPFD strategy considers the cpfdf value instead of
the common-used crowding distance. This novel sorting rule
is very advantageous to select a satisfactory POS set in large-
scale systems such as the IEEE 57-node and IEEE 118-node
systems.

3) FAA APPROACH
Taking advantage of the proposed sorting strategy, a set
of Pareto non-inferior solutions can be achieved. The FAA
approach employed in this paper is to pick out a feasible BC
solution from the obtained POS [19].

The satisfaction of the ith objective function for the zth
individual (sati(z)) and the total satisfaction value of the zth
Pareto solution (tots(z)) are defined as (43) and (44), respec-
tively.

sati(z) =


1 fi ≤ f min

i
f max
i − fi

f max
i − f min

i

f min
i < fi < f max

i

0 fi ≥ f max
i

z = 1, 2, . . .Nai = 1, 2, . . . ,M (43)

tots(z) =

∑M
i=1 sati(z)∑Na

z=1
∑M

i=1 sati(z)
(44)

where f max
i and f max

i are the maximum and minimum of the
ith objective.

Calculate the tots index of each Pareto solution to deter-
mine the special solution which has the highest satisfaction,
as known as the BC solution achieved by the FAA method.

C. APPLICATION OF NHBA-CPFD ALGORITHM ON MOOPF
PROBLEMS
The NHBA-CPFD algorithm combines the great strengths
of both the NHBA algorithm and the novel non-dominated

sorting rule, which is the integration of two multi-objective
strategies proposed in this paper.

To evaluate the powerful competitiveness of NHBA-CPFD
algorithm, in contrast to MOPSO and NSGA-III methods,
both bi-objective and tri-objective optimization trials are
studied. Details of all cases involved in this paper are shown
in Table 2. The mathematical model of objective functions is
described in Section 2.

The application of NHBA-CPFD algorithm on MOOPF
problems can be summarized in Figure 1.

The initial PBP population is randomly generated accord-
ing to (45). Each bat individual is essentially a set of
D-dimensional control variables in the power system. Des-
ignate the initial global optimal individual pbest randomly.

ui = umin
i + rand

(
umax
i − umin

i

)
i ∈ [1,Na] , ui = [u1i , u

2
i , · · · , u

D
i ] (45)

where umin
i and umin

i limit the range of control variables.
By adjusting the corresponding electrical equipment

according to the control variables of obtained BC solutions,
the system can achieve the predetermined operation state.
And it is the practical significance of devoting great effort
in studying the MOOPF problems.

V. SIMULATION AND RESULTS
The MATLAB 2014a software is employed and all testing
cases in this paper are run on a PC with Intel(R) Core(TM)
i5–7500 CPU @ 3.40 GHz with 8GB RAM.

A. SYSTEMS
For a comprehensive evaluation of the presented NHBA-
CPFD algorithm, ten simulation trials are carried out on three
different scale systems.

The structure of IEEE 30-node system is shown in
Figure 2 and the details are shown in Table 3. More infor-
mation can be found in [19], [37] and Table 4 gives the
coefficients of fuel cost and emission.

The structure of IEEE 57-node is shown in Figure 3 and
the details are obtained from [19]. The transformer taps
and voltage magnitude for the PQ and PV nodes are bound
in 0.9-1.1p.u. . The shunt capacitor is restricted in 0-0.3p.u..
Table 5 shows the coefficients of fuel cost and emission in
IEEE 57-node system.

The single line diagram of IEEE 118-node system with
128-dimensional control variables is shown in Figure 4. The
bound of voltage magnitude for PV node is set as 0.9-1.1 p.u.
and the shunt capacitor is restricted in 0-0.3 p.u.. The other
details of IEEE 118-node system can be found in [19].

B. ALGORITHM PARAMETERS
In order to figure out the influence of main algorithm param-
eters on optimization performance and determine a set of
relatively optimal combination, a bi-objective case which
aims to optimize the basic fuel cost and emission at the same
time is taken as an example.
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FIGURE 1. The flow chart of NHBA-CPFD algorithm on MOOPF problems.

TABLE 2. Objective combination.

In detail, the influences of the maximum iteration and the
valid range of ωc are studied in this paper. The results are
achieved by NHBA-CPFD algorithm with a population size
of 100.

Figure 5 shows the PFs with different maximum iterations.
It clearly indicates that the iteration of 100 obtains the worst
PF while the iteration of 200,300 and 400 can achieve better
PFs. Figure 5 also validates that the iterations of 500 and
600 are capable to achieve well-distributed PFs with similar

FIGURE 2. Structure of the IEEE 30-node system.

efficiency. To reduce the computational time, the maximum
iteration in this paper is set as 500.

Then, the influence of ωc is discussed. Figure 6 shows
the PFs based on the different minimum value of ωc when
the top-limit is set as ωcmax = 0.95. It states that the
ωcmin of 0.1 gets the worse distribution and the ωcmin
of 0.4 achieves the best one. Figure 7 shows the PFs based on
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FIGURE 3. Structure of the IEEE 57-node system.

FIGURE 4. Structure of the IEEE 118-node system.

different maximum value of ωc when the lower-limit is set as
ωcmin = 0.4. It indicates that the ωcmax of 0.92 gets the
worse distribution while the ωcmax of 0.9 achieves a better
PF. Therefore, it is reasonable to infer that the appropriate
range of the non-linear weight coefficient is [0.4, 0.9].

Additionally, the other parameters of four involved algo-
rithms are shown in Table 6.

C. TRIALS ON IEEE 30-NODE SYSTEM
Four bi-objective and two tri-objective testing trials are per-
formed on the IEEE 30-node system.

1) CASE1 CONSIDERING BASIC FUEL COST AND EMISSION
SIMULTANEOUSLY
In CASE1, two objectives of Fc and Fe are optimized con-
currently by the presented NHBA, NHBA-CPFD, MOPSO
and NSGA-III approaches. The obtained PFs are shown in
Figure 8 and it indicates that the NHBA and NHBA-CPFD
algorithms can obtain preferable POS than MOPSO and
NSGA-III methods. Even further, the NHBA-CPFD algo-
rithm has great potential to find more favorable PF than
NHBA algorithm.

The 24-dimensional control variables of BC solution
obtained by four algorithms are given in Table 7. Table 7 also
lists two boundary solutions found by NHBA-CPFD

algorithm including C1.E (the solution with minimum emis-
sion) and C1.F (the solution with minimum fuel cost).
More specifically, the BC solution obtained by NHBA algo-
rithm includes 0.2375 ton/h of Fe and 832.6471 $/h of
Fc and the BC solution obtained by NHBA-CPFD algo-
rithm includes 0.2350 ton/h of Fe and 830.9592 $/h of Fc.
In addition, the C1.Eincludes 0.1943 ton/h of minimal Fe and
955.0343 $/h of Fc. TheC1.F includes 0.3309 ton/h of Fe and
799.7640 $/h of minimal Fc.
In order to make the conclusion that the NHBA-CPFD

algorithm can effectively handle MOOPF problems more
persuasiveness, Table 8 gives the comparison results between
the proposed algorithms and other methods.

2) CASE2 CONSIDERING BASIC FUEL COST AND ACTIVE
POWER LOSS SIMULTANEOUSLY
InCASE2, two competing objectives of Fc and Fp are studied.
The PFs obtained by four algorithms are shown in Figure 9.

Table 9 gives the control variables of BC solutions and the
comparison results shown in other literatures. Table 9 also
lists two boundary solutions found by NHBA-CPFD algo-
rithm including C2.F (the solution with minimum fuel cost)
and C2.P (the solution with minimum power loss). As can
be seen from Table 9, the BC solution obtained by NHBA
algorithm includes 835.1034 $/h of Fc and 5.0658 MW
of Fp. The BC solution obtained by NHBA-CPFD algo-
rithm includes 831.8513 $/h of Fc and 5.1096 MW of Fp.
Besides, the C2.Fincludes 799.3296 $/h of minimal Fc and
8.5486 MW of Fp. The C2.Pincludes 966.8891 $/h of Fc and
2.9023 MW of minimalFp.

3) CASE3 CONSIDERING FUEL COST WITH VALUE-POINT
AND EMISSION SIMULTANEOUSLY
In CASE3, two objectives of Fc−vp and Fe are optimized
simultaneously. The PFs respectively obtained by different
algorithms are shown in Figure 10.

Table 10 shows the control variables of BC solutions
achieved by four involved methods. Table 10 also lists two
boundary solutions found by NHBA-CPFD algorithm includ-
ing C3.Fv (the solution with minimum fuel cost with value-
point) and C3.E (the solution with minimum emission).

In detail, Table 10 clearly states that the BC solution
obtained by NHBA algorithm includes 854.3882 $/h of
Fc−vp and 0.2598 ton/h of Fe. The BC solution obtained
by NHBA-CPFD algorithm includes 855.5369 $/h of Fc−vp
and 0.2585 ton/h of Fe. In addition, the C3.Fvincludes
831.6332 $/h of minimal Fc−vp and 0.3727 ton/h of Fe. And
theC3.E includes 1023.2904 $/h of Fc−vp and 0.1944 ton/h of
minimal Fe.

4) CASE4 CONSIDERING FUEL COST WITH VALUE-POINT
AND ACTIVE POWER LOSS SIMULTANEOUSLY
In CASE4, the Fc−vp and Fp are optimized concurrently and
the obtained PFs are shown in Figure 11. The control vari-
ables of BC solutions are listed in Table 11. Table 11 also
shows two boundary solutions found by NHBA-CPFD
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TABLE 3. Details of the IEEE 30-node system.

TABLE 4. Fuel and emission coefficients of the IEEE 30-node system.

TABLE 5. Fuel and emission coefficients of the IEEE 57-node system.

algorithm including C4.Fv (the solution with minimum fuel
cost with value-point) and C4.P (the solution with minimum
power loss). As can be seen from Table 11, the BC solu-
tion achieved by NHBA algorithm includes 868.9526 $/h of
Fc−vp and 5.6761 MW of Fp. The BC solution obtained by
NHBA-CPFD algorithm includes 865.9106 $/h of Fc−vp and
5.6726 MW of Fp. Besides, the C4.Fv includes 833.3204 $/h
of minimal Fc−vp and 10.4024 MW of Fp. The C4.P includes
1022.0654 $/h of Fc−vp and 2.9227 MW of minimal Fp.

5) CASE5 CONSIDERING FUEL COST, ACTIVE POWER LOSS
AND EMISSION SIMULTANEOUSLY
To certify the superiority of proposed NHBA-CPFD algo-
rithm comprehensively, the more difficult optimization trials
with three objectives are studied in this paper.

In CASE5, three competing objectives of Fc, Fp and Fe
are optimized concurrently. The PFs respectively obtained
byMOPSO,NSGA-III, NHBA andNHBA-CPFD algorithms
are shown in Figure 12. Table 12 shows the control variables
of achieved BC solutions and three boundary solutions found
by NHBA-CPFD algorithm including C5.F (the solution

FIGURE 5. PFs based on different maximum iterations.

with minimum fuel cost), C5.P (the solution with minimum
power loss) and C5.E (the solution with minimum emis-
sion). It intuitively states that the BC solution obtained by
NHBA algorithm includes 868.7380 $/h of Fc, 4.1744 MW
of Fp and 0.2111 ton/h of Fe. The BC solution obtained
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FIGURE 6. PFs based on different minimum value of ωc .

FIGURE 7. PFs based on different maximum value of ωc.

by NHBA-CPFD algorithm includes 865.4229 $/h of Fc,
4.3535 MW of Fp and 0.2116 ton/h of Fe.
In addition, the C5.F includes 799.3578 $/h of minimal Fc.

The C5.E includes 0.1943 ton/h of minimal Fe and the C5.P
includes 3.0176 MW of minimal Fp.

6) CASE6 CONSIDERING FUEL COST WITH VALUE-POINT,
ACTIVE POWER LOSS AND EMISSION SIMULTANEOUSLY
In CASE6, three objectives of Fc−vp, Fp and Fe are optimized
concurrently and the obtained PFs are shown in Figure 13.
The control variables of BC solutions obtained by NHBA and
NHBA-CPFD algorithms, comparedwith the results obtained
by MOPSO and NSGA-III methods, are shown in Table 13.

For CASE6, three boundary solutions found by NHBA-
CPFD algorithm including C6.Fv (the solution with mini-
mum fuel cost with value-point), C6.P (the solution with
minimum power loss) and C6.E (the solution with minimum
emission) are listed on Table 13 as well.

More specifically, the BC solution achieved by NHBA
algorithm includes 964.8493 $/h of Fc−vp, 3.9018 MW of
Fp and 0.2047 ton/h of Fe. The BC solution achieved by

FIGURE 8. PFs obtained by different algorithms for CASE1.

NHBA-CPFD algorithm includes 962.8123 $/h of Fc−vp,
3.9637 MW of Fp and 0.2041 ton/h of Fe. Besides, the C6.Fv
includes 904.6377 $/h of minimal Fc−vp. The C6.E includes
0.1943 ton/h of minimalFe and theC6.Pincludes 2.9541MW
of minimal Fp.

D. TRIALS ON IEEE 57-NODE SYSTEM
To explore the universal applicability of proposed NHBA-
CPFD algorithm, simulation cases of MOOPF problems on
the IEEE 57-node system are discussed.

1) CASE7 CONSIDERING BASIC FUEL COST AND EMISSION
SIMULTANEOUSLY
In CASE7, two objectives of Fc and Fe are optimized
simultaneously. The obtained PFs are shown in Figure 14.
In addition, the 33-dimensional control variables of BC
solutions and two boundary solutions (C7.F and C7.E)
found by NHBA-CPFD algorithm are shown in Table 14.
In detail, the BC solution achieved by NHBA algorithm
includes 43244.5741 $/h of Fc and 1.2192 ton/h of Fe. The
BC solution obtained by NHBA-CPFD algorithm includes
43221.5876 $/h of Fc and 1.2164 ton/h of Fe. In addi-
tion, the C7.F includes 41678.6457 $/h of minimal Fc and
1.6319 ton/h of Fe. The C7.E includes 48186.3156 $/h of Fc
and 1.0271 ton/h of minimal Fe.

2) CASE8 CONSIDERING BASIC FUEL COST AND ACTIVE
POWER LOSS SIMULTANEOUSLY
In CASE8, two objectives of Fc and Fp are optimized simul-
taneously. The PFs respectively achieved by the NBHA-
CPFD algorithm and the other three methods are shown
in Figure 15. Table 15 gives the control variables of obtained
BC solutions and two boundary solutions (C8.F and C8.P)
found by NHBA-CPFD algorithm. As can be seen from
Table 15, the BC solution obtained by NHBA algorithm
includes 41934.2468 $/h of Fc and 11.0174 MW of Fp. The
BC solution achieved by NHBA-CPFD algorithm includes
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TABLE 6. Main parameters of MOPSO, NSGA-III, NHBA and NHBA-CPFD algorithms.

TABLE 7. Specific solutions and control variables of CASE1.

TABLE 8. Comparison results of BC solutions for CASE1.

41925.5743 $/h of Fc and 10.9884 MW of Fp. Besides,
the C8.P includes 43052.0891 $/h of Fc and 9.9299 MW
of minimal Fp. And the C8.F includes 41655.1128 $/h of
minimal Fc and 14.4357 MW of Fp.

E. TRIALS ON IEEE 118-NODE SYSTEM
The IEEE 118-node system is employed to evaluate the effec-
tiveness of proposed NHBA-CPFD algorithm on larger scale
systems.
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TABLE 9. Specific solutions and control variables of CASE2.

TABLE 10. Specific solutions and control variables of CASE3.

1) CASE9 CONSIDERING BASIC FUEL COST AND EMISSION
SIMULTANEOUSLY
In CASE9, two competing objectives of Fc and Fe are
optimized at the same time. The obtained PFs are shown
in Figure 16. Additionally, Table 16 gives the control vari-
ables of BC solutions.

In detail, the BC solution obtained by NHBA algorithm
includes 60694.5466 $/h of Fc and 2.6445 ton/h of Fe.

The BC solution achieved by NHBA-CPFD algorithm
includes 60402.7420 $/h of Fc and 2.5274 ton/h of Fe.

2) CASE10 CONSIDERING BASIC FUEL COST AND ACTIVE
POWER LOSS SIMULTANEOUSLY
In CASE10, the Fc and Fp are optimized concurrently and
the obtained PFs are shown in Figure 17. The control vari-
ables of BC solutions achieved by NHBA and NHBA-CPFD

VOLUME 7, 2019 52071



G. Chen et al.: Applications of NHBA With Constrained Pareto Fuzzy Dominant Rule

FIGURE 9. PFs obtained by different algorithms for CASE2.

FIGURE 10. PFs obtained by different algorithms for CASE3.

FIGURE 11. PFs obtained by different algorithms for CASE4.

algorithms, in contrast to the results achieved by MOPSO
and NSGA-III methods, are listed in Table 17. In detail,
the BC solution achieved by NHBA algorithm includes

FIGURE 12. PFs obtained by different algorithms for CASE5.

FIGURE 13. PFs obtained by different algorithms for CASE6.

59984.8963 $/h of Fc and 55.1909 MW of Fp. The
BC solution achieved by NHBA-CPFD algorithm includes
59589.2455 $/h of Fc and 55.0038 MW of Fp.

VI. PERFORMANCE EVALUATION
To evaluate the distribution and diversity of POS obtained by
different methods, the GD and HVmetrics are adopted in this
paper.

A. GD
The detailed characterization of GD index can be found
in [19], [42], [43] and the formula of GD is shown as (46).
For MOOPF problems, the GD index is used to measure the
distance between the real PF and the obtained one. Generally
speaking, the closer to zero GD index is, the PFwhich is more
in conformity with the real one can be achieved.

GD =

√
n∑
i=1

de2i /Na (46)
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FIGURE 14. PFs obtained by different algorithms for CASE7.

FIGURE 15. PFs obtained by different algorithms for CASE8.

where dei represents the Euclidean distance between each
solution of obtained POS and the nearest one in the real PF.

The POS of six testing cases on the IEEE 30-node system
are analyzed by GD index. The boxplots of CASE1∼CASE6
are shown in Figure 18.

Boxplot, a statistical tool to describe the dispersion of data,
can visually display the maximum, minimum, median, upper
and lower quartile, even outliers of a dataset. For MOOPF
problems, the closer boxplots and fewer outliers mean the
better convergence to the real PF.

Furthermore, Table 18 shows the mean and stan-
dard deviation of GD index for CASE1∼CASE3 while
Table 19 shows the mean and standard deviation of GD index
for CASE4∼CASE6.

Figure 18 clearly shows that the NHBA-CPFD algorithm
achieves closer boxplots and fewer outliers in all six cases
on the IEEE 30-node system. In contrast to the typical
MOPSO and NSGA-III algorithms, the NHBA algorithm

FIGURE 16. PFs obtained by different algorithms for CASE9.

FIGURE 17. PFs obtained by different algorithms for CASE10.

can obtain superior POS in most cases (CASE1∼CASE2and
CASE5∼CASE6). Furthermore, Table 18 and Table 19
quantitatively demonstrate that the NHBA-CPFD algorithm
can obtain the smallest mean and deviation of GD index
compared with other three methods.

In summary, the NHBA-CPFD algorithm is able to achieve
the stable operation and it can find a uniformly distributed
PF which is better consistent with the real one. In Addition,
the NHBA algorithm performs well in GD index for most
cases except CASE3 and CASE4. The effectiveness and supe-
riority of presented NHBA-CPFD algorithm can be verified
powerfully by the computer graphics technology and dataset
analysis.

B. HV
The HV index can be described as (47) [19], [42]. For
MOOPF problems, the HV index represents the volume
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TABLE 11. Specific solutions and control variables of CASE4.

TABLE 12. Specific solutions and control variables of CASE5.

covered by the obtained PF in the target space. It is used to
measure the distribution uniformity and population diversity
of POS. In General, the larger HV criteria is, the more widely

solution domain can be covered by obtained POS.

HV = volume
(
Na
∪
i=1

Vi

)
(47)
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TABLE 13. Specific solutions and control variables of CASE6.

TABLE 14. Specific solutions and control variables of CASE7.
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TABLE 15. Specific solutions and control variables of CASE8.

where Viindicates the volume formed by the ith solution and
reference points.

The boxplots of HV index for CASE1∼CASE6 are shown
in Figure 19. Meanwhile, Table 20 gives the mean and
standard deviation of HV index for CASE1∼CASE3 while
Table 21 gives the details of HV index for CASE4∼CASE6.
It clearly shows that the NHBA and NHBA-CPFD algo-

rithms can achieve larger value of HV index in bi-objective
cases on the IEEE 30-node system after eliminating the
MOPSO algorithm with many outliers.

However, there is a slight insufficiency that the tri-
objective optimization cases are not doing well in HV index.
Figure 19 shows that compared with MOPSO and NSGA-
III methods, the NHBA and NHBA-CPFD algorithms can
achieve closer boxplots in most cases on the IEEE 30-node
system. The smaller deviations of NHBA and NHBA-CPFD
shown on Table 20 and Table 21 effectively illustrate the
stability operation of NHBA and NHBA-CPFD algorithms.

C. DOMINANCE RATE OF BC SOLUTIONS
Based on the experimental results shown in Section 5,
MOPSO and NSGA-III algorithms can obtain well-
distributed PFs only in the small-scale IEEE 30-node sys-
tem while NHBA and NHBA-CPFD algorithms can achieve
uniform-distributed PFs even in the large-scale systems.

In more detail, Table 22 shows the dominant relation-
ships between the BC solutions obtained by the NHBA-
CPFD algorithm and the ones obtained by the other three
algorithms.

The U-R of Table 22 represents that the two BC solutions
do not dominate each other based on the objective values.
Table 22 intuitively indicates that the BC solutions of the
NHBA-CPFD algorithm have the 80% probability to domi-
nate MOPSO algorithm and the 60% probability to dominate
NSGA-III and NHBA algorithms. In particular, it is worthy to
mention that for the four cases (CASE7∼CASE10) which are
carried out on the IEEE 57-node or IEEE 118-node systems,
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TABLE 16. Specific solutions and control variables of CASE9.

the BC solutions obtained by NHBA-CPFD algorithm are
more superior to those obtained by NHBA algorithm. It pow-
erfully demonstrates that when adopting the same algorithm,

the proposed CPFD strategy is more advantageous than CPM
method in dealing with the high-dimensional optimizations
of complex systems.
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TABLE 17. Specific solutions and control variables of CASE10.

D. SUPERPOSITION PFs
Each case was carried out 30 times independently. The super-
position diagrams of several typical cases are represented.
Hereinto, Figure 20 shows the results of four involved

algorithms when dealing with a bi-objective optimiza-
tion problem (CASE1) on IEEE 30-node system and
Figure 21 gives the results of a tri-objective optimization
problem (CASE5) on the same system. Figure 22 shows the
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FIGURE 18. Boxplots of the GD index for CASE1∼CASE6.

FIGURE 19. Boxplots of the HV index for CASE1∼CASE6.
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TABLE 18. The mean and standard deviation of GD for CASE1∼CASE3.

TABLE 19. The mean and standard deviation of GD for CASE4∼CASE6.

TABLE 20. The mean and standard deviation of HV for CASE1∼CASE3.

TABLE 21. The mean and standard deviation of HV for CASE4∼CASE6.

TABLE 22. The dominant relationship of BC solutions.

results of a bi-objective optimization problem (CASE7) on
IEEE 57-node system and Figure 23 gives the results of a bi-
objective optimization problem (CASE9) on IEEE 118-node
system.

The superposition results also demonstrate that the conver-
gence and extensive application of NHBA and NHBA-CPFD
algorithms are clearly superior to that ofMOPSO andNSGA-
III algorithms. Especially, the proposed non-dominated
sorting rule based on CPFD strategy is more potential
to handle the MOOPF problems of large-scale complex
systems.

E. COMPUTATIONAL COMPLEXITY
In the end, the average running time of 30 independent exper-
iments, as a measure of computational complexity, is studied.
The mean CPU time of four typical cases, which include

TABLE 23. The mean CPU time.

three bi-objective cases on different scale systems and one
tri-objective case on the IEEE 30-node system, is summarized
in Table 23. It shows that comparedwithMOPSO andNSGA-
III methods, the NHBA and NHBA-CPFD algorithms need
more CPU time because of local searching process. It will be
an important point for the further research on the improve-
ment of bat algorithm.
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FIGURE 20. Results of 30 independent experiments forCASE1.

FIGURE 21. Results of 30 independent experiments for CASE5.
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FIGURE 22. Results of 30 independent experiments for CASE7.

FIGURE 23. Results of 30 independent experiments for CASE9.
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VII. CONCLUSION
The fast convergence and the optimal solution guiding mech-
anism of global bat algorithm make it suitable to solve
the MOOPF problems. However, the original bat algo-
rithm has the defect of being trapped in local optimum.
A novel NHBA algorithm with nonlinear weight coefficient
and MRFME model, enhanced by mutation and crossover
mechanisms, is proposed to handle the strict-constrained
MOOPF problems. Furthermore, a new non-dominated sort-
ing method based on CPFD strategy is put forward to seek an
evenly-distributed POS which can satisfy all restrictions of
power system.

Ten multi-objective testing cases considering the fuel cost
(with value-point loadings), the emission and the active
power loss are carried out on the IEEE 30-node, IEEE 57-
node and IEEE 118-node systems. Due to the complex-
structure and high-dimension of large-scale power systems,
the MOOPF problems on IEEE 57-node and IEEE 118-
node systems have more computational difficulty. It should
be exciting that, the simulation results of CASE7∼CASE10
clearly indicate the presented NHBA-CPFD algorithm has
superior performance in solving such MOOPF problems of
complex electric system. The GD and HV indexes are uti-
lized to measure the distribution and diversity of obtained
POS. The evaluating results strongly demonstrate that the
NHBA-CPFD algorithm is more desirable than the common-
used MOPSO and NSGA-III algorithms, which is not only
reflected in the preferable BC solutions, but also in the
favorable-distribution and satisfactory-diversity of POS.

Therefore, the proposed NHBA-CPFD algorithm, which
integrates the advantage of NHBA algorithm in determining
high-quality BC solutions and the great edge of CPFD strat-
egy in solving the higher-dimensional optimization problems
of large-scale system, provides an innovative and effective
way to deal with the MOOPF problems.
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