

Received April 2, 2019, accepted April 18, 2019, date of publication April 23, 2019, date of current version April 30, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2912643

Applications of Novel Hybrid Bat Algorithm With Constrained Pareto Fuzzy Dominant Rule on Multi-Objective Optimal Power Flow Problems

GONGGUI CHEN^{1,2}, JIE QIAN^{1,2}, ZHIZHONG ZHANG^{10,3}, AND ZHI SUN⁴

¹Key Laboratory of Network Control and Intelligent Instrument, Chongqing University of Posts and Telecommunications, Ministry of Education, Chongqing 400065, China

²Chongqing Key Laboratory of Complex Systems and Bionic Control, Chongqing University of Posts and Telecommunications, Chongqing 400065, China ³Key Laboratory of Communication Network and Testing Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China ⁴Chn Energy Enshi Hydropower Co., Ltd., Enshi 445000, China

Corresponding author: Zhizhong Zhang (zhangzztx@163.com)

This work was supported in part by the Innovation Team Program of the Chongqing Education Committee under Grant CXTDX201601019, in part by the Chongqing University Innovation Team under Grant KJTD201312, and in part by the National Natural Science Foundation of China under Grant 51207064 and Grant 61463014.

ABSTRACT To overcome the premature-convergence of standard bat algorithm in solving the multiobjective optimal power flow (MOOPF) problems, a novel hybrid bat algorithm (NHBA) is proposed in this paper. The suggested NHBA algorithm modifies the local search manner by a monotone random filling model based on extreme (MRFME) and improves the population-diversity by mutation and crossover mechanisms. To obtain the uniformly distributed Pareto optimal set (POS) with zero constraint-violation, an innovative non-dominated sorting method combined with the constrained Pareto fuzzy dominant (CPFD) strategy is put forward in this paper. To verify the superiority of the proposed NHBA-CPFD algorithm, which is federated by the NHBA algorithm and the CPFD strategy, ten MOOPF simulation cases considering the basic fuel cost, the fuel cost with value-point loadings, the total emission, and the active power loss are studied on the IEEE 30-node, IEEE 57-node, and IEEE 118-node systems. In contrast to the NHBA, MOPSO, and NSGA-III algorithms which adopt the constrain-prior Pareto-dominance method (CPM), numerous results validate the NHBA-CPFD algorithm that can achieve more superior compromise solutions and preferable Pareto fronts (PFs) even in the large-scale systems. Furthermore, two performance metrics of generational distance (GD) and hyper-volume (HV) also demonstrate that the NHBA-CPFD algorithm has great advantages to obtain the feasible POS with evenly distribution and favorable-diversity.

INDEX TERMS Novel hybrid bat algorithm, multi-objective optimal power flow problem, constrained Pareto fuzzy dominant strategy, monotone random filling model based on extreme, performance metrics.

I. INTRODUCTION

The optimization problems in daily life usually have nonlinear features and discrete variables, which can be solved efficiently by intelligent algorithms [1], [2]. Among them, the optimal power flow (OPF) problem has great significance to the optimization and planning of power system [3]–[5]. The safe and economical operation status without any violation of system constraints can be achieved based on the power flow calculation results [6], [7]. At present, the OPF problems are mainly to minimize the power loss, fuel cost or emission separately [8]–[10]. In order to evaluate the operating status of electric system more comprehensively, the multi-objective optimal power flow (MOOPF) problems have received widespread attention.

The MOOPF problem has strict constraints and takes multiple incompatible objectives into consideration at the same time [11]–[14]. There are two key points of studying the multi-objective optimizations, one is to seek an available Pareto optimal set (POS), and the other is to determine a best compromise (BC) solution from the obtained POS. Due to the non-convex and high-dimensional features of MOOPF problems, traditional approaches may not be applicable to find a high-quality solution set. Consequently, it is imperative to utilize some appropriate intelligent algorithms to handle the MOOPF problems.

The associate editor coordinating the review of this manuscript and approving it for publication was Luca Chiaraviglio.

Recently, some evolutionary algorithms have been employed to solve the MOOPF problems successfully such as the non-dominated sorting genetic algorithm III (NSGA-III) [15], multi-objective harmony search algorithm (MOHS) [16], non-dominated sorting multi-objective opposition based gravitational search algorithm (NSMOOGSA) [17], multi-objective evolutionary algorithm based decomposition (MOEA/D) [18], hybrid DA-PSO optimization algorithm (DA-PSO) [9] and multi-objective dimension-based firefly algorithm (MODFA) [19].

The standard bat algorithm (SBA) is an innovative global optimization algorithm inspired by biological echolocation mechanism [20], [21]. Due to the simple structure and fast convergence, the standard and improved bat algorithms have been applied to various fields such as the goods distribution and job shop scheduling problems [22], [23].

The optimal solution guiding mechanism of bat algorithm enables it to deal with global optimizations such as MOOPF problems more accurately and effectively. However, the SBA algorithm is easy to fall into local optimum. In order to solve the MOOPF problems successfully, a novel hybrid bat algorithm (NHBA), which is improved by the mutation and crossover mechanisms of DE algorithm, is proposed in this paper. Meanwhile, a monotone random filling model based on extreme (MRFME) is put forward to optimize the local search manner of SBA algorithm, which is helpful to explore a better solution near the current optimal solution.

To evaluate the practicability of NHBA algorithm, some typical MOOPF simulation cases, such as the simultaneous optimization of fuel cost (with value-point loadings) and emission, the simultaneous optimization of fuel cost (with value-point loadings) and active power loss, the simultaneous optimization of fuel cost, emission and active power loss, are carried out on the IEEE 30-node, IEEE 57-node and IEEE 118-node systems. The results clearly show that the NHBA algorithm has better exploration ability than the common MOPSO and NSGA-III algorithms in finding more competitive BC solutions when utilizing the same Constrain-prior Pareto-dominance method (CPM). The detailed description of CPM can be found in literatures [24], [25].

Regrettably, the CPM method may not be very effective in solving such MOOPF problems of IEEE 57-node and IEEE 118-node systems with higher dimension. On this basis, a non-dominated sorting method with constrained Pareto fuzzy dominant (CPFD) strategy is put forward in this paper. The presented CPFD strategy gives priority to the constraintsviolation value (*viol*) and then considers the fuzzy eigenvalue (Ψ), which is quite different from the typical penalty function method and CPM method. The results clearly state that the proposed sorting rule is valuable to obtain a fine-quality POS without any constraints violation in the large-scale systems.

The presented NHBA-CPFD algorithm, which combines the advantages of the NHBA algorithm and the CPFD strategy, can improve the performance of determining satisfactory POS in different scale electric systems. Moreover, the generational distance (GD) and hyper-volume (HV) metrics are employed to measure the distribution of obtained POS and the convergence to the real Pareto fronts (PF). Based on the evaluation results, the competitive superiority of NHBA-CPFD algorithm in seeking the uniformly-distributed POS can be verified.

The rest of this article is organized as follows. The mathematical model of MOOPF problem is shown in Section 2. The detailed description of NHBA algorithm is presented in Section 3. Section 4 proposes the novel CPFD strategy and a non-dominated sorting rule to seek satisfactory POS. Section 4 also generalizes the application of NHBA-CPFD algorithm on the MOOPF problems. Section 5 shows the results of ten MOOPF trials on different scale systems. The GD and HV metrics are adopted to measure the performance of obtained POS in Section 6. Section 6 also discusses the computational complexity represented by the CPU time and the dominant relationship of obtained BC solutions. Eventually, the conclusions are made in Section 7.

II. MATHEMATICAL MODEL OF MOOPF PROBLEMS

The objective functions and system constraints of MOOPF mathematical model are summarized as follows [9], [25].

$$\operatorname{minimize} F_{obj} = (f_1(x, u), \cdots, f_i(x, u), \cdots, f_M(x, u)) \quad (1)$$

$$H_k(x, u) = 0, k = 1, 2, \cdots, h$$
 (2)

$$G_j(x, u) \le 0, j = 1, 2, \cdots, g$$
 (3)

where $f_i(x,u)$ represents the *i*th objective function and $M(M \ge 2)$ is the amount of objects which are optimized at the same time. H_k is the *k*th equality constraint (*EC*) and *h* is the amount of *ECs*. G_j is the *j*th inequality constraint (*IC*) and *g* is the total number of *ICs*.

The state variables x includes generator active power at slack node P_{G1} , load node voltage V_L , generator reactive power Q_G and apparent power of transmission line S. Generator active power output at PV node P_G , generator node voltage V_G , tap ratios of transformer T and reactive power injection Q_C are integrated into the control variables u. The vectors of x and u are described as (4) and (5).

$$x^{T} = [P_{G1}, V_{L1}, \dots, V_{LN_{PQ}}, Q_{G1}, \dots, Q_{GN_{G}}, S_{1}, \dots, S_{N_{L}}]$$

$$u^{T} = [P_{G2}, \dots, P_{GN_{G}}, V_{G1}, \dots, V_{GN_{G}}, T_{1}, \dots, T_{N_{T}}, Q_{C1}, \dots, Q_{CN_{C}}]$$
(5)

where N_{PQ} , N_G , N_L , N_T and N_C indicate the amount of PQ nodes, generators, transmission lines, transformers and shunt compensators.

A. OBJECTIVE FUNCTIONS

Four objectives including the total emission, the active power loss, the basic fuel cost and the fuel cost with value-point loadings, are studied in this paper [9], [19].

1) EMISSION

$$Obj1: F_e = \sum_{i=1}^{N_G} \left[\alpha_i P_{Gi}^2 + \beta_i P_{Gi} + \gamma_i + \eta_i \exp(\lambda_i P_{Gi}) \right] \text{ton/h}$$
(6)

where F_e depicts the sum of emission in the unit of ton/h while α_i , β_i , γ_i , η_i and λ_i represent the emission coefficients of the *i*th generator.

2) ACTIVE POWER LOSS

$$Obj2: F_P = \sum_{k=1}^{N_L} c_k [V_i^2 + V_j^2 - 2V_i V_j \cos(\delta_i - \delta_j)] MW$$
(7)

where F_P indicates the power loss in the unit of MW. V_i , V_j and δ_i , δ_j are, respectively, the voltage magnitude and angle at node *i* and node *j*. c_k is the conductance of the *k*th branch that links node *i* to node *j*.

3) BASIC FUEL COST

$$Obj3: F_c = \sum_{i=1}^{N_G} (a_i + b_i P_{Gi} + c_i P_{Gi}^2) \$/h$$
(8)

where F_c is the basic fuel cost in the unit of \$/h. And a_i , b_i and c_i represent the cost coefficients of the *i*th generator.

4) FUEL COST WITH VALUE-POINT LOADINGS

$$Obj4: F_{c_vp} = \sum_{i=1}^{N_G} (a_i + b_i P_{Gi} + c_i P_{Gi}^2 + \left| d_i \times \sin(e_i \times (P_{Gi}^{\min} - P_{Gi})) \right|) \$/h$$
(9)

where F_{c_vp} indicates the fuel cost considering value-point loadings in the unit of \$/h. And d_i , e_i and P_{Gi}^{\min} are the cost coefficients and the lower active power at the *i*th generator node.

B. SYSTEM CONSTRAINTS

The system constraints include equality constraints and inequality ones [26]–[28]. The optimization schemes adopted by decision-makers should not violate any *EC* and *IC*.

1) EC

The ECs, which can be described as (10) and (11), are essentially the power balance equations.

$$P_{Gi} - P_{Di} - V_i \sum_{j \in N_i} V_j (G_{ij} \cos \delta_{ij} + B_{ij} \sin \delta_{ij}) = 0, \ i \in N$$
(10)

$$Q_{Gi} - Q_{Di} - V_i \sum_{j \in N_i} V_j (G_{ij} \sin \delta_{ij} - B_{ij} \cos \delta_{ij}) = 0, \ i \in N_{PQ}$$
$$\delta_{ij} = \delta_i - \delta_j \tag{11}$$

52062

where P_{Gi} and Q_{Gi} are the injected active and reactive power at node *i*. P_{Di} and Q_{Di} denote the active and reactive load demand at load node *i*. G_{ij} and B_{ij} denote the conductance and susceptance between the *i*th and *j*th node. N_i is the amount of nodes linked to node *i* and *N* is the number of nodes except the slack one.

2) IC

Used to define the effective operating range of electric equipment, the *IC*s include state variables and control ones.

(1) *ICs* of control variables

• active power at generator node

$$P_{Gi}^{\max} \ge P_{Gi} \ge P_{Gi}^{\min}, i \in N_G (i \neq 1)$$
(12)

• voltage at generator node

$$V_{Gi}^{\max} \ge V_{Gi} \ge V_{Gi}^{\min}, i \in N_G$$
(13)

• transformer tap-settings

$$T_i^{\max} \ge T_i \ge T_i^{\min}, i \in N_T$$
(14)

· reactive power injection

$$Q_{Ci}^{\max} \ge Q_{Ci} \ge Q_{Ci}^{\min}, i \in N_C$$
(15)

(2) ICs of state variables

• active power at slack node

$$P_{G1}^{\max} \ge P_{G1} \ge P_{G1}^{\min} \tag{16}$$

· voltage at load node

$$V_{Li}^{\max} \ge V_{Li} \ge V_{Li}^{\min}, i \in N_{PQ}$$
(17)

• reactive power at generator node

$$Q_{Gi}^{\max} \ge Q_{Gi} \ge Q_{Gi}^{\min}, i \in N_G$$
(18)

• apparent power

$$S_l^{\max} - S_l \ge 0, l \in N_L \tag{19}$$

III. STANDARD AND MODIFIED BAT ALGORITHMS

To overcome the premature-convergence and unsatisfactorydiversity of SBA algorithm in dealing with the MOOPF problems, the NHBA algorithm is proposed.

A. STANDARD BAT ALGORITHM

The SBA algorithm is derived based on the echolocation mechanism, and it makes bats keep close to the global optimal individual continuously by adjusting the searching frequency [20]. The frequency fr(i), speed v_i and position p_i of the *i*th individual are defined as (20), (21) and (22), respectively [20], [29], [30].

$$fr(i) = fr_{\min} + \mu * (fr_{\max} - fr_{\min})$$
⁽²⁰⁾

$$v_i(t) = v_i(t-1) + fr(i) * (p_i(t-1) - p_{best})$$
(21)

$$p_i(t) = p_i(t-1) + v_i(t)$$
 (22)

where fr_{min} and fr_{max} limit the range of frequency. p_{best} is the current optimum individual while $\mu(\mu \in (0, 1))$ is a random number.

After the location of bat population is updated, p_{best} will be determined according to the established dominance strategy. Local search, which relies on the pulse rate *R* and the loudness *L*, aims to find a better scheme p_{per} near the p_{best} one. The update manners of *L* and *R* are shown as (23) and (24).

$$L_i(t+1) = \tau L_i(t) \tag{23}$$

$$R_i(t+1) = R_0(1 - \exp(-lt))$$
(24)

where R_0 is the initial pulse rate. Two constants, l(l > 0) and $\tau(\tau \in (0, 1))$, represent the increase coefficient of R and the attenuation coefficient of L. To improve the searching efficiency, L will decrease and R will increase when the p_{per} individual is found during the local search.

B. NHBA ALGORITHM

Like most global algorithms, the SBA algorithm is difficult to jump out of the local optimum. The proposed NHBA algorithm improves the performance of SBA method in the following three aspects.

1) IMPROVEMENT OF SPEED UPDATING MANNER

The non-linear weight coefficient ωc , which can enhance the population diversity, is introduced to improve the speed model of SBA algorithm. The novel updated formulas of vand ωc are defined as (25) and (26).

$$v_i(t) = \omega c(t) v_i(t-1) + r_1 f(i)(p_{best} - p_i(t-1))$$
(25)

$$\omega c(t) = \omega c_{\max} - r_2(\omega c_{\max} - \omega c_{\min}) + r_3(\omega c(t-1) - (\omega c_{\max} + \omega c_{\min})/2)$$
(26)

where $r_1 \sim r_3$ are random constants between 0 and 1. ωc_{min} and ωc_{max} set the valid range of weight coefficient.

2) INTEGRATION OF MUTATION AND CROSSOVER MECHANISMS

To search for better optimization schemes, the mutation and crossover mechanisms of DE algorithm are integrated into the NHBA algorithm. The detailed description and application of DE algorithm can be referred to literatures [31]–[33]. A new population is generated by mutation operation. The *i*th mutant-individual pm(i) can be defined as (27).

$$pm(i) = p_{n1} + F_m(p_{n3} - p_{n2}), i = 1, 2, \dots N_a$$
 (27)

where p_{n1}, p_{n2} and p_{n3} are three different individuals. F_m is the mutant weighting factor.

Subsequently, the bat population is cross-operated to generate the pcpopulation. The crossover mechanism can be described as (28).

$$pc(i) = \begin{cases} pm(i), & \text{if } ra \le F_c orj = q \\ p_i, & \text{otherwise} \end{cases} j = 1, 2, \cdots, D \quad (28)$$

VOLUME 7, 2019

where $ra(ra \in (0, 1))$ is a random number and F_c is the crossover coefficient. *D* is the dimension of each individual and *q* is a random *D*-dimensional vector.

3) IMPROVEMENT OF LOCAL PARAMETER UPDATING MANNER

The MRFME model is put forward to improve the updated manners of two local searching parameters, which can be expressed as (29) and (30).

$$R_{i} = (R_{\min} - R_{\max}) * (ite - ite_{\max})/(1 - ite_{\max}) + R_{\max}$$
(29)
$$L_{i} = (L_{\max} - L_{\min}) * (ite - ite_{\max})/(1 - ite_{\max}) + L_{\min}$$
(30)

where *ite* and *ite_{max}* respectively indicate the current and maximum iteration. R_{min} and R_{max} limit the range of pulse rate while L_{min} and L_{max} specify the range of loudness. Undoubtedly, the proposed MRFME strategy can meet the basic requirement of bat algorithm, which requires the increasing pulse and decreasing loudness when the p_{per} individual is accepted as the new optimal solution.

The pseudo codes of the innovative NHBA algorithm for the minimization problems are summarized in Table 1.

IV. MULTI-OBJECTIVE OPTIMIZATION STRATEGIES

The penalty function method is commonly used to select feasible POS when dealing with the MOOPF problems. However, it is difficult to determine the appropriate penalty coefficients and ensure every solution meet all system constraints. Then, the CPM method which measures the solutionperformance by objective and constraints-violation values is proposed [24], [25]. The striking advantage of CPM method is that it achieves zero-violation of obtained POS. Compared with CPM method, the proposed CPFD strategy, which takes both the fuzzy eigenvalue and the constraints-violation into consideration, can seek more favorable Pareto non-inferior solutions in IEEE 57-node and IEEE 118-node systems.

A. CONSTRAINED PARETO FUZZY DOMINANT RULE

The high-quality POS should realize none-violation of ECs and ICs. The ECs can be satisfied when calculating the Newton-Raphson power flow. The control variables of the *i*th individual which violates the ICs can be adjusted as (31).

$$u_i = \begin{cases} u_i^{\max} & \text{if } u_i > u_i^{\max} \\ u_i^{\min} & \text{if } u_i < u_i^{\min} \end{cases}$$
(31)

The CPFD strategy is proposed to handle the unqualified state variables. Generally speaking, the smaller constraints-violation value means the higher adoption-priority of corresponding individual. The key steps to judge the dominant relationship of two different solutions are arranged as follows. (i) Clarify the violation of the *i*th solution based on (32).

$$viol(u_i) = \sum_{j \in c} \max(G_j(x, u_i), 0)c \in g$$
(32)

where c is the amount of ICs on state variables.

TABLE 1. Pseudo codes of NHBA algorithm.

input: objective function: $f(x), x=[x_1, x_2, ..., x_D]^T$ the initial parameters of NHBA algorithm: the size of bat population N_a , the maximum iteration ite_{max} , the mutant factor F_m , the crossover coefficient F_c , the range of frequency $[fr_{min}, fr_{max}]$, the ranges of loudness $[L_{min}, L_{max}]$ and pulse rate $[R_{min}, R_{max}]$

Begin

ite=1

while ite < *ite*_{max}

Update the speed and position of bat population based on (25) and (22) to generate the *Xpopulation* population;

Calculate the fitness $f_{\lambda}(p_i)$ (*i*=1,2,..., N_a) of each individual in the *Xpopulation* population;

Complete the mutation and crossover operations in the *Xpopulation* population to generate the *Ypopulation* population;

Calculate the fitness $f_y(p_i)$ (*i*=1,2,...,N_a) of each individual in the *Ypopulation* population;

for $i=1,2,...,N_a$ if $f_x(p_i) \leq f_y(p_i)$ Fpopulation(i)= Xpopulation(i); else Fpopulation(i)= Ypopulation(i);

end

Calculate the fitness $f(p_i)$ of *i*th individual in the the *Fpopulation* population;

end

Determine the current optimal individual p_{best} in *Fpopulation population*;

*for i*th ($i=1,2,...,N_a$) individual in *Fpopulation* population

Generate a random number between 0 and 1 named *rand1*. *if* rand $1>R_1$

Generate the p_{per} individual which is around the p_{best} individual by a random perturbation;

Generate other random number between 0 and 1 named *rand2* and evaluate $f(p_{per})$;

if $(rand2 < L_i) \&\& (f(p_{per}) < f(p_{best}))$

The new individual p_{per} will be accepted as the new current optimal solution;

Update R_i and L_i based on (29) at	1d (30);
end if	
end if	
end for	
Renovate the information of the p_{best} solu	tion;
ite=ite+1;	
end while	
End	
output: p_{hest} and $f(p_{hest})$	

(ii) Compare the values of *viol* (u_1) and *viol* (u_2) , where $u_1(u_1 = (U_1, U_2, ..., U_D))$ and $u_2(u_2 = (V_1, V_2, ..., V_D))$ are two different sets of control variables.

(iii) When the condition (33) or (34) can be satisfied, the judgment can be made that u_1 will dominate u_2 .

 $viol(u_1) < viol(u_2) \tag{33}$

$$(viol(u_1) = viol(u_2)) \cap (\psi(u_1) > \psi(u_2))$$
 (34)

where $\psi(u_i)$ is the fuzzy eigenvalue of u_i which can be calculated as follows.

$$P(u_1) = u_1 - u_2 = (U_1 - V_1, \cdots, U_D - V_D)$$
(35)

$$\varphi(u_1) = F_M(P(u_1)) = (\varphi_1^{u_1}, \cdots, \varphi_D^{u_1})$$
(36)

$$\psi(u_1) = \varphi_1^{u_1} \times \varphi_2^{u_1} \times \cdots \oplus \varphi_D^{u_1}$$
(37)

$$F_M = \begin{cases} 1, & x \le -1 \\ \vartheta_1 x^3 + \vartheta_2, & -1 < x < 1 \ \vartheta_1 = -1/2, \ \vartheta_2 = -\vartheta_1 \\ 0, & x \ge 1 \end{cases}$$

(38)

where $P(u_1)$ is the performance of u_1 relative to u_2 . F_M is the adopted fuzzy membership function which can be expressed as (38). $\varphi(u_1)$ represents the dominant degree of u_1 relative to u_2 . $\psi(u_i)$ is actually the product of each dominance degree.

B. NON-DOMINATED SORTING RULE BASED ON THE CPFD STRATEGY

A reasonable technology of dealing with the multi-objective optimization such as aero-assisted vehicle trajectory planning is to assign priority factors to different objectives according to the mission scenarios or the requirements of decision-makers [32], [34]. Specifically, the priority factor of primary task should be higher than the others.

The sorting rule proposed to handle the MOOPF problem does not assign objective-priority factors in advance, but determines the adoption-priority according to the *rank* index and the Pareto fuzzy dominant fitness (*cpfdf*) value of each control variable set.

In detail, the *rank* index which is essential to the presented sorting rule can be determined based on mentioned CPFD strategy.

1) RANK INDEX

In order to select high-performance Pareto solutions in multiobjective optimization problems, it is necessary to set a prespecified priority requirement to rank candidate solutions. In this paper, the CPFD strategy which clarifies the *viol* and Ψ values is used to determine the *rank* index.

Learning from the non-dominated sorting method proposed by Kalyanmoy Deb [35], [36], the *rank* of each individual can be clarified as follows.

- (i) Firstly, a hybrid population (*HP*) is composed of the parent bat population (*PBP*) with size of N_a and the external archive population (*EAP*) with size of N_a .
- (ii) According to the CPFD strategy, these solutions which are not dominated by other solutions in *HP* are determined and marked as *rank*=1.
- (iii) Eliminate the individuals with *rank*=1. Based on the same CPFD dominant relationship, another set of noninferior solutions which will be marked as *rank*=2 is found.
- (IV) Repeat the above operation till each individual in *HP* has its own *rank* index.

2) CPFDF INDEX

To gain an evenly-distributed PF, the *cpfdf* index is taken into account as well. The core steps to determine the *cpfdf* index of each solution can be arranged as follows.

In the *HP* population with $2N_a$ individuals, the *i*th $(i = 1, 2, ..., 2N_a)$ individual can be combined with the other $(2N_a-1)$ individuals. For two different individuals *i* and *j* $(j = (1, 2, ..., 2N_a) \cap j \neq i)$, the fuzzy eigenvalue of *i* relative to *j* (Ψ_{ij}) and the fuzzy eigenvalue of *j* relative to *i* (Ψ_{ji}) can be obtained based on (37). Then, the standard performance of *i* relative to *j* named as H_{ij} can be calculated according to formula (39). On this basis, the *cpfdf* index can be determined

based on (40).

$$H_{ij} = \frac{\Psi_{ij}}{(\Psi_{ij} + \Psi_{ji})}$$
(39)

$$cpfdf(i) = \sum^{j} Hij_{2N_a - 1}, j = 1, 2, \dots 2N_a \cap j \neq i$$
 (40)

where cpfdf(i) represents the Pareto fuzzy dominant fitness of the *i*th individual relative to the other $(2N_a-1)$ individuals. It is actually the mean value of standard performance.

The priority of each individual can be determined based on the suggested non-dominated sorting strategy. In detail, the *i*th individual has higher adoption-priority than the *j*th one when condition (41) or (42) can be met.

$$rank(i) < rank(j)$$
 (41)

$$rank(i) = rank(j) \cap cpfdf(i) > cpfdf(j)$$
(42)

The individuals which ranked in the former N_a are the obtained POS based on the CPFD strategy and they will form the new *EAP* population.

The obvious difference from the sorting method of NSGA-II algorithm [35] is that, the suggested sorting rule based on CPFD strategy considers the *cpfdf* value instead of the common-used crowding distance. This novel sorting rule is very advantageous to select a satisfactory POS set in large-scale systems such as the IEEE 57-node and IEEE 118-node systems.

3) FAA APPROACH

Taking advantage of the proposed sorting strategy, a set of Pareto non-inferior solutions can be achieved. The FAA approach employed in this paper is to pick out a feasible BC solution from the obtained POS [19].

The satisfaction of the *i*th objective function for the *z*th individual $(sat_i(z))$ and the total satisfaction value of the *z*th Pareto solution (tots(z)) are defined as (43) and (44), respectively.

$$sat_{i}(z) = \begin{cases} 1 & f_{i} \leq f_{i}^{\min} \\ \frac{f_{i}^{\max} - f_{i}}{f_{i}^{\max} - f_{i}^{\min}} & f_{i}^{\min} < f_{i} < f_{i}^{\max} \\ 0 & f_{i} \geq f_{i}^{\max} \end{cases}$$

$$z = 1, 2, \dots, N_a i = 1, 2, \dots, M$$
(43)
$$\sum_{i=1}^{M} sat_i(z)$$

$$tots(z) = \frac{\sum_{i=1}^{N} su_i(z)}{\sum_{z=1}^{N_a} \sum_{i=1}^{M} sat_i(z)}$$
(44)

where f_i^{max} and f_i^{max} are the maximum and minimum of the *i*th objective.

Calculate the *tots* index of each Pareto solution to determine the special solution which has the highest satisfaction, as known as the BC solution achieved by the FAA method.

C. APPLICATION OF NHBA-CPFD ALGORITHM ON MOOPF PROBLEMS

The NHBA-CPFD algorithm combines the great strengths of both the NHBA algorithm and the novel non-dominated

sorting rule, which is the integration of two multi-objective strategies proposed in this paper.

To evaluate the powerful competitiveness of NHBA-CPFD algorithm, in contrast to MOPSO and NSGA-III methods, both bi-objective and tri-objective optimization trials are studied. Details of all cases involved in this paper are shown in Table 2. The mathematical model of objective functions is described in Section 2.

The application of NHBA-CPFD algorithm on MOOPF problems can be summarized in Figure 1.

The initial *PBP* population is randomly generated according to (45). Each bat individual is essentially a set of *D*-dimensional control variables in the power system. Designate the initial global optimal individual p_{best} randomly.

$$u_{i} = u_{i}^{\min} + rand \left(u_{i}^{\max} - u_{i}^{\min} \right)$$

$$i \in [1, N_{a}], u_{i} = [u_{i}^{1}, u_{i}^{2}, \cdots, u_{i}^{D}]$$
(45)

where u_i^{\min} and u_i^{\min} limit the range of control variables.

By adjusting the corresponding electrical equipment according to the control variables of obtained BC solutions, the system can achieve the predetermined operation state. And it is the practical significance of devoting great effort in studying the MOOPF problems.

V. SIMULATION AND RESULTS

The MATLAB 2014a software is employed and all testing cases in this paper are run on a PC with Intel(R) Core(TM) i5–7500 CPU @ 3.40 GHz with 8GB RAM.

A. SYSTEMS

For a comprehensive evaluation of the presented NHBA-CPFD algorithm, ten simulation trials are carried out on three different scale systems.

The structure of IEEE 30-node system is shown in Figure 2 and the details are shown in Table 3. More information can be found in [19], [37] and Table 4 gives the coefficients of fuel cost and emission.

The structure of IEEE 57-node is shown in Figure 3 and the details are obtained from [19]. The transformer taps and voltage magnitude for the PQ and PV nodes are bound in 0.9-1.1p.u. . The shunt capacitor is restricted in 0-0.3p.u.. Table 5 shows the coefficients of fuel cost and emission in IEEE 57-node system.

The single line diagram of IEEE 118-node system with 128-dimensional control variables is shown in Figure 4. The bound of voltage magnitude for PV node is set as 0.9-1.1 p.u. and the shunt capacitor is restricted in 0-0.3 p.u.. The other details of IEEE 118-node system can be found in [19].

B. ALGORITHM PARAMETERS

In order to figure out the influence of main algorithm parameters on optimization performance and determine a set of relatively optimal combination, a bi-objective case which aims to optimize the basic fuel cost and emission at the same time is taken as an example.

FIGURE 1. The flow chart of NHBA-CPFD algorithm on MOOPF problems.

 TABLE 2. Objective combination.

	Obj1	Obj2	Obj3	Obj4	Test system
CASE1	~		~		IEEE 30
CASE2		~	~		IEEE 30
CASE3	~			~	IEEE 30
CASE4		~		V	IEEE 30
CASE5	~	~	~		IEEE 30
CASE6	~	~		V	IEEE 30
CASE7	~		~		IEEE 57
CASE8		~	~		IEEE 57
CASE9	~		~		IEEE 118
CASE10		~	~		IEEE 118

In detail, the influences of the maximum iteration and the valid range of ωc are studied in this paper. The results are achieved by NHBA-CPFD algorithm with a population size of 100.

Figure 5 shows the PFs with different maximum iterations. It clearly indicates that the iteration of 100 obtains the worst PF while the iteration of 200,300 and 400 can achieve better PFs. Figure 5 also validates that the iterations of 500 and 600 are capable to achieve well-distributed PFs with similar

FIGURE 2. Structure of the IEEE 30-node system.

efficiency. To reduce the computational time, the maximum iteration in this paper is set as 500.

Then, the influence of ωc is discussed. Figure 6 shows the PFs based on the different minimum value of ωc when the top-limit is set as $\omega c_{max} = 0.95$. It states that the ωc_{min} of 0.1 gets the worse distribution and the ωc_{min} of 0.4 achieves the best one. Figure 7 shows the PFs based on

FIGURE 3. Structure of the IEEE 57-node system.

FIGURE 4. Structure of the IEEE 118-node system.

different maximum value of ωc when the lower-limit is set as $\omega c_{min} = 0.4$. It indicates that the ωc_{max} of 0.92 gets the worse distribution while the ωc_{max} of 0.9 achieves a better PF. Therefore, it is reasonable to infer that the appropriate range of the non-linear weight coefficient is [0.4, 0.9].

Additionally, the other parameters of four involved algorithms are shown in Table 6.

C. TRIALS ON IEEE 30-NODE SYSTEM

Four bi-objective and two tri-objective testing trials are performed on the IEEE 30-node system.

1) CASE1 CONSIDERING BASIC FUEL COST AND EMISSION SIMULTANEOUSLY

In *CASE1*, two objectives of F_c and F_e are optimized concurrently by the presented NHBA, NHBA-CPFD, MOPSO and NSGA-III approaches. The obtained PFs are shown in Figure 8 and it indicates that the NHBA and NHBA-CPFD algorithms can obtain preferable POS than MOPSO and NSGA-III methods. Even further, the NHBA-CPFD algorithm has great potential to find more favorable PF than NHBA algorithm.

The 24-dimensional control variables of BC solution obtained by four algorithms are given in Table 7. Table 7 also lists two boundary solutions found by NHBA-CPFD algorithm including *C1.E* (the solution with minimum emission) and *C1.F* (the solution with minimum fuel cost). More specifically, the BC solution obtained by NHBA algorithm includes 0.2375 ton/h of F_e and 832.6471 \$/h of F_c and the BC solution obtained by NHBA-CPFD algorithm includes 0.2350 ton/h of F_e and 830.9592 \$/h of F_c . In addition, the *C1.E* includes 0.1943 ton/h of minimal F_e and 955.0343 \$/h of F_c . The *C1.F* includes 0.3309 ton/h of F_e and 799.7640 \$/h of minimal F_c .

In order to make the conclusion that the NHBA-CPFD algorithm can effectively handle MOOPF problems more persuasiveness, Table 8 gives the comparison results between the proposed algorithms and other methods.

2) CASE2 CONSIDERING BASIC FUEL COST AND ACTIVE POWER LOSS SIMULTANEOUSLY

In *CASE2*, two competing objectives of F_c and F_p are studied. The PFs obtained by four algorithms are shown in Figure 9.

Table 9 gives the control variables of BC solutions and the comparison results shown in other literatures. Table 9 also lists two boundary solutions found by NHBA-CPFD algorithm including C2.F (the solution with minimum fuel cost) and C2.P (the solution with minimum power loss). As can be seen from Table 9, the BC solution obtained by NHBA algorithm includes 835.1034 \$/h of F_c and 5.0658 MW of F_p . The BC solution obtained by NHBA-CPFD algorithm includes 831.8513 \$/h of F_c and 5.1096 MW of F_p . Besides, the C2.F includes 799.3296 \$/h of minimal F_c and 8.5486 MW of F_p . The C2.P includes 966.8891 \$/h of F_c and 2.9023 MW of minimal F_p .

3) CASE3 CONSIDERING FUEL COST WITH VALUE-POINT AND EMISSION SIMULTANEOUSLY

In *CASE3*, two objectives of F_{c-vp} and F_e are optimized simultaneously. The PFs respectively obtained by different algorithms are shown in Figure 10.

Table 10 shows the control variables of BC solutions achieved by four involved methods. Table 10 also lists two boundary solutions found by NHBA-CPFD algorithm including C3.Fv (the solution with minimum fuel cost with value-point) and C3.E (the solution with minimum emission).

In detail, Table 10 clearly states that the BC solution obtained by NHBA algorithm includes 854.3882 \$/h of F_{c-vp} and 0.2598 ton/h of F_e . The BC solution obtained by NHBA-CPFD algorithm includes 855.5369 \$/h of F_{c-vp} and 0.2585 ton/h of F_e . In addition, the C3.Fvincludes 831.6332 \$/h of minimal F_{c-vp} and 0.3727 ton/h of F_e . And the C3.E includes 1023.2904 \$/h of F_{c-vp} and 0.1944 ton/h of minimal F_e .

4) CASE4 CONSIDERING FUEL COST WITH VALUE-POINT AND ACTIVE POWER LOSS SIMULTANEOUSLY

In *CASE4*, the F_{c-vp} and F_p are optimized concurrently and the obtained PFs are shown in Figure 11. The control variables of BC solutions are listed in Table 11. Table 11 also shows two boundary solutions found by NHBA-CPFD

TABLE 3. Details of the IEEE 30-node system.

equipment	amount	details
nodes	30	-
branches	41	-
generators	6	nodes:1,2,5,8,11,and13
transformer taps	4	branches:6-9,6-10,4-12 and 28-27 limit: 0.9p.u1.1p.u.
capacitors	9	nodes:10,12,15,17,20,21,23,24 and 29
control variables	24	-
voltage of generator nodes	-	limit: 0.95p.u1.1p.u
voltage of load nodes	-	limit: 0.95p.u1.1p.u

TABLE 4. Fuel and emission coefficients of the IEEE 30-node system.

agafficient	Generating unit								
coefficient	G1	G2	G5	G8	G11	G13			
Fuel cost									
а	0	0	0	0	0	0			
b	2	1.75	1	3.25	3	3			
с	0.00375	0.0175	0.0625	0.00834	0.025	0.025			
d	18	16	14	12	13	13.5			
e	0.037	0.038	0.04	0.045	0.042	0.041			
Emission									
α	0.06490	0.05638	0.04586	0.03380	0.04586	0.05151			
β	-0.05554	-0.06047	-0.05094	-0.03550	-0.05094	-0.05555			
γ	0.04091	0.02543	0.04258	0.05326	0.04258	0.06131			
ή	0.0002	0.0005	0.000001	0.002	0.000001	0.00001			
λ	2.857	3.333	8.000	2.000	8.000	6.667			

TABLE 5. Fuel and emission coefficients of the IEEE 57-node system.

agafficient	Generating unit								
coefficient	G1	G2	G3	G6	G8	G9	G12		
Fuel cost									
а	0	0	0	0	0	0	0		
b	20	40	20	40	20	40	20		
с	0.0775795	0.01	0.25	0.01	0.0222222	0.01	0.0322581		
Emission									
α	0.06	0.05	0.04	0.035	0.045	0.05	0.05		
β	-0.05	-0.06	-0.05	-0.03	-0.05	-0.04	-0.05		
γ	0.04	0.03	0.04	0.035	0.05	0.045	0.06		
η	0.00002	0.00005	0.00001	0.00002	0.00004	0.00001	0.00001		
λ	0.5	1.5	1	0.5	2	2	1.5		

algorithm including *C4.Fv* (the solution with minimum fuel cost with value-point) and *C4.P* (the solution with minimum power loss). As can be seen from Table 11, the BC solution achieved by NHBA algorithm includes 868.9526 \$/h of F_{c-vp} and 5.6761 MW of F_p . The BC solution obtained by NHBA-CPFD algorithm includes 865.9106 \$/h of F_{c-vp} and 5.6726 MW of F_p . Besides, the *C4.Fv* includes 833.3204 \$/h of minimal F_{c-vp} and 10.4024 MW of F_p . The *C4.P* includes 1022.0654 \$/h of F_{c-vp} and 2.9227 MW of minimal F_p .

5) CASE5 CONSIDERING FUEL COST, ACTIVE POWER LOSS AND EMISSION SIMULTANEOUSLY

To certify the superiority of proposed NHBA-CPFD algorithm comprehensively, the more difficult optimization trials with three objectives are studied in this paper.

In *CASE5*, three competing objectives of F_c , F_p and F_e are optimized concurrently. The PFs respectively obtained by MOPSO, NSGA-III, NHBA and NHBA-CPFD algorithms are shown in Figure 12. Table 12 shows the control variables of achieved BC solutions and three boundary solutions found by NHBA-CPFD algorithm including *C5.F* (the solution

FIGURE 5. PFs based on different maximum iterations.

with minimum fuel cost), C5.P (the solution with minimum power loss) and C5.E (the solution with minimum emission). It intuitively states that the BC solution obtained by NHBA algorithm includes 868.7380 \$/h of F_c , 4.1744 MW of F_p and 0.2111 ton/h of F_e . The BC solution obtained

FIGURE 6. PFs based on different minimum value of ωc .

FIGURE 7. PFs based on different maximum value of ω c.

by NHBA-CPFD algorithm includes 865.4229 \$/h of F_c , 4.3535 MW of F_p and 0.2116 ton/h of F_e .

In addition, the C5.F includes 799.3578 \$/h of minimal F_c . The C5.E includes 0.1943 ton/h of minimal F_e and the C5.P includes 3.0176 MW of minimal F_p .

6) CASE6 CONSIDERING FUEL COST WITH VALUE-POINT, ACTIVE POWER LOSS AND EMISSION SIMULTANEOUSLY

In *CASE6*, three objectives of F_{c-vp} , F_p and F_e are optimized concurrently and the obtained PFs are shown in Figure 13. The control variables of BC solutions obtained by NHBA and NHBA-CPFD algorithms, compared with the results obtained by MOPSO and NSGA-III methods, are shown in Table 13.

For *CASE6*, three boundary solutions found by NHBA-CPFD algorithm including C6.Fv (the solution with minimum fuel cost with value-point), C6.P (the solution with minimum power loss) and C6.E (the solution with minimum emission) are listed on Table 13 as well.

More specifically, the BC solution achieved by NHBA algorithm includes 964.8493 \$/h of F_{c-vp} , 3.9018 MW of F_p and 0.2047 ton/h of F_e . The BC solution achieved by

FIGURE 8. PFs obtained by different algorithms for CASE1.

NHBA-CPFD algorithm includes 962.8123 \$/h of F_{c-vp} , 3.9637 MW of F_p and 0.2041 ton/h of F_e . Besides, the C6.Fv includes 904.6377 \$/h of minimal F_{c-vp} . The C6.E includes 0.1943 ton/h of minimal F_e and the C6.P includes 2.9541 MW of minimal F_p .

D. TRIALS ON IEEE 57-NODE SYSTEM

To explore the universal applicability of proposed NHBA-CPFD algorithm, simulation cases of MOOPF problems on the IEEE 57-node system are discussed.

1) CASE7 CONSIDERING BASIC FUEL COST AND EMISSION SIMULTANEOUSLY

In *CASE7*, two objectives of F_c and F_e are optimized simultaneously. The obtained PFs are shown in Figure 14. In addition, the 33-dimensional control variables of BC solutions and two boundary solutions (*C7.F* and *C7.E*) found by NHBA-CPFD algorithm are shown in Table 14. In detail, the BC solution achieved by NHBA algorithm includes 43244.5741 \$/h of F_c and 1.2192 ton/h of F_e . The BC solution obtained by NHBA-CPFD algorithm includes 43221.5876 \$/h of F_c and 1.2164 ton/h of F_e . In addition, the *C7.F* includes 41678.6457 \$/h of minimal F_c and 1.6319 ton/h of F_e . The *C7.E* includes 48186.3156 \$/h of F_c and 1.0271 ton/h of minimal F_e .

2) CASE8 CONSIDERING BASIC FUEL COST AND ACTIVE POWER LOSS SIMULTANEOUSLY

In *CASE8*, two objectives of F_c and F_p are optimized simultaneously. The PFs respectively achieved by the NBHA-CPFD algorithm and the other three methods are shown in Figure 15. Table 15 gives the control variables of obtained BC solutions and two boundary solutions (*C8.F* and *C8.P*) found by NHBA-CPFD algorithm. As can be seen from Table 15, the BC solution obtained by NHBA algorithm includes 41934.2468 \$/h of F_c and 11.0174 MW of F_p . The BC solution achieved by NHBA-CPFD algorithm includes

TABLE 6. Main parameters of MOPSO, NSGA-III, NHBA and NHBA-CPFD algorithms.

parameters	MOPSO	NSGA-III	NHBA/NHBA-CPFD
size of population	100	100	100
size of EAP	100	100	100
maximum iterations	500	500	500
<i>c1/c2</i>	2		
mutation indictor/ percentage		20/1	
crossover indictor/ percentage		20/0.1	
number of divisions		10	
mutant weighting factor F_m			0.6
crossover coefficient F_c			0.8
$\omega c(\min/\max)$		-	0.4/0.9
fr(min/max)			0/2
R(min/max)			0.1/0.5
L(min/max)			0.5/0.95

TABLE 7. Specific solutions and control variables of CASE1.

control variables	MOPSO	NSGA-III	NHBA	NHBA-CPFD	C1.E	C1.F	BSA [38]
P _{G2} (MW)	59.3113	56.9231	58.1990	58.3448	73.4104	47.9982	59.3719
$P_{G5}(MW)$	25.3313	28.6463	25.6741	26.0838	50.0000	20.9138	27.6576
$P_{G8}(MW)$	32.1623	34.7837	27.0218	34.3432	35.0000	20.5543	34.9989
$P_{G11}(MW)$	24.3430	28.6194	26.3626	26.0900	30.0000	12.6536	27.0652
$P_{G13}(MW)$	29.2546	26.0422	31.3704	26.3332	40.0000	12.0000	26.4502
$V_{G1}(p.u.)$	1.0948	1.1000	1.1000	1.1000	1.0596	1.1000	1.1000
$V_{G2}(p.u.)$	1.0839	1.0805	1.0890	1.0931	1.0483	1.0887	1.0855
V _{G5} (p.u.)	1.0417	1.0649	1.0537	1.0564	1.0233	1.0648	1.0606
$V_{G8}(p.u.)$	1.0686	1.0654	1.0639	1.0545	1.0326	1.0730	1.0757
V _{G11} (p.u.)	1.0738	1.0913	1.0880	1.0724	1.0618	1.0534	1.1000
V _{G13} (p.u.)	1.0875	1.0945	1.0517	1.0946	1.0733	1.0516	1.1000
T ₁₁ (p.u.)	1.1000	0.9225	1.0711	0.9900	0.9609	1.0027	1.0000
T ₁₂ (p.u.)	1.0848	1.0482	0.9304	0.9135	1.0032	1.0094	0.9500
T ₁₅ (p.u.)	0.9890	0.9844	1.1000	1.0032	0.9670	1.0280	1.0000
T ₃₆ (p.u.)	1.0067	1.0127	1.0097	0.9414	1.0231	1.0213	0.9625
Q _{C10} (p.u.)	0.0423	0.0103	0.0299	0.0297	0.0303	0.0232	3.4844(Mvar)
Q _{C12} (p.u.)	0.0086	0.0348	0.0473	0.0043	0.0203	0.0072	4.5129(Mvar)
Q _{C15} (p.u.)	0.0234	0.0225	0.0157	0.0202	0.0137	0.0161	4.7990(Mvar)
Q _{C17} (p.u.)	0.0229	0.0043	0.0450	0.0296	0.0149	0.0201	4.9965(Mvar)
Q _{C20} (p.u.)	0.0018	0.0493	0.0291	0.0357	0.0298	0.0103	3.9809(Mvar)
Q _{C21} (p.u.)	0.0000	0.0384	0.0333	0.0042	0.0308	0.0243	4.7684(Mvar)
Q _{C23} (p.u.)	0.0435	0.0120	0.0500	0.0236	0.0139	0.0077	3.8535(Mvar)
Q _{C24} (p.u.)	0.0500	0.0381	0.0235	0.0500	0.0401	0.0398	4.2332(Mvar)
Q _{C29} (p.u.)	0.0337	0.0380	0.0088	0.0261	0.0400	0.0474	1.6339(Mvar)
Emission(ton/h)	0.2500	0.2423	0.2375	0.2350	0.1943	0.3309	0.2425
Fuel cost(\$/h)	832.1254	836.4405	832.6471	830.9592	955.0343	799.7640	835.0199

TABLE 8. Comparison results of BC solutions for CASE1.

comparison	Fuel cost(\$/h)	Emission(ton/h)
NHBA	832.6471	0.2375
NHBA-CPFD	830.9592	0.2350
BSA [38]	835.0199	0.2425
MOEA/D [18]	833.72	0.2438
ESDE-MC [39]	830.7185	0.2483
MGBICA [40]	830.8514	0.2484
AGSO [41]	843.5473	0.2539

41925.5743 \$/h of F_c and 10.9884 MW of F_p . Besides, the *C8.P* includes 43052.0891 \$/h of F_c and 9.9299 MW of minimal F_p . And the *C8.F* includes 41655.1128 \$/h of minimal F_c and 14.4357 MW of F_p .

E. TRIALS ON IEEE 118-NODE SYSTEM

The IEEE 118-node system is employed to evaluate the effectiveness of proposed NHBA-CPFD algorithm on larger scale systems.

IEEE Access

TABLE 9. Specific solutions and control variables of CASE2.

control variables	MOPSO	NSGA-III	NHBA	NHBA-CPFD	C2.F	C2.P	MOEA/D [18]
$P_{G2}(MW)$	80.0000	51.3612	54.7737	52.6991	49.4563	80.0000	53.572
$P_{G5}(MW)$	25.9706	32.5928	34.1273	32.0940	21.8309	50.0000	32.890
$P_{G8}(MW)$	35.0000	34.1453	35.0000	34.9082	22.1551	35.0000	34.993
$P_{G11}(MW)$	11.1284	28.9390	26.3571	26.9260	11.4655	30.0000	28.244
$P_{G13}(MW)$	20.7805	20.8168	20.5383	22.2317	12.0000	39.8845	21.963
$V_{G1}(p.u.)$	1.1000	1.0187	1.0993	1.1000	1.1000	1.1000	1.1000
$V_{G2}(p.u.)$	1.0888	1.0059	1.0857	1.0912	1.0884	1.0981	1.0920
$V_{G5}(p.u.)$	1.0806	0.9810	1.0629	1.0683	1.0629	1.0788	1.0690
V _{G8} (p.u.)	1.0746	0.9923	1.0749	1.0762	1.0684	1.0940	1.0793
$V_{G11}(p.u.)$	1.1000	1.0884	1.0754	1.1000	1.1000	1.0930	1.1000
V _{G13} (p.u.)	1.1000	1.0622	1.0984	1.1000	1.0950	1.0921	1.0999
$T_{11}(p.u.)$	1.1000	0.9293	0.9911	0.9954	1.0580	0.9759	1.0617
$T_{12}(p.u.)$	0.9000	0.9645	0.9871	0.9444	0.9035	1.0230	0.9000
$T_{15}(p.u.)$	1.0338	0.9569	0.9802	0.9918	1.0116	1.0116	0.9953
T ₃₆ (p.u.)	0.9978	0.9246	0.9628	0.9852	0.9983	0.9866	0.9700
$Q_{C10}(p.u.)$	0.0182	0.0433	0.0169	0.0098	0.0079	0.0329	5.000(Mvar)
$Q_{C12}(p.u.)$	0.0182	0.0194	0.0000	0.0246	0.0491	0.0411	5.000(Mvar)
Q _{C15} (p.u.)	0.0500	0.0464	0.0297	0.0500	0.0448	0.0458	4.503(Mvar)
Q _{C17} (p.u.)	0.0299	0.0154	0.0391	0.0074	0.0000	0.0393	5.000(Mvar)
Q _{C20} (p.u.)	0.0361	0.0473	0.0108	0.0031	0.0100	0.0242	4.592(Mvar)
$Q_{C21}(p.u.)$	0.0495	0.0210	0.0500	0.0251	0.0184	0.0389	4.960(Mvar)
Q _{C23} (p.u.)	0.0430	0.0422	0.0264	0.0201	0.0141	0.0097	3.069(Mvar)
$Q_{C24}(p.u.)$	0.0003	0.0102	0.0500	0.0430	0.0396	0.0500	4.994(Mvar)
Q _{C29} (p.u.)	0.0491	0.0148	0.0500	0.0412	0.0283	0.0261	2.500(Mvar)
Fuel cost(\$/h)	837.6251	835.0259	835.1034	831.8513	799.3296	966.8891	835.36
Power loss(MW)	5.9861	5.9213	5.0658	5.1096	8.5486	2.9023	4.9099

TABLE 10. Specific solutions and control variables of CASE3.

control variables	MOPSO	NSGA-III	NHBA	NHBA-CPFD	C3.Fv	C3.E
$P_{G2}(MW)$	78.6222	59.7779	63.1732	60.6335	43.0864	73.6854
$P_{G5}(MW)$	17.8190	23.8525	26.6166	22.6786	19.3741	50.0000
$P_{G8}(MW)$	32.6052	35.0000	31.7927	33.9594	10.7656	35.0000
$P_{G11}(MW)$	15.6309	21.4682	15.8564	19.2115	10.4091	30.0000
$P_{G13}(MW)$	16.4559	18.6308	17.8631	19.2282	12.0000	40.0000
$V_{G1}(p.u.)$	1.0993	1.0576	1.0984	1.0848	1.1000	1.0861
$V_{G2}(p.u.)$	1.0835	1.0460	1.0858	1.0684	1.0778	1.0717
$V_{G5}(p.u.)$	1.0412	1.0201	1.0502	1.0596	1.0595	1.0231
V _{G8} (p.u.)	1.0797	1.0339	1.0631	1.0658	1.0609	1.0358
V _{G11} (p.u.)	1.0907	1.0927	1.0564	1.0064	1.0470	1.0712
V _{G13} (p.u.)	1.0685	1.0926	1.0363	1.0495	1.0905	0.9897
$T_{11}(p.u.)$	1.0168	0.9929	1.0319	1.0801	1.0711	1.0383
$T_{12}(p.u.)$	1.1000	0.9125	1.0215	0.9675	0.9675	0.9431
T ₁₅ (p.u.)	1.1000	0.9551	1.0002	1.1000	1.0639	1.0266
T ₃₆ (p.u.)	1.0312	0.9619	0.9963	1.0374	1.0134	0.9418
Q _{C10} (p.u.)	0.0428	0.0368	0.0234	0.0472	0.0470	0.0394
Q _{C12} (p.u.)	0.0123	0.0362	0.0033	0.0071	0.0182	0.0003
Q _{C15} (p.u.)	0.0082	0.0313	0.0348	0.0057	0.0098	0.0120
Q _{C17} (p.u.)	0.0000	0.0208	0.0428	0.0083	0.0152	0.0138
Q _{C20} (p.u.)	0.0453	0.0189	0.0235	0.0500	0.0389	0.0348
$Q_{C21}(p.u.)$	0.0243	0.0330	0.0325	0.0493	0.0500	0.0478
Q _{C23} (p.u.)	0.0500	0.0478	0.0110	0.0379	0.0500	0.0390
Q _{C24} (p.u.)	0.0500	0.0098	0.0372	0.0448	0.0299	0.0456
Q _{C29} (p.u.)	0.0021	0.0466	0.0145	0.0477	0.0367	0.0406
F _{cost} with v-p(\$/h)	862.2820	861.7320	854.3882	855.5369	831.6332	1023.2904
Emission(ton/h)	0.2598	0.2537	0.2598	0.2585	0.3727	0.1944

1) CASE9 CONSIDERING BASIC FUEL COST AND EMISSION SIMULTANEOUSLY

The BC solution achieved by NHBA-CPFD algorithm includes 60402.7420 \$/h of F_c and 2.5274 ton/h of F_e .

In *CASE9*, two competing objectives of F_c and F_e are optimized at the same time. The obtained PFs are shown in Figure 16. Additionally, Table 16 gives the control variables of BC solutions.

In detail, the BC solution obtained by NHBA algorithm includes 60694.5466 \$/h of F_c and 2.6445 ton/h of F_e .

2) CASE10 CONSIDERING BASIC FUEL COST AND ACTIVE POWER LOSS SIMULTANEOUSLY

In *CASE10*, the F_c and F_p are optimized concurrently and the obtained PFs are shown in Figure 17. The control variables of BC solutions achieved by NHBA and NHBA-CPFD

FIGURE 9. PFs obtained by different algorithms for CASE2.

FIGURE 10. PFs obtained by different algorithms for CASE3.

FIGURE 11. PFs obtained by different algorithms for CASE4.

algorithms, in contrast to the results achieved by MOPSO and NSGA-III methods, are listed in Table 17. In detail, the BC solution achieved by NHBA algorithm includes

FIGURE 12. PFs obtained by different algorithms for CASE5.

FIGURE 13. PFs obtained by different algorithms for CASE6.

59984.8963 \$/h of F_c and 55.1909 MW of F_p . The BC solution achieved by NHBA-CPFD algorithm includes 59589.2455 \$/h of F_c and 55.0038 MW of F_p .

VI. PERFORMANCE EVALUATION

To evaluate the distribution and diversity of POS obtained by different methods, the GD and HV metrics are adopted in this paper.

A. GD

The detailed characterization of GD index can be found in [19], [42], [43] and the formula of GD is shown as (46). For MOOPF problems, the GD index is used to measure the distance between the real PF and the obtained one. Generally speaking, the closer to zero GD index is, the PF which is more in conformity with the real one can be achieved.

$$GD = \sqrt{\sum_{i=1}^{n} de_i^2} / N_a \tag{46}$$

MOPSO

4.5

FIGURE 14. PFs obtained by different algorithms for CASE7.

FIGURE 15. PFs obtained by different algorithms for CASE8.

where de_i represents the Euclidean distance between each solution of obtained POS and the nearest one in the real PF.

The POS of six testing cases on the IEEE 30-node system are analyzed by GD index. The boxplots of *CASE1*~*CASE6* are shown in Figure 18.

Boxplot, a statistical tool to describe the dispersion of data, can visually display the maximum, minimum, median, upper and lower quartile, even outliers of a dataset. For MOOPF problems, the closer boxplots and fewer outliers mean the better convergence to the real PF.

Furthermore, Table 18 shows the mean and standard deviation of GD index for *CASE1*~*CASE3* while Table 19 shows the mean and standard deviation of GD index for *CASE4*~*CASE6*.

Figure 18 clearly shows that the NHBA-CPFD algorithm achieves closer boxplots and fewer outliers in all six cases on the IEEE 30-node system. In contrast to the typical MOPSO and NSGA-III algorithms, the NHBA algorithm

x 10 6.5 ∟

FIGURE 17. PFs obtained by different algorithms for CASE10.

can obtain superior POS in most cases (*CASE1*~*CASE2*and *CASE5*~*CASE6*). Furthermore, Table 18 and Table 19 quantitatively demonstrate that the NHBA-CPFD algorithm can obtain the smallest mean and deviation of GD index compared with other three methods.

In summary, the NHBA-CPFD algorithm is able to achieve the stable operation and it can find a uniformly distributed PF which is better consistent with the real one. In Addition, the NHBA algorithm performs well in GD index for most cases except *CASE3* and *CASE4*. The effectiveness and superiority of presented NHBA-CPFD algorithm can be verified powerfully by the computer graphics technology and dataset analysis.

B. HV

The HV index can be described as (47) [19], [42]. For MOOPF problems, the HV index represents the volume

TABLE 11. Specific solutions and control variables of CASE4.

control variables	MOPSO	NSGA-III	NHBA	NHBA-CPFD	C4.Fv	C4.P
$P_{G2}(MW)$	50.0929	43.1222	52.3984	47.1580	41.7416	79.8105
$P_{G5}(MW)$	32.6432	30.9247	31.9677	31.1918	17.6358	49.6358
$P_{G8}(MW)$	35.0000	34.9731	34.6347	34.8780	14.5270	35.0000
$P_{G11}(MW)$	24.0127	26.2895	19.6335	27.1173	10.2522	30.0000
$P_{G13}(MW)$	15.4112	18.9959	20.2407	15.0551	12.0000	38.5822
V _{G1} (p.u.)	1.0971	1.0992	1.0992	1.1000	1.1000	1.1000
$V_{G2}(p.u.)$	1.0815	1.0841	1.0922	1.0867	1.0786	1.0959
V _{G5} (p.u.)	1.0654	1.0559	1.0697	1.0666	1.0267	1.0763
V _{G8} (p.u.)	1.0673	1.0657	1.0804	1.0745	1.0609	1.0805
V _{G11} (p.u.)	1.0784	1.0749	1.0972	1.0856	1.0309	1.0979
V _{G13} (p.u.)	1.1000	1.0955	1.0707	1.0883	1.0676	1.1000
T ₁₁ (p.u.)	1.0824	0.9480	1.0257	0.9950	0.9911	0.9990
$T_{12}(p.u.)$	0.9031	0.9904	0.9754	0.9497	0.9807	0.9520
T ₁₅ (p.u.)	0.9807	1.0182	0.9818	1.0220	1.0321	0.9906
T ₃₆ (p.u.)	0.9876	0.9741	0.9868	0.9774	0.9670	0.9765
Q _{C10} (p.u.)	0.0500	0.0120	0.0276	0.0344	0.0260	0.0197
Q _{C12} (p.u.)	0.0363	0.0281	0.0277	0.0398	0.0170	0.0473
Q _{C15} (p.u.)	0.0367	0.0498	0.0242	0.0459	0.0085	0.0353
Q _{C17} (p.u.)	0.0144	0.0470	0.0256	0.0098	0.0414	0.0197
Q _{C20} (p.u.)	0.0194	0.0480	0.0397	0.0413	0.0036	0.0500
Q _{C21} (p.u.)	0.0422	0.0483	0.0310	0.0054	0.0456	0.0322
Q _{C23} (p.u.)	0.0099	0.0361	0.0315	0.0085	0.0490	0.0158
Q _{C24} (p.u.)	0.0370	0.0078	0.0269	0.0416	0.0229	0.0444
Q _{C29} (p.u.)	0.0267	0.0375	0.0205	0.0303	0.0120	0.0184
F _{cost} with v-p(\$/h)	868.1006	865.9864	868.9526	865.9106	833.3204	1022.0654
Power loss (MW)	5.6962	5.6847	5.6761	5.6726	10.4024	2.9227

TABLE 12. Specific solutions and control variables of CASE5.

•

control variables	MOPSO	NSGA-III	NHBA	NHBA-CPFD	C5.F	C5.E	C5.P	MOEA/D [18]
$P_{G2}(MW)$	57.8898	61.1591	66.8699	62.5608	49.4783	73.5913	80.0000	59.93
$P_{G5}(MW)$	36.2905	41.2353	36.8331	35.4638	21.0250	50.0000	50.0000	44.22
$P_{G8}(MW)$	35.0000	34.6782	34.2827	35.0000	21.5292	35.0000	35.0000	35.00
$P_{G11}(MW)$	29.2712	30.0000	27.6650	28.9848	13.1851	30.0000	30.0000	30.00
$P_{G13}(MW)$	40.0000	39.1884	30.2493	31.6893	12.0000	40.0000	40.0000	37.36
V _{G1} (p.u.)	1.0985	1.0472	1.0987	1.1000	1.1000	1.0942	1.1000	1.1000
V _{G2} (p.u.)	1.0869	1.0378	1.0947	1.0915	1.0891	1.0910	1.1000	1.0949
V _{G5} (p.u.)	1.0625	1.0068	1.0634	1.0671	1.0643	1.0784	1.0818	1.0786
V _{G8} (p.u.)	1.0767	1.0213	1.0815	1.0790	1.0687	1.0778	1.0849	1.0855
V _{G11} (p.u.)	1.0857	1.0523	1.0925	1.0254	1.0902	1.0456	1.0461	1.1000
V _{G13} (p.u.)	1.0386	1.0173	1.0986	1.0186	1.1000	1.0409	1.0580	1.0997
T ₁₁ (p.u.)	1.0861	1.0036	0.9906	1.0544	0.9796	1.0747	1.0411	1.0715
T ₁₂ (p.u.)	0.9933	0.9679	0.9718	0.9829	1.0061	1.0141	1.0133	0.9000
T ₁₅ (p.u.)	1.0515	0.9689	0.9868	1.0202	1.0164	1.0628	1.0777	0.9913
T ₃₆ (p.u.)	1.0770	0.9593	0.9750	1.0180	0.9714	0.9909	1.0176	0.9706
Q _{C10} (p.u.)	0.0140	0.0214	0.0494	0.0136	0.0493	0.0175	0.0194	4.767(Mvar)
Q _{C12} (p.u.)	0.0223	0.0078	0.0358	0.0012	0.0114	0.0136	0.0088	4.594(Mvar)
Q _{C15} (p.u.)	0.0080	0.0311	0.0013	0.0478	0.0106	0.0491	0.0500	4.514(Mvar)
Q _{C17} (p.u.)	0.0249	0.0407	0.0427	0.0437	0.0276	0.0350	0.0345	4.348(Mvar)
Q _{C20} (p.u.)	0.0391	0.0128	0.0417	0.0210	0.0343	0.0161	0.0172	5.000(Mvar)
Q _{C21} (p.u.)	0.0272	0.0197	0.0455	0.0491	0.0120	0.0411	0.0317	4.704(Mvar)
Q _{C23} (p.u.)	0.0103	0.0078	0.0162	0.0303	0.0303	0.0132	0.0117	3.327(Mvar)
Q _{C24} (p.u.)	0.0172	0.0482	0.0346	0.0417	0.0337	0.0500	0.0416	5.000(Mvar)
Q _{C29} (p.u.)	0.0500	0.0129	0.0332	0.0248	0.0415	0.0143	0.0168	1.262(Mvar)
Fuel cost (\$/h)	879.9047	898.5219	868.7380	865.4229	799.3578	954.7997	967.4658	902.54
Emission(ton/h)	0.2165	0.2115	0.2111	0.2116	0.3244	0.1943	0.1950	0.2107
Power loss(MW)	4.2179	4.1419	4.1744	4.3535	8.5443	3.1539	3.0176	3.4594

covered by the obtained PF in the target space. It is used to measure the distribution uniformity and population diversity of POS. In General, the larger HV criteria is, the more widely solution domain can be covered by obtained POS.

$$HV = volume\left(\bigcup_{i=1}^{N_a} V_i\right) \tag{47}$$

TABLE 13. Specific solutions and control variables of CASE6.

control variables	MOPSO	NSGA-III	NHBA	NHBA-CPFD	C6.Fv	C6.P	C6.E
P _{G2} (MW)	80.0000	62.6736	73.7249	76.8300	62.9980	80.0000	71.7231
$P_{G5}(MW)$	50.0000	37.1759	38.0811	34.6788	21.1259	50.0000	50.0000
$P_{G8}(MW)$	35.0000	34.9864	34.6799	35.0000	32.8776	35.0000	35.0000
$P_{G11}(MW)$	24.8476	29.5603	26.3694	30.0000	10.7541	30.0000	30.0000
$P_{G13}(MW)$	19.1432	31.6427	34.7879	33.8819	12.0869	40.0000	40.0000
$V_{G1}(p.u.)$	1.1000	1.0994	1.0964	1.1000	1.0987	1.1000	1.1000
V _{G2} (p.u.)	1.1000	1.0900	1.0916	1.0936	1.0873	1.0998	1.0940
$V_{G5}(p.u.)$	1.1000	1.0761	1.0774	1.0605	1.0613	1.0811	1.0833
V _{G8} (p.u.)	1.0719	1.0811	1.0835	1.0762	1.0723	1.0862	1.0623
$V_{G11}(p.u.)$	1.1000	1.0849	1.0953	1.0531	1.0728	1.0968	1.0767
V _{G13} (p.u.)	1.0897	1.0847	1.0924	1.0931	1.0477	1.1000	1.0796
$T_{11}(p.u.)$	1.0433	1.0002	0.9809	1.0214	1.0657	1.0430	1.0796
$T_{12}(p.u.)$	0.9936	0.9907	1.0111	0.9455	0.9983	0.9000	0.9165
T ₁₅ (p.u.)	0.9903	1.0118	0.9965	1.0391	1.0587	0.9773	1.0013
T ₃₆ (p.u.)	1.0368	0.9905	0.9838	0.9883	1.0404	0.9991	1.0044
$Q_{C10}(p.u.)$	0.0175	0.0089	0.0405	0.0325	0.0180	0.0367	0.0228
$Q_{C12}(p.u.)$	0.0473	0.0221	0.0447	0.0025	0.0084	0.0426	0.0486
Q _{C15} (p.u.)	0.0500	0.0271	0.0089	0.0357	0.0274	0.0420	0.0413
Q _{C17} (p.u.)	0.0000	0.0394	0.0264	0.0318	0.0078	0.0407	0.0425
Q _{C20} (p.u.)	0.0500	0.0083	0.0366	0.0233	0.0451	0.0216	0.0214
$Q_{C21}(p.u.)$	0.0500	0.0211	0.0492	0.0422	0.0365	0.0093	0.0145
Q _{C23} (p.u.)	0.0500	0.0269	0.0365	0.0188	0.0107	0.0244	0.0408
Q _{C24} (p.u.)	0.0454	0.0177	0.0205	0.0420	0.0500	0.0082	0.0178
Q _{C29} (p.u.)	0.0500	0.0311	0.0157	0.0446	0.0300	0.0134	0.0211
F_{cost} with v-p(\$/h)	982.4655	971.7659	964.8493	962.8123	904.6377	1026.9732	1019.6235
Power loss(MW)	3.9754	4.1318	3.9018	3.9637	7.4745	2.9541	3.2668
Emission(ton/h)	0.2093	0.2095	0.2047	0.2041	0.2869	0.1949	0.1943

TABLE 14. Specific solutions and control variables of CASE7.

control variables	MOPSO	NSGA-III	NHBA	NHBA-CPFD	C7.E	C7.F
P _{G2} (MW)	97.5669	99.7273	99.4683	99.9912	100.0000	100.0000
$P_{G3}(MW)$	96.8167	90.1018	91.7357	95.9130	140.0000	41.4411
$P_{G6}(MW)$	99.0831	99.7778	99.9067	99.7928	100.0000	94.9631
$P_{G8}(MW)$	324.9300	338.9631	353.2901	357.0414	271.7851	437.9550
$P_{G9}(MW)$	99.0032	99.9404	100.0000	99.7146	100.0000	94.4472
$P_{G12}(MW)$	325.6119	312.1681	298.7424	296.4971	237.6294	358.9421
$V_{G1}(p.u.)$	1.1000	1.0693	1.0989	1.0999	1.1000	1.1000
$V_{G2}(p.u.)$	1.1000	1.0586	1.0957	1.1000	1.1000	1.0999
$V_{G3}(p.u.)$	1.1000	1.0373	1.0942	1.1000	1.1000	1.1000
V _{G6} (p.u.)	1.1000	1.0462	1.0986	1.0999	1.1000	1.1000
$V_{G8}(p.u.)$	1.1000	1.0431	1.0995	1.0999	1.1000	1.1000
V _{G9} (p.u.)	1.1000	1.0260	1.0994	1.1000	1.1000	1.1000
V _{G12} (p.u.)	1.1000	1.0291	1.0991	1.0998	1.1000	1.0962
T ₁₉ (p.u.)	1.0462	0.9110	1.0977	0.9645	0.9691	0.9614
$T_{20}(p.u.)$	1.0382	1.0976	1.0234	1.0065	0.9890	1.0244
T ₃₁ (p.u.)	1.0307	0.9180	1.0882	1.0022	1.0140	0.9866
T ₃₅ (p.u.)	1.0905	0.9739	0.9485	1.0190	1.0623	0.9738
T ₃₆ (p.u.)	1.0925	0.9237	1.0853	1.0185	0.9984	1.0451
T ₃₇ (p.u.)	1.0664	1.0210	1.0399	1.0142	1.0638	0.9888
T ₄₁ (p.u.)	1.0223	1.0350	1.0509	0.9919	1.0096	0.9936
T ₄₆ (p.u.)	0.9431	1.0072	1.0440	1.0021	1.0298	0.9748
T ₅₄ (p.u.)	0.9878	0.9599	1.0997	1.0646	1.0852	1.0535
T ₅₈ (p.u.)	1.0296	0.9466	1.0449	1.0081	0.9990	1.0165
T ₅₉ (p.u.)	1.0566	0.9294	0.9650	1.0099	1.0010	1.0132
T ₆₅ (p.u.)	1.0353	0.9290	1.0109	1.0184	1.0213	1.0181
T ₆₆ (p.u.)	1.0406	0.9149	0.9932	1.0237	1.0235	1.0304
T ₇₁ (p.u.)	1.0978	0.9628	0.9744	1.0020	1.0060	1.0041
T ₇₃ (p.u.)	1.0935	0.9929	1.0665	1.0094	1.0419	0.9884
T ₇₆ (p.u.)	0.9227	1.0470	1.0662	0.9279	0.9207	0.9312
$T_{80}(p.u.)$	1.0964	0.9798	1.0998	1.0012	1.0037	1.0077
Q _{C18} (p.u.)	0.0558	0.0514	0.2998	0.0473	0.0399	0.0544
Q _{C25} (p.u.)	0.1671	0.1190	0.2006	0.1120	0.1129	0.1293
Q _{C53} (p.u.)	0.1893	0.1092	0.1314	0.1523	0.1464	0.1793
Emission(ton/h)	1.2236	1.2592	1.2192	1.2164	1.0271	1.6319
Fuel cost(\$/h)	43458.9119	43323.7670	43244.5741	43221.5876	48186.3156	41678.6457

control variables	MOPSO	NSGA-III	NHBA	NHBA-CPFD	C8.P	C8.F
P _{G2} (MW)	87.5514	74.0796	54.4425	71.7354	34.5143	95.4736
$P_{G3}(MW)$	60.0672	55.9676	60.4878	58.7146	91.6050	45.0297
$P_{G6}(MW)$	90.8522	94.8605	74.2930	80.8100	94.5210	73.2305
$P_{G8}(MW)$	369.5724	376.8044	400.8033	390.0261	329.4453	455.9718
$P_{G9}(MW)$	99.9100	99.9678	99.8446	100.0000	100.0000	91.7225
$P_{G12}(MW)$	410.0000	409.2794	410.0000	410.0000	410.0000	360.7749
$V_{G1}(p.u.)$	1.1000	1.0263	1.0993	1.0996	1.0996	1.0967
V _{G2} (p.u.)	1.1000	1.0225	1.0955	1.0972	1.0960	1.0948
V _{G3} (p.u.)	1.1000	1.0208	1.0912	1.0938	1.0966	1.0881
V _{G6} (p.u.)	1.1000	1.0276	1.0965	1.1000	1.1000	1.0858
V _{G8} (p.u.)	1.1000	1.0360	1.0992	1.0997	1.1000	1.0929
V _{G9} (p.u.)	1.1000	1.0278	1.0877	1.0890	1.0864	1.0818
V _{G12} (p.u.)	1.1000	1.0198	1.0818	1.0911	1.0883	1.0750
T ₁₉ (p.u.)	0.9744	1.0409	1.0570	1.0170	0.9657	1.0455
T ₂₀ (p.u.)	1.0075	0.9002	0.9806	1.0584	1.0043	1.0315
T ₃₁ (p.u.)	0.9741	1.0219	0.9741	1.0230	1.0638	0.9807
T ₃₅ (p.u.)	1.0822	0.9909	1.0983	1.0548	1.0597	1.0736
T ₃₆ (p.u.)	1.0645	1.0362	0.9921	0.9568	0.9911	0.9471
T ₃₇ (p.u.)	0.9864	0.9947	1.0641	0.9723	0.9819	0.9664
T ₄₁ (p.u.)	1.0035	0.9339	1.0337	0.9947	0.9922	0.9811
T ₄₆ (p.u.)	0.9756	0.9540	0.9684	1.0307	1.0226	1.0263
T ₅₄ (p.u.)	0.9530	0.9326	0.9707	0.9453	0.9512	0.9369
T ₅₈ (p.u.)	1.0267	0.9226	0.9805	1.0043	0.9893	1.0118
T ₅₉ (p.u.)	1.0293	0.9214	0.9580	0.9855	1.0071	0.9724
T ₆₅ (p.u.)	1.1000	0.9330	0.9747	0.9821	1.0050	0.9612
T ₆₆ (p.u.)	1.0217	0.9000	0.9416	0.9584	0.9621	0.9543
T ₇₁ (p.u.)	0.9885	0.9058	0.9845	0.9679	0.9672	0.9624
T ₇₃ (p.u.)	0.9638	1.0078	0.9431	1.0178	0.9859	1.0268
T ₇₆ (p.u.)	0.9496	0.9735	1.0493	1.0745	1.0717	1.0581
T ₈₀ (p.u.)	1.0145	0.9391	1.0135	0.9958	0.9822	1.0010
Q _{C18} (p.u.)	0.0340	0.1298	0.1670	0.1054	0.0759	0.1205
Q _{C25} (p.u.)	0.1822	0.1462	0.1508	0.1756	0.1861	0.1605
Q _{C53} (p.u.)	0.0945	0.1374	0.1748	0.1065	0.0825	0.0812
Power loss(MW)	11.0649	11.4066	11.0174	10.9884	9.9299	14.4357
Fuel cost(\$/h)	42029.0946	41983.5570	41934.2468	41925.5743	43052.0891	41655.1128

where V_i indicates the volume formed by the *i*th solution and reference points.

The boxplots of HV index for *CASE1*~*CASE6* are shown in Figure 19. Meanwhile, Table 20 gives the mean and standard deviation of HV index for *CASE1*~*CASE3* while Table 21 gives the details of HV index for *CASE4*~*CASE6*.

It clearly shows that the NHBA and NHBA-CPFD algorithms can achieve larger value of HV index in bi-objective cases on the IEEE 30-node system after eliminating the MOPSO algorithm with many outliers.

However, there is a slight insufficiency that the triobjective optimization cases are not doing well in HV index. Figure 19 shows that compared with MOPSO and NSGA-III methods, the NHBA and NHBA-CPFD algorithms can achieve closer boxplots in most cases on the IEEE 30-node system. The smaller deviations of NHBA and NHBA-CPFD shown on Table 20 and Table 21 effectively illustrate the stability operation of NHBA and NHBA-CPFD algorithms.

C. DOMINANCE RATE OF BC SOLUTIONS

Based on the experimental results shown in Section 5, MOPSO and NSGA-III algorithms can obtain welldistributed PFs only in the small-scale IEEE 30-node system while NHBA and NHBA-CPFD algorithms can achieve uniform-distributed PFs even in the large-scale systems.

In more detail, Table 22 shows the dominant relationships between the BC solutions obtained by the NHBA-CPFD algorithm and the ones obtained by the other three algorithms.

The *U-R* of Table 22 represents that the two BC solutions do not dominate each other based on the objective values. Table 22 intuitively indicates that the BC solutions of the NHBA-CPFD algorithm have the 80% probability to dominate MOPSO algorithm and the 60% probability to dominate NSGA-III and NHBA algorithms. In particular, it is worthy to mention that for the four cases (*CASE7*~*CASE10*) which are carried out on the IEEE 57-node or IEEE 118-node systems,

TABLE 16. Specific solutions and control variables of CASE9.

control	MOPSO	NSGA-III	NHBA	NHBA-	control	MOPSO	NSGA-III	NHBA	NHBA-
variables	merse	115G/T III	THIB!!	CPFD	variables		inson m		CPFD
$P_{G4}(MW)$	15.8872	24.2017	18.2941	5.2108	$V_{G26}(p.u.)$	1.0218	1.0754	0.9868	0.9788
$P_{G6}(MW)$	6.8991	16.8434	21.4065	7.6500	V _{G27} (p.u.)	1.0145	1.0509	0.9836	1.0190
$P_{G8}(MW)$	8.8348	7.3094	15.8496	8.4912	$V_{G31}(p.u.)$	1.03/5	1.0794	0.9864	1.0095
$P_{G10}(MW)$	216.4285	2/8.5921	207.1529	236.56/17	$V_{G32}(p.u.)$	0.9814	0.9869	1.0013	1.0368
$P_{G12}(MW)$	251.5344	150.0178	198.4023	188.9828	$V_{G34}(p.u.)$	0.9641	0.9975	1.0147	1.0293
$P_{G15}(MW)$	20.7546	24.2361	22.4010	18.1/6/	$V_{G36}(p.u.)$	0.9599	1.0544	1.0052	1.0329
$\mathbf{P}_{G18}(\mathbf{W}, \mathbf{W})$	23.0000	5 7621	\$ 0078	5 4255	$V_{G40}(p.u.)$	1.0220	0.0011	1.0412	1.0209
$\mathbf{P}_{G19}(\mathbf{W}, \mathbf{W})$	5.1272	10.0053	8 7010	11 0303	$V_{G42}(p.u.)$	1.0320	1.0366	1.0182	1.0320
$P_{G24}(WW)$	107 6419	100.861	100 7158	100.0390	$V_{G46}(p.u.)$	1.0494	0.9864	0.0068	1.0155
$P_{G25}(WW)$	107.0419	100.801	111 4576	103.0140	$V_{G49}(p.u.)$	1.0470	0.9804	0.9908	0.0006
$P_{\text{G26}}(WW)$	12 5823	13 2068	12 2746	8 5944	$V_{G54}(p.u.)$	1.0571	0.9815	0.9870	0.9900
$P_{G27}(WW)$	18 1318	10.7255	0 0008	20 3871	$V_{G55}(p.u.)$	1.0762	0.9903	1.0222	0.9923
$P_{cas}(WW)$	52 3239	47 5384	55 1529	42 3822	$V_{GS6}(p.u.)$	0.9915	1.0601	1.0222	1.0131
$P_{G32}(WW)$	14 5950	21 8714	15 6786	14 4781	$V_{GS}(p.u.)$	1.0908	1.0001	0.9997	1.0022
$P_{C24}(MW)$	42 1874	25,0000	25 2626	25,0000	$V_{co}(\mathbf{p},\mathbf{u})$	1.0300	0.9759	1.0078	1.0022
$P_{G36}(MW)$	9 7413	12 7501	11 6654	9 4283	$V_{G62}(p.u.)$	1.0752	1.0260	0.9964	0.9912
$P_{G40}(MW)$	9 7946	12.0613	9.0105	8 1586	$V_{GG}(\mathbf{p},\mathbf{u})$	1.0194	0.9750	1 0041	1.0348
$P_{G42}(MW)$	30 5225	48 9436	74 7918	50.8135	$V_{G00}(p.u.)$	1.0225	0.9453	0.9787	1.0122
$P_{G40}(MW)$	197 8519	250,0000	219 8476	223 6021	$V_{G_{0}}(p.u.)$	1.0160	1 0490	1 0348	1.0321
$P_{C54}(MW)$	204 8801	146 9598	142.0671	148 1755	$V_{G70}(p.u.)$	1.0298	1.0603	1.0019	0.9868
$P_{CSS}(MW)$	25 4822	27 2273	44 7841	32 3898	$V_{G72}(p.u.)$	0.9750	0.9751	0.9806	0.9889
$P_{GS}(MW)$	26.9217	25.1975	27.5473	39,1927	$V_{G74}(p.11.)$	0.9749	0.9437	1.0006	0.9825
$P_{GS0}(MW)$	50,0000	94 5396	56 3647	54 6768	$V_{G76}(p_{11})$	1.0512	1.0302	1.0087	1.0322
$P_{G4}(MW)$	154 9293	140 7908	139 2697	125.0486	$V_{070}(p.u.)$	1.0877	1.0403	1 0109	1 0284
$P_{G62}(MW)$	57.9668	40.1860	50.2893	77.2332	$V_{GM}(\mathbf{p},\mathbf{u})$	1.0795	1.0140	1.0116	1.0258
$P_{G62}(MW)$	352,5528	406.9774	398.3242	416.8112	$V_{Ges}(p.u.)$	0.9589	0.9932	0.9964	0.9782
$P_{G66}(MW)$	247.2315	202.4889	275.0035	254.0173	$V_{G87}(p.u.)$	0.9787	1.0352	0.9671	0.9937
$P_{G69}(MW)$	35.5373	40.7117	42.5779	30.0000	$V_{G89}(p.u.)$	1.0481	0.9996	1.0140	1.0327
$P_{G70}(MW)$	10.0351	10.0133	22.8390	21.0943	$V_{G^{(0)}}(\mathbf{p},\mathbf{u},\mathbf{u})$	1.0345	1.0211	1.0118	0.9959
$P_{G72}(MW)$	8.7784	5.5414	12.5439	7.3244	$V_{G91}(p.u.)$	1.0972	0.9712	0.9935	1.0075
$P_{G73}(MW)$	5.8829	5.8237	5.3950	8.8796	$V_{G92}(p.u.)$	1.0576	1.0204	0.9890	1.0243
P _{G74} (MW)	74.7998	30.6864	30.8662	28.0854	V _{G99} (p.u.)	1.0945	1.0937	0.9811	1.0296
P _{G76} (MW)	36.0810	25.9036	29.4534	34.9853	V _{G100} (p.u.)	0.9945	1.0234	1.0208	1.0362
P _{G77} (MW)	166.3017	166.3802	175.6678	211.7833	V _{G103} (p.u.)	1.0169	1.0538	0.9853	1.0013
P _{G80} (MW)	40.4215	25.8462	33.6241	58.2015	V _{G104} (p.u.)	1.0085	1.0169	0.9929	1.0111
P _{G85} (MW)	10.1321	10.1511	12.9354	21.2169	V _{G105} (p.u.)	0.9967	1.0023	1.0143	1.0084
P _{G87} (MW)	173.5865	227.9653	170.5792	161.4976	V _{G107} (p.u.)	1.0768	1.0012	1.0416	1.0000
P _{G89} (MW)	177.3745	73.3096	69.4068	75.4951	V _{G110} (p.u.)	1.0622	1.0093	0.9770	1.0198
$P_{G90}(MW)$	16.4651	9.8098	8.6340	10.5362	V _{G111} (p.u.)	1.0998	1.0129	0.9985	1.0196
$P_{G91}(MW)$	46.1355	29.0455	38.4998	30.0587	V _{G112} (p.u.)	1.0425	1.0280	0.9722	1.0208
$P_{G92}(MW)$	121.7730	137.3909	163.4723	139.7410	V _{G113} (p.u.)	1.0904	1.0215	1.0020	1.0192
$P_{G99}(MW)$	205.5028	146.57345	125.1281	120.6078	V _{G116} (p.u.)	1.0527	0.9841	1.0060	1.0557
$P_{G100}(MW)$	114.6704	172.8365	152.7393	192.6256	T ₈ (p.u.)	1.0159	1.0169	1.0796	0.9604
$P_{G103}(MW)$	8.0627	13.2622	10.2447	11.4028	$T_{32}(p.u.)$	1.0738	1.0030	1.0509	1.0021
$P_{G104}(MW)$	30.7767	30.9723	44.3370	29.4859	$T_{36}(p.u.)$	1.0325	0.9152	0.9199	0.9932
$P_{G105}(MW)$	25.0000	41.4724	62.1228	33.0573	$T_{51}(p.u.)$	0.9577	0.9923	0.9607	0.9414
$P_{G107}(MW)$	9.4323	12.8313	16.1199	14.1175	T ₉₃ (p.u.)	0.9092	0.9141	0.9230	0.9678
$P_{G110}(MW)$	25.2439	25.1653	38./9/8	33.5484	1 ₉₅ (p.u.)	1.0809	1.0085	1.0833	1.0148
$P_{G111}(MW)$	26.0875	64.6183	36.3168	37.6015	$T_{102}(p.u.)$	1.0057	1.0483	1.0206	0.9220
$P_{G112}(MW)$	25.9478	42.2265	43./880	52.5831	$T_{107}(p.u.)$	1.0462	1.0878	1.0759	0.9021
$P_{G113}(WW)$	49.0910	93.8738	38.1490	32.3439	$T_{127}(p.u.)$	0.9101	0.9074	1.0441	1.0275
$\Gamma_{G116}(WW)$	1 0272	29.7725	1 0072	1 0081	$Q_{C34}(p.u.)$	0.0447	0.2100	0.1339	0.1558
$V_{GI}(p.u.)$	1.0275	0.9878	0.0015	1.0081	$Q_{C44}(p.u.)$	0.0792	0.1785	0.1325	0.1274
$V_{G4}(p.u.)$	1.0720	1 0100	1 0102	0.000/	$Q_{C45}(p.u.)$	0.2658	0.2978	0.2840	0.1274
$V_{G6}(p.u.)$	1.0250	1.0109	0.0033	1.0351	$Q_{C46}(p.u.)$	0.2343	0.00054	0.1104	0.2244
$V_{C10}(n_{11})$	0 9997	1 0084	0.9881	0.9910	$O_{C_{48}}(p.u.)$	0 1011	0 1042	0.2268	0 2144
$V_{CD}(p.u.)$	1 0402	1.0004	0.9921	0 9849	$\Omega_{C70}(p,u,)$	0.0030	0.0782	0.0470	0 1977
$V_{G12}(p.u.)$	1.0693	1.0061	1.0106	1.0421	$O_{cos}(n n)$	0.1612	0.2642	0.2484	0.0983
$V_{GB}(n n)$	1.0650	1.0522	0.9887	0.9783	$O_{C^{2}}(n_{11})$	0.1521	0.2417	0.2077	0.1310
$V_{G10}(n.11.)$	0.9847	0.9748	1.0158	1.0430	$O_{C105}(n.11.)$	0.2851	0.0780	0.2263	0.2606
$V_{G24}(p.u.)$	1.0175	1.0352	0.9627	1.0526	$O_{C107}(p.u.)$	0.1462	0.0973	0.1985	0.2503
$V_{G25}(p.u.)$	1.0102	0.9595	1.0073	0.9898	$Q_{C110}(p.u.)$	0.1852	0.1640	0.0401	0.0182
022 (F)					Emission	0.7007	2.4015		
					(ton/h)	2.7826	2.4815	2.6445	2.5274
					Fuel cost	60423 2070	60780 8762	60601 5166	60402 7420
					(\$/h)	50725.2770	50700.0702	0007-000	30702./720

the BC solutions obtained by NHBA-CPFD algorithm are more superior to those obtained by NHBA algorithm. It powerfully demonstrates that when adopting the same algorithm, the proposed CPFD strategy is more advantageous than CPM method in dealing with the high-dimensional optimizations of complex systems.

 TABLE 17. Specific solutions and control variables of CASE10.

control variables	MOPSO	NSGA-III	NHBA	NHBA- CPFD	control variables	MOPSO	NSGA-III	NHBA	NHBA- CPFD
Per(MW)	19 9176	5 0000	6 7934	5 1 5 96	Variables	1 0449	0.9895	1.0122	0.9870
$P_{G4}(MW)$	6 8619	22 7851	21 2749	8 3128	$V_{G25}(p.u.)$	1.0201	0.9609	0.9952	0.9750
P _{G8} (MW)	7.7176	7.2779	21.3673	5.3250	$V_{G31}(p.u.)$	1.0339	0.9647	1.0107	1.0027
$P_{G10}(MW)$	150.7075	186.5229	181.5324	223,7947	$V_{G32}(p.u.)$	1.0303	1.0110	0.9961	1.0201
$P_{G12}(MW)$	260.6861	234.1053	182.3484	152.6505	$V_{G34}(p.u.)$	1.0353	1.0121	1.0061	1.0053
P _{G15} (MW)	10.4528	12.5793	22.6105	13.0667	$V_{G36}(p.u.)$	1.0605	1.0005	0.9822	1.0342
P _{G18} (MW)	59.7856	46.8689	57.2657	45.7977	V _{G40} (p.u.)	1.0310	1.0029	0.9576	1.0718
$P_{G19}(MW)$	16.8865	21.1907	5.0637	19.5838	$V_{G42}(p.u.)$	1.0786	1.0358	1.0033	1.0467
$P_{G24}(MW)$	10.3805	8.6509	23.0570	5.0000	V _{G46} (p.u.)	1.0557	1.0185	1.0157	1.0419
$P_{G25}(MW)$	101.3770	127.7909	133.8328	124.2746	V _{G49} (p.u.)	1.0201	1.0061	1.0345	1.0517
$P_{G26}(MW)$	238.0933	218.8530	257.5043	321.1968	V _{G54} (p.u.)	1.0198	1.0029	1.0170	1.0459
$P_{G27}(MW)$	8.6757	12.9486	12.3010	8.1820	V _{G55} (p.u.)	1.0324	1.0008	1.0181	1.0503
$P_{G31}(MW)$	8.0482	21.4135	25.9497	11.8425	V _{G56} (p.u.)	1.0100	1.0195	1.0116	1.0401
$P_{G32}(MW)$	98.1253	50.5916	69.1772	68.6069	V _{G59} (p.u.)	1.0681	1.0258	1.0247	1.0435
$P_{G34}(MW)$	17.0775	8.4393	10.8604	22.2504	V _{G61} (p.u.)	1.0836	1.0104	1.0081	1.0554
$P_{G36}(MW)$	37.1153	69.4697	36.8194	74.4961	V _{G62} (p.u.)	1.0300	1.0289	1.0199	1.0187
$P_{G40}(MW)$	8.0000	9.0326	17.2059	8.2132	V _{G65} (p.u.)	1.0754	1.0118	1.0078	1.0492
$P_{G42}(MW)$	10.4144	21.9630	12.5103	15.0177	V _{G66} (p.u.)	1.0627	1.0595	1.0524	1.0409
$P_{G46}(MW)$	31.2176	53.5697	62.7834	46.5214	V _{G69} (p.u.)	1.0254	1.0453	1.0161	1.0204
$P_{G49}(MW)$	238.9606	164.9918	150.8057	93.7033	V _{G70} (p.u.)	1.0291	0.9785	0.9888	1.0645
$P_{G54}(MW)$	191.5523	216.8517	232.3273	244.9136	V _{G72} (p.u.)	1.0499	1.0294	1.0369	1.0448
$P_{G55}(MW)$	48.9235	56.3268	39.5023	48.6081	V _{G73} (p.u.)	1.0218	1.0504	0.9977	0.9971
$P_{G56}(MW)$	39.4067	81.5120	77.2177	32.6459	V _{G74} (p.u.)	0.9959	1.0164	1.0079	0.9830
$P_{G59}(MW)$	154.7012	121.4729	103.8788	173.4169	V _{G76} (p.u.)	1.0148	1.0271	1.0088	1.0329
$P_{G61}(MW)$	177.8504	199.0160	112.1634	124.3863	V _{G77} (p.u.)	1.0125	1.0354	1.0160	1.0359
$P_{G62}(WW)$	220 2025	20.7023	28.11/4	29.3342	$V_{G80}(p.u.)$	1.0057	0.9943	1.0124	1.0280
$P_{G65}(WW)$ $P_{T}(WW)$	330.3923	236.0241	2/4.1/91	234.3313	$V_{G85}(p.u.)$	0.9733	0.9887	0.9798	0.9921
$P_{\text{G66}}(WW)$	32 / 807	57 7153	52 2267	30.4511	$V_{G87}(p.u.)$	1.0700	1.0065	1.0175	1.0682
$P_{G69}(MW)$	13 9753	10.8531	12 6945	23 5177	$V_{G89}(p.u.)$	1.0550	1.0050	1.0173	1.0633
$P_{C72}(MW)$	5 2212	13 8617	5 0520	21.0105	$V_{G90}(p.u.)$	1.0550	0.9979	1.0012	1.0655
$P_{G72}(MW)$	5,2895	6.2214	5.0288	16.3443	$V_{GP}(\mathbf{p},\mathbf{u},\mathbf{l})$	1.0660	1.0104	1.0221	1.0600
$P_{G74}(MW)$	44.4335	30.6756	38.6052	72.2747	$V_{G92}(p.u.)$	1.0720	0.9772	1.0130	1.0274
P _{G76} (MW)	47.8487	65.7396	31.9824	28.9239	$V_{G100}(p.u.)$	1.0141	1.0034	0.9996	1.0263
P _{G77} (MW)	164.6913	160.2489	170.2171	150.9688	V _{G103} (p.u.)	0.9869	1.0035	0.9820	1.0135
P _{G80} (MW)	67.4293	27.6238	59.5682	32.9770	V _{G104} (p.u.)	0.9728	0.9992	0.9964	1.0125
$P_{G85}(MW)$	10.3534	15.1266	19.9493	21.9112	V _{G105} (p.u.)	0.9848	0.9919	0.9863	1.0159
P _{G87} (MW)	101.6992	157.8482	102.3793	100.0000	V _{G107} (p.u.)	0.9779	1.0006	0.9479	1.0121
P _{G89} (MW)	65.2535	67.3263	64.7034	83.3234	V _{G110} (p.u.)	1.0549	0.9753	0.9915	0.9984
$P_{G90}(MW)$	8.4383	9.5007	16.0758	8.0934	V _{G111} (p.u.)	1.0669	0.9486	0.9892	1.0042
$P_{G91}(MW)$	21.5391	28.7783	33.4298	46.7578	$V_{G112}(p.u.)$	1.0925	0.9800	0.9941	0.9973
$P_{G92}(MW)$	101.6862	102.4969	110.3340	112.5793	V _{G113} (p.u.)	1.0231	0.9911	1.0021	1.0173
$P_{G99}(MW)$	112,5226	101.0885	158.8/55	108.4276	$v_{G116}(p.u.)$	1.0231	1.0130	0.9984	1.0151
$P_{G100}(MW)$	8 5 8 6 8	8 2474	8 0771	108.3333	$T_{8}(p.u.)$	1.00/5	0.9698	0.9678	0.9694
$\mathbf{P}_{G103}(\mathbf{W}, \mathbf{W})$	25.8162	38 0282	25 1/31	20 3802	$T_{32}(p.u.)$	0.9923	1.0444	0.0782	1.0568
$P_{G104}(WW)$	25 3319	41 3443	25.1451	29.3802	$T_{36}(p.u.)$	0.9367	0.9569	0.9782	0.9019
$P_{G107}(MW)$	8 3872	8 6289	13 3849	8 1473	$T_{\infty}(\mathbf{p},\mathbf{u},\mathbf{l})$	1.0546	0.9309	0.9399	1 0145
$P_{G10}(MW)$	28.4319	26.5478	36.3842	25.4490	$T_{05}(p.u.)$	0.9420	0.9289	1.0522	1.0081
$P_{GIII}(MW)$	27.2072	25.3709	31.7956	25.1543	$T_{102}(p.u.)$	1.0546	1.0886	1.0083	1.0495
$P_{G112}(MW)$	25.0000	33.4043	25.3674	37.1478	$T_{107}(p.u.)$	1.0576	0.9398	0.9193	1.0676
$P_{G113}(MW)$	55.5100	27.5689	25.0092	81.3185	T ₁₂₇ (p.u.)	0.9080	1.0012	0.9635	0.9391
$P_{G116}(MW)$	31.1489	25.1972	38.5212	26.2355	Q _{C34} (p.u.)	0.2534	0.1113	0.2067	0.2816
V _{G1} (p.u.)	1.0137	1.0083	1.0266	1.0198	Q _{C44} (p.u.)	0.0395	0.0250	0.2177	0.2759
V _{G4} (p.u.)	1.0010	1.0027	1.0433	1.0218	Q _{C45} (p.u.)	0.0462	0.1463	0.1041	0.1006
V _{G6} (p.u.)	1.0566	0.9955	1.0047	0.9897	Q _{C46} (p.u.)	0.2900	0.2550	0.1350	0.0049
V _{G8} (p.u.)	1.0058	1.0364	0.9870	1.0149	Q _{C48} (p.u.)	0.2647	0.0055	0.1919	0.2453
V _{G10} (p.u.)	1.0018	0.9974	1.0252	1.0269	Q _{C74} (p.u.)	0.0712	0.2235	0.2734	0.1835
$v_{G12}(p.u.)$	0.9981	1.0062	0.9797	0.9894	$Q_{C79}(p.u.)$	0.2897	0.2282	0.1535	0.2978
$v_{G15}(p.u.)$	0.9838	1.0219	0.9940	1.0133	$Q_{C82}(p.u.)$	0.2052	0.0010	0.0972	0.1230
$v_{G18}(p.u.)$	0.9937	1.0109	0.9893	1.0045	$Q_{C83}(p.u.)$	0.2044	0.1039	0.1924	0.2009
$V_{G19}(p.u.)$	1 0843	1.0115	1.0042	1.0051	$Q_{C105}(\mathbf{p},\mathbf{u},\mathbf{r})$	0.1400	0.2435	0.2555	0.2349
$V_{G24}(p.u.)$	0.9588	1.0501	0.9858	1.0184	$O_{\rm cur}(\mathbf{p},\mathbf{u})$	0.0629	0.1663	0.2500	0.1355
· 025(P.u.)	0.2200	1.0501	0.2020	1.0104	Power loss	0.0025	0.1005	0.2000	0.1555
					(MW)	57.0368	58.4603	55.1909	55.0038
					Fuel cost	50122 1054	50474 4020	50094 9042	50590 2455
					(\$/h)	39133.1034	394/4.4030	39984.8903	37387.2433

D. SUPERPOSITION PFs

Each case was carried out 30 times independently. The superposition diagrams of several typical cases are represented. Hereinto, Figure 20 shows the results of four involved algorithms when dealing with a bi-objective optimization problem (*CASE1*) on IEEE 30-node system and Figure 21 gives the results of a tri-objective optimization problem (*CASE5*) on the same system. Figure 22 shows the

IEEE Access

FIGURE 19. Boxplots of the HV index for CASE1~CASE6.

TABLE 18. The mean and standard deviation of GD for CASE1~CASE3.

GD	CA	ASE1	CA	SE2	CA	SE3
algorithm	mean	deviation	mean	deviation	mean	deviation
MOPSO	0.1479	0.0535	0.1471	0.0481	0.0990	0.0326
NSGA-III	0.0885	0.0203	0.1112	0.0249	0.0837	0.0191
NHBA	0.0815	0.0188	0.0798	0.0152	0.1222	0.0312
NHBA-CPFD	0.0669	0.0128	0.0667	0.0127	0.0762	0.0146

TABLE 19. The mean and standard deviation of GD for CASE4~CASE6.

GD	CA	ASE4	CA	SE5	CA	SE6
algorithm	mean	deviation	mean	deviation	mean	deviation
MOPSO	0.0912	0.0217	0.0857	0.0195	0.4028	0.2146
NSGA-III	0.1820	0.0653	0.1310	0.0460	0.1032	0.0427
NHBA	0.0932	0.0226	0.0763	0.0148	0.0812	0.0239
NHBA-CPFD	0.0744	0.0143	0.0725	0.0138	0.0637	0.0121

TABLE 20. The mean and standard deviation of HV for CASE1~CASE3.

HV	CA	SE1	CAS	SE2	CA	SE3
algorithm	mean	deviation	mean	deviation	mean	deviation
MOPSO	23.2795	6.7980	829.3944	181.2174	25.3801	6.6336
NSGA-III	13.3257	0.3111	545.7616	31.7056	6.6403	0.2127
NHBA	21.7154	0.8407	636.6639	8.1124	32.7814	0.4915
NHBA-CPFD	17.4836	0.1606	748.5426	8.1147	27.7229	0.2293

TABLE 21. The mean and standard deviation of HV for CASE4~CASE6.

HV	CA	SE4	CAS	SE5	CA	SE6
algorithm	mean	deviation	mean	deviation	mean	deviation
MOPSO	1091.1038	414.2124	11.9814	15.4579	25.0119	27.6552
NSGA-III	858.4186	45.8371	29.6216	11.5932	8.6534	3.6423
NHBA	1199.2181	11.8485	7.3273	1.7977	3.7624	5.1423
NHBA-CPFD	2448.6692	159.3694	1.7520	0.2630	0.6430	0.0779

TABLE 22. The dominant relationship of BC solutions.

algorithm	The dominant relationship of obtained BCs										Datia
argoritinn	CASE1	CASE2	CASE3	CASE4	CASE5	CASE6	CASE7	CASE8	CASE9	CASE10	Katio
MOPSO	Yes	Yes	Yes	Yes	U-R	Yes	Yes	Yes	Yes	U-R	80%
NSGA-III	Yes	Yes	U-R	Yes	U-R	Yes	Yes	Yes	U-R	U-R	60%
NHBA	Yes	U-R	U-R	Yes	U-R	U-R	Yes	Yes	Yes	Yes	60%

results of a bi-objective optimization problem (*CASE7*) on IEEE 57-node system and Figure 23 gives the results of a bi-objective optimization problem (*CASE9*) on IEEE 118-node system.

The superposition results also demonstrate that the convergence and extensive application of NHBA and NHBA-CPFD algorithms are clearly superior to that of MOPSO and NSGA-III algorithms. Especially, the proposed non-dominated sorting rule based on CPFD strategy is more potential to handle the MOOPF problems of large-scale complex systems.

E. COMPUTATIONAL COMPLEXITY

In the end, the average running time of 30 independent experiments, as a measure of computational complexity, is studied. The mean CPU time of four typical cases, which include

TABLE 23. The mean CPU time.

algorithm	The me	an CPU time	e (sec) with <i>i</i>	$te_{max}=500$
algorithin	CASE1	CASE5	CASE7	CASE9
MOPSO	190.79	298.84	472.50	2142.29
NSGA-III	189.61	302.12	453.75	2057.12
NHBA	207.07	317.38	511.41	2560.90
NHBA-CPFD	234.06	320.06	523.16	2504.91

three bi-objective cases on different scale systems and one tri-objective case on the IEEE 30-node system, is summarized in Table 23. It shows that compared with MOPSO and NSGA-III methods, the NHBA and NHBA-CPFD algorithms need more CPU time because of local searching process. It will be an important point for the further research on the improvement of bat algorithm.

FIGURE 20. Results of 30 independent experiments for CASE1.

FIGURE 21. Results of 30 independent experiments for CASE5.

FIGURE 22. Results of 30 independent experiments for CASE7.

FIGURE 23. Results of 30 independent experiments for CASE9.

VII. CONCLUSION

The fast convergence and the optimal solution guiding mechanism of global bat algorithm make it suitable to solve the MOOPF problems. However, the original bat algorithm has the defect of being trapped in local optimum. A novel NHBA algorithm with nonlinear weight coefficient and MRFME model, enhanced by mutation and crossover mechanisms, is proposed to handle the strict-constrained MOOPF problems. Furthermore, a new non-dominated sorting method based on CPFD strategy is put forward to seek an evenly-distributed POS which can satisfy all restrictions of power system.

Ten multi-objective testing cases considering the fuel cost (with value-point loadings), the emission and the active power loss are carried out on the IEEE 30-node, IEEE 57node and IEEE 118-node systems. Due to the complexstructure and high-dimension of large-scale power systems, the MOOPF problems on IEEE 57-node and IEEE 118node systems have more computational difficulty. It should be exciting that, the simulation results of CASE7~CASE10 clearly indicate the presented NHBA-CPFD algorithm has superior performance in solving such MOOPF problems of complex electric system. The GD and HV indexes are utilized to measure the distribution and diversity of obtained POS. The evaluating results strongly demonstrate that the NHBA-CPFD algorithm is more desirable than the commonused MOPSO and NSGA-III algorithms, which is not only reflected in the preferable BC solutions, but also in the favorable-distribution and satisfactory-diversity of POS.

Therefore, the proposed NHBA-CPFD algorithm, which integrates the advantage of NHBA algorithm in determining high-quality BC solutions and the great edge of CPFD strategy in solving the higher-dimensional optimization problems of large-scale system, provides an innovative and effective way to deal with the MOOPF problems.

REFERENCES

- Y. Marinakis, M. Marinaki, and A. Migdalas, "A multi-adaptive particle swarm optimization for the vehicle routing problem with time windows," *Inf. Sci.*, vol. 481, pp. 311–329, May 2019.
- [2] R. Chai, A. Savvaris, A. Tsourdos, S. Chai, Y. Xia, S. Wang, "Solving trajectory optimization problems in the presence of probabilistic constraints," *IEEE Trans. Cybern.*, to be published.
- [3] A.-F. Attia, R. A. El Schiemy, and H. M. Hasanien, "Optimal power flow solution in power systems using a novel Sine-Cosine algorithm," *Int. J. Elect. Power Energy Syst.*, vol. 99, pp. 331–343, Jul. 2018.
- [4] L. Mackay, R. Guanotta, A. Dimou, G. Morales-España, L. Ramirez-Elizondo, and P. Bauer, "Optimal power flow for unbalanced bipolar DC distribution grids," *IEEE Access*, vol. 6, pp. 5199–5207, 2018.
- [5] P. Chen, X. Xiao, and X. Wang, "Dynamic optimal power flow model incorporating interval uncertainty applied to distribution network," *IET Gener. Transmiss. Distrib.*, vol. 12, no. 12, pp. 2926–2936, Mar. 2018.
- [6] G. Chen, L. Liu, Z. Zhang, and S. Huang, "Optimal reactive power dispatch by improved GSA-based algorithm with the novel strategies to handle constraints," *Appl. Soft Comput.*, vol. 50, pp. 58–70, Jan. 2017.
- [7] D. Prasad, A. Mukherjee, G. Shankar, and V. Mukherjee, "Application of chaotic whale optimisation algorithm for transient stability constrained optimal power flow," *IET Sci. Meas. Technol.*, vol. 11, no. 8, pp. 1002–1013, Nov. 2017.

- [8] G. Chen, S. Qiu, Z. Zhang, Z. Sun, and H. Liao, "Optimal power flow using gbest-guided cuckoo search algorithm with feedback control strategy and constraint domination rule," *Math. Problems Eng.*, vol. 2017, no. 2, pp. 1– 14, Dec. 2017.
- [9] S. Khunkitti, A. Siritaratiwat, S. Premrudeepreechacharn, R. Chatthaworn, and N. R. Watson, "A hybrid DA-PSO optimization algorithm for multiobjective optimal power flow problems," *Energies*, vol. 11, no. 9, p. 2270, Sep. 2018.
- [10] S. Duman, "A modified moth swarm algorithm based on an arithmetic crossover for constrained optimization and optimal power flow problems," *IEEE Access*, vol. 6, pp. 45394–45416, 2018.
- [11] J. B. Hmida, M. J. Morshed, J. Lee, and T. Chambers, "Hybrid imperialist competitive and grey wolf algorithm to solve multiobjective optimal power flow with wind and solar units," *Energies*, vol. 11, no. 11, p. 2891, Nov. 2018.
- [12] Z. Liu, J. Yang, Y. Zhang, T. Ji, J. Zhou, and Z. Cai, "Multi-objective coordinated planning of active-reactive power resources for decentralized droop-controlled islanded microgrids based on probabilistic load flow," *IEEE Access*, vol. 6, pp. 40267–40280, 2018.
- [13] X. Yuan *et al.*, "Multi-objective optimal power flow based on improved strength Pareto evolutionary algorithm," *Energy*, vol. 122, pp. 70–82, Mar. 2017.
- [14] H. Liang, Y. Liu, F. Li, and Y. Shen, "A multiobjective hybrid bat algorithm for combined economic/emission dispatch," *Int. J. Elect. Power Energy Syst.*, vol. 101, pp. 103–115, Oct. 2018.
- [15] X. Yuan, H. Tian, Y. Yuan, Y. Huang, and R. M. Ikram, "An extended NSGA-III for solution multi-objective hydro-thermal-wind scheduling considering wind power cost," *Energy Convers. Manage.*, vol. 96, pp. 568–578, May 2015.
- [16] S. Sivasubramani and K. S. Swarup, "Multi-objective harmony search algorithm for optimal power flow problem," *Int. J. Electr. Power Energy Syst.*, vol. 33, no. 3, pp. 745–752, Mar. 2011.
- [17] A. R. Bhowmik and A. K. Chakraborty, "Solution of optimal power flow using non dominated sorting multi objective opposition based gravitational search algorithm," *Int. J. Electr. Power Energy Syst.*, vol. 64, pp. 1237–1250, Jan. 2015.
- [18] J. Zhang, Q. Tang, P. Li, D. Deng, and Y. Chen, "A modified MOEA/D approach to the solution of multi-objective optimal power flow problem," *Appl. Soft Comput.*, vol. 47, pp. 494–514, Oct. 2016.
- [19] G. Chen, X. Yi, Z. Zhang, and H. Wang, "Applications of multi-objective dimension-based firefly algorithm to optimize the power losses, emission, and cost in power systems," *Appl. Soft Comput.*, vol. 68, pp. 322–342, Jul. 2018.
- [20] X. Yang and A. H. Gandomi, "Bat algorithm: A novel approach for global engineering optimization," *Eng. Comput.*, vol. 29, nos. 5–6, pp. 464–483, 2012.
- [21] M. A. Al-Betar, M. A. Awadallah, H. Faris, X.-S. Yang, A. T. Khader, and O. A. Alomari, "Bat-inspired algorithms with natural selection mechanisms for global optimization," *Neurocomputing*, vol. 273, pp. 448–465, Jan. 2018.
- [22] E. Osaba, X. Yang, I. Fister, Jr., J. D. Ser, P. Lopez-Garcia, and A. J. Vazquez-Pardavila, "A discrete and improved bat algorithm for solving a medical goods distribution problem with pharmacological waste collection," *Swarm Evol. Comput.*, vol. 44, pp. 273–286, Feb. 2019.
- [23] Y. Lu and T. Jiang, "Bi-population based discrete bat algorithm for the low-carbon job shop scheduling problem," *IEEE Access*, vol. 7, pp. 14513–14522, 2019.
- [24] G. Chen, L. Liu, P. Song, and Y. Du, "Chaotic improved PSO-based multi-objective optimization for minimization of power losses and L index in power systems," *Energy Convers. Manage.*, vol. 86, pp. 548–560, Oct. 2014.
- [25] G. Chen, X. Yi, Z. Zhang, and H. Lei, "Solving the multi-objective optimal power flow problem using the multi-objective firefly algorithm with a constraints-prior pareto-domination approach," *Energies*, vol. 11, no. 12, no. 3438, Dec. 2018.
- [26] W. Warid, H. Hizam, N. Mariun, and N. I. A. Wahab, "A novel quasioppositional modified Jaya algorithm for multi-objective optimal power flow solution," *Appl. Soft Comput.*, vol. 65, pp. 360–373, Apr. 2018.
- [27] G. Chen, Z. Lu, and Z. Zhang, "Improved krill herd algorithm with novel constraint handling method for solving optimal power flow problems," *Energies*, vol. 11, no. 761, Jan. 2018.
- [28] S. Huang and V. Dinavahi, "Fast batched solution for real-time optimal power flow with penetration of renewable energy," *IEEE Access*, vol. 6, pp. 13898–13910, 2018.

- [29] S. Dhar and M. K. Kundu, "A novel method for image thresholding using interval type-2 fuzzy set and Bat algorithm," *Appl. Soft Comput.*, vol. 63, pp. 154–166, Feb. 2018.
- [30] R. Murugan, M. R. Mohan, C. C. A. Rajan, P. D. Sundari, and S. Arunachalam, "Hybridizing bat algorithm with artificial bee colony for combined heat and power economic dispatch," *Appl. Soft Comput.*, vol. 72, pp. 189–217, Nov. 2018.
- [31] J. Zhang, S. Chen, R. Zhang, A. F. Al Rawi, and L. Hanzo, "Differential evolution algorithm aided turbo channel estimation and multi-user detection for G.Fast systems in the presence of FEXT," *IEEE Access*, vol. 6, pp. 33111–33128, 2018.
- [32] R. Chai, A. Savvaris, A. Tsourdos, and S. Chai, "Multi-objective trajectory optimization of space manoeuvre vehicle using adaptive differential evolution and modified game theory," *Acta Astronautica*, vol. 136, pp. 273–280, Jul. 2017.
- [33] L. Lin and M. Zhu, "Efficient tracking of moving target based on an improved fast differential evolution algorithm," *IEEE Access*, vol. 6, pp. 6820–6828, 2018.
- [34] R. Chai *et al.*, "Unified multiobjective optimization scheme for aeroassisted vehicle trajectory planning," *J. Guid., Control Dyn.*, vol. 41, no. 7, pp. 1521–1530, 2018.
- [35] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, "A fast and elitist multiobjective genetic algorithm: NSGA-II," *IEEE Trans. Evol. Comput.*, vol. 6, no. 2, pp. 182–197, Apr. 2002.
- [36] P. C. Roy, K. Deb, and M. M. Islam, "An efficient nondominated sorting algorithm for large number of fronts," *IEEE Trans. Cybern.*, vol. 49, no. 3, pp. 859–869, Mar. 2019.
- [37] A.-A. A. Mohamed, Y. S. Mohamed, A. A. M. El-Gaafary, and A. M. Hemeida, "Optimal power flow using moth swarm algorithm," *Electr. Power Syst. Res.*, vol. 142, pp. 190–206, Jan. 2017.
- [38] A. E. Chaib, H. R. E. H. Bouchekara, R. Mehasni, and M. A. Abido, "Optimal power flow with emission and non-smooth cost functions using backtracking search optimization algorithm," *Int. J. Elect. Power Energy Syst.*, vol. 81, pp. 64–77, Oct. 2016.
- [39] H. Pulluri, R. Naresh, and V. Sharma, "An enhanced self-adaptive differential evolution based solution methodology for multiobjective optimal power flow," *Appl. Soft Comput.*, vol. 54, pp. 229–245, May 2017.
- [40] M. Ghasemi, S. Ghavidel, M. M. Ghanbarian, and M. Gitizadeh, "Multiobjective optimal electric power planning in the power system using Gaussian bare-bones imperialist competitive algorithm," *Inf. Sci.*, vol. 294, pp. 286–304, Feb. 2015.
- [41] N. Daryani, M. T. Hagh, and S. Teimourzadeh, "Adaptive group search optimization algorithm for multi-objective optimal power flow problem," *Appl. Soft Comput.*, vol. 38, pp. 1012–1024, Jan. 2016.
- [42] H. Ishibuchi, H. Masuda, Y. Tanigaki, and Y. Nojima, *Modified Distance Calculation in Generational Distance and Inverted Generational Distance* (Lecture Notes in Computer Science), vol. 9019 A. GasparCunha, C. H. Antunes, and C. C. Coello, Eds. Cham, Switzerland: Springer, 2015, pp. 110–125.
- [43] H. Ishibuchi, R. Imada, Y. Setoguchi, and Y. Nojima, "Reference point specification in inverted generational distance for triangular linear Pareto front," *IEEE Trans. Evol. Comput.*, vol. 22, no. 6, pp. 961–975, Dec. 2018.

GONGGUI CHEN received the B.S. degree in physics from Huazhong Normal University, the M.E. degree in computer technology and the Ph.D. degree in electrical engineering from the Huazhong University of Science and Technology (HUST), China. He is currently a Professor with the Department of Electrical Engineering, College of Automation, Chongqing University of Posts and Telecommunications, Chongqing, China. His research interests include economic dispatch, opti-

mal power flow, and application of artificial intelligence in power systems.

JIE QIAN received the bachelor's degree in electrical engineering and automation from the Chongqing University of Posts and Telecommunications (CQUPT), Chongqing, China, in 2017, where she is currently pursuing the master's degree. Her research interests include optimal power flow and application of artificial intelligence in power systems.

ZHIZHONG ZHANG received the M.S. degree in communication network testing from the Chongqing University of Posts and Telecommunications, China, in 1998, and the Ph.D. degree from the School of Communication Engineering, University of Electronic Science and Technology of China, in 2002. He is currently a Professor with the Chongqing University of Posts and Telecommunications. His research interests include mobile communication testing technology, broadband

information networking, 5G networking, and optimal power flow in power systems.

ZHI SUN received the B.E. degree in computer science and technology and the M.E. degree in electrical engineering from the Huazhong University of Science and Technology (HUST), in 2004 and 2012, respectively. He is currently an Electronic Engineer with Chn Energy Enshi Hydropower Co., Ltd., China. His research interests include intelligent substation, economic dispatch, optimal power flow, and application of artificial intelligence in power systems.

...