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ABSTRACT To overcome the premature-convergence of standard bat algorithm in solving the multi-
objective optimal power flow (MOOPF) problems, a novel hybrid bat algorithm (NHBA) is proposed in this
paper. The suggested NHBA algorithm modifies the local search manner by a monotone random filling model
based on extreme (MRFME) and improves the population-diversity by mutation and crossover mechanisms.
To obtain the uniformly distributed Pareto optimal set (POS) with zero constraint-violation, an innovative
non-dominated sorting method combined with the constrained Pareto fuzzy dominant (CPFD) strategy is put
forward in this paper. To verify the superiority of the proposed NHBA-CPFD algorithm, which is federated
by the NHBA algorithm and the CPFD strategy, ten MOOPF simulation cases considering the basic fuel
cost, the fuel cost with value-point loadings, the total emission, and the active power loss are studied
on the IEEE 30-node, IEEE 57-node, and IEEE 118-node systems. In contrast to the NHBA, MOPSO,
and NSGA-III algorithms which adopt the constrain-prior Pareto-dominance method (CPM), numerous
results validate the NHBA-CPFD algorithm that can achieve more superior compromise solutions and
preferable Pareto fronts (PFs) even in the large-scale systems. Furthermore, two performance metrics of
generational distance (GD) and hyper-volume (HV) also demonstrate that the NHBA-CPFD algorithm has
great advantages to obtain the feasible POS with evenly distribution and favorable-diversity.

INDEX TERMS Novel hybrid bat algorithm, multi-objective optimal power flow problem, constrained
Pareto fuzzy dominant strategy, monotone random filling model based on extreme, performance metrics.

I. INTRODUCTION

The optimization problems in daily life usually have non-
linear features and discrete variables, which can be solved
efficiently by intelligent algorithms [1], [2]. Among them,
the optimal power flow (OPF) problem has great significance
to the optimization and planning of power system [3]-[5].
The safe and economical operation status without any
violation of system constraints can be achieved based on the
power flow calculation results [6], [7]. At present, the OPF
problems are mainly to minimize the power loss, fuel cost
or emission separately [8]-[10]. In order to evaluate the
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operating status of electric system more comprehensively,
the multi-objective optimal power flow (MOOPF) problems
have received widespread attention.

The MOOPF problem has strict constraints and takes mul-
tiple incompatible objectives into consideration at the same
time [11]-[14]. There are two key points of studying the
multi-objective optimizations, one is to seek an available
Pareto optimal set (POS), and the other is to determine a best
compromise (BC) solution from the obtained POS. Due to
the non-convex and high-dimensional features of MOOPF
problems, traditional approaches may not be applicable to
find a high-quality solution set. Consequently, it is imperative
to utilize some appropriate intelligent algorithms to handle
the MOOPF problems.
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Recently, some evolutionary algorithms have been
employed to solve the MOOPF problems successfully
such as the non-dominated sorting genetic algorithm III
(NSGA-III) [15], multi-objective harmony search algorithm
(MOHS) [16], non-dominated sorting multi-objective opposi-
tion based gravitational search algorithm (NSMOOGSA) [17],
multi-objective evolutionary algorithm based decomposition
(MOEA/D) [18], hybrid DA-PSO optimization algorithm
(DA-PSO) [9] and multi-objective dimension-based firefly
algorithm (MODFA) [19].

The standard bat algorithm (SBA) is an innovative global
optimization algorithm inspired by biological echolocation
mechanism [20], [21]. Due to the simple structure and fast
convergence, the standard and improved bat algorithms have
been applied to various fields such as the goods distribution
and job shop scheduling problems [22], [23].

The optimal solution guiding mechanism of bat algorithm
enables it to deal with global optimizations such as MOOPF
problems more accurately and effectively. However, the SBA
algorithm is easy to fall into local optimum. In order to
solve the MOOPF problems successfully, a novel hybrid bat
algorithm (NHBA), which is improved by the mutation and
crossover mechanisms of DE algorithm, is proposed in this
paper. Meanwhile, a monotone random filling model based
on extreme (MRFME) is put forward to optimize the local
search manner of SBA algorithm, which is helpful to explore
a better solution near the current optimal solution.

To evaluate the practicability of NHBA algorithm, some
typical MOOPF simulation cases, such as the simultaneous
optimization of fuel cost (with value-point loadings) and
emission, the simultaneous optimization of fuel cost (with
value-point loadings) and active power loss, the simultaneous
optimization of fuel cost, emission and active power loss, are
carried out on the IEEE 30-node, IEEE 57-node and IEEE
118-node systems. The results clearly show that the NHBA
algorithm has better exploration ability than the common
MOPSO and NSGA-III algorithms in finding more compet-
itive BC solutions when utilizing the same Constrain-prior
Pareto-dominance method (CPM). The detailed description
of CPM can be found in literatures [24], [25].

Regrettably, the CPM method may not be very effective
in solving such MOOPF problems of IEEE 57-node and
IEEE 118-node systems with higher dimension. On this basis,
a non-dominated sorting method with constrained Pareto
fuzzy dominant (CPFD) strategy is put forward in this paper.
The presented CPFD strategy gives priority to the constraints-
violation value (viol) and then considers the fuzzy eigenvalue
(W), which is quite different from the typical penalty function
method and CPM method. The results clearly state that the
proposed sorting rule is valuable to obtain a fine-quality POS
without any constraints violation in the large-scale systems.

The presented NHBA-CPFD algorithm, which combines
the advantages of the NHBA algorithm and the CPFD strat-
egy, can improve the performance of determining satisfactory
POS in different scale electric systems. Moreover, the gen-
erational distance (GD) and hyper-volume (HV) metrics are
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employed to measure the distribution of obtained POS and
the convergence to the real Pareto fronts (PF). Based on
the evaluation results, the competitive superiority of NHBA-
CPFD algorithm in seeking the uniformly-distributed POS
can be verified.

The rest of this article is organized as follows. The math-
ematical model of MOOPF problem is shown in Section 2.
The detailed description of NHBA algorithm is presented
in Section 3. Section 4 proposes the novel CPFD strategy
and a non-dominated sorting rule to seek satisfactory POS.
Section 4 also generalizes the application of NHBA-CPFD
algorithm on the MOOPF problems. Section 5 shows the
results of ten MOOPF trials on different scale systems. The
GD and HV metrics are adopted to measure the performance
of obtained POS in Section 6. Section 6 also discusses the
computational complexity represented by the CPU time and
the dominant relationship of obtained BC solutions. Eventu-
ally, the conclusions are made in Section 7.

Il. MATHEMATICAL MODEL OF MOOPF PROBLEMS
The objective functions and system constraints of MOOPF
mathematical model are summarized as follows [9], [25].

minimizeFop; = (fi(x, w), -+, filx,u), - fu(x, u)) (1)
Hk(x7u)=05k:1725"'5h (2)
Gj(-xvu)iosjzlvzv"'sg (3)

where f; (x,u) represents the ith objective function and
M(M > 2) is the amount of objects which are optimized at
the same time. Hy, is the kth equality constraint (EC) and £ is
the amount of ECs. G; is the jth inequality constraint (/C) and
g is the total number of ICs.

The state variables x includes generator active power at
slack node Pgp, load node voltage Vy, generator reactive
power Q¢ and apparent power of transmission line S. Genera-
tor active power output at PV nodePg, generator node voltage
Vg, tap ratios of transformer 7' and reactive power injection
Qc are integrated into the control variables u. The vectors of
x and u are described as (4) and (5).

7
= [P61. VL1, -+ Vinpg. Q1.+ -+ QGNg- St -+ Sn, |
“4)
ul
= [PGz, <, Peng, Vi, -+ Veng. T, -+ Ty, Octs
-, Ocne ©)

where Npg, NG, Np, Nr and N indicate the amount of PQ
nodes, generators, transmission lines, transformers and shunt
compensators.

A. OBJECTIVE FUNCTIONS

Four objectives including the total emission, the active power
loss, the basic fuel cost and the fuel cost with value-point
loadings, are studied in this paper [9], [19].
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1) EMISSION

Ng
Objl : F, = Y [iPg; + BiPci + vi + ni exp(hiPg)]ton/h
i=1

Q)

where F, depicts the sum of emission in the unit of ton/h
while «;, B, ¥i, n; and A; represent the emission coefficients
of the ith generator.

2) ACTIVE POWER LOSS
N

Obj2: Fp =Y [V} + V} = 2ViVjcos(8; — §;)IMW
k=1

)

where Fp indicates the power loss in the unit of MW. V;, V;
and §;, §; are, respectively, the voltage magnitude and angle
at node i and node j. ¢ is the conductance of the kth branch
that links node i to node j.

3) BASIC FUEL COST
Ng
Obj3: Fe =Y (ai + biPgi + ciPG)$/h ®)
i=1
where F, is the basic fuel cost in the unit of $/h. And a;, b;
and ¢; represent the cost coefficients of the ith generator.

4) FUEL COST WITH VALUE-POINT LOADINGS

Ng
Objd : F¢ yp = Z (a; + biPg; + ciP%;
i=1

+|d; x sin(e; x (P — PG)|)$/h (9)

1

where F. , indicates the fuel cost considering value-point
loadings in the unit of $/h. And d;, e; and P{;" are the cost
coefficients and the lower active power at the ith generator
node.

B. SYSTEM CONSTRAINTS

The system constraints include equality constraints and
inequality ones [26]—[28]. The optimization schemes adopted
by decision-makers should not violate any EC and IC.

1) EC
The ECs, which can be described as (10) and (11), are essen-
tially the power balance equations.

Pgi — Ppi — Vi y_ Vi(Gjjcos 8 + Byjsin8;) =0, i € N

JEN;

(10)

QG,' — QDi — Vl' Z V](G,j sin (Sij—Bij CoS 3,']')=0, i€ NPQ
JEN;

8;i=8i—3; (11)
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where Pg; and Qg; are the injected active and reactive power
at node i. Pp; and Qp, denote the active and reactive load
demand at load node i. G;; and Bj; denote the conductance and
susceptance between the ith and jth node. N; is the amount of
nodes linked to node i and N is the number of nodes except
the slack one.

2) IC
Used to define the effective operating range of electric equip-
ment, the /Cs include state variables and control ones.

(1) ICs of control variables

« active power at generator node
PO > Pg; > PRIN e Ng(i # 1) (12)
« Vvoltage at generator node
VEX > Vg > VAR i € Ng (13)
« transformer tap-settings
TR > 7; > T/ j e Ny (14)
e reactive power injection
O™ = Qci = Q@ i € Nc (15)
(2) ICs of state variables
« active power at slack node
P& = Po1 = PEY" (16)
« voltage at load node
VI > v > Vi e Npg (17)
« reactive power at generator node
05 = Q6i = Q8" i € Ng (18)
e« apparent power

SMX 5> 0,1 €N, (19)

Ill. STANDARD AND MODIFIED BAT ALGORITHMS

To overcome the premature-convergence and unsatisfactory-
diversity of SBA algorithm in dealing with the MOOPF prob-
lems, the NHBA algorithm is proposed.

A. STANDARD BAT ALGORITHM

The SBA algorithm is derived based on the echolocation
mechanism, and it makes bats keep close to the global opti-
mal individual continuously by adjusting the searching fre-
quency [20]. The frequencyfr(i), speed v; and position p; of
the ith individual are defined as (20), (21) and (22), respec-
tively [20], [29], [30].

Sr() = frmin + 1 * (frmax — frmin) (20
vi(t) = vit = 1) + fr(@) * (pit — 1) — ppesr)  (21)
pi(t) = pi(t — 1) +vi(?) (22)
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where fry,i, and fry,q, limit the range of frequency. ppes; is the
current optimum individual while u(u € (0, 1)) is a random
number.

After the location of bat population is updated, ppess Will be
determined according to the established dominance strategy.
Local search, which relies on the pulse rate R and the loudness
L, aims to find a better scheme pp,, near the pp.s; one. The
update manners of L and R are shown as (23) and (24).

Li(t + 1) = tLi(r) (23)
Ri(t + 1) = Ro(1 — exp(—Ir)) (24)

where Ry is the initial pulse rate. Two constants, I[(I > 0)
and t(t € (0, 1)), represent the increase coefficient of R and
the attenuation coefficient of L. To improve the searching
efficiency, L will decrease and R will increase when the ppe,
individual is found during the local search.

B. NHBA ALGORITHM
Like most global algorithms, the SBA algorithm is difficult
to jump out of the local optimum. The proposed NHBA
algorithm improves the performance of SBA method in the
following three aspects.

1) IMPROVEMENT OF SPEED UPDATING MANNER

The non-linear weight coefficient wc, which can enhance
the population diversity, is introduced to improve the speed
model of SBA algorithm. The novel updated formulas of v
and wc are defined as (25) and (26).

vi(t) = wct)vi(t — 1) + rifr(DPpess —pit — 1)) (25)
wc(t) = wCmax — r2(WCmax — WCmin)
+r3(wc(t — 1) — (WCmax + @Cmin)/2) (26)

where ri ~ r3 are random constants between 0 and 1. wcip
and wcpgy set the valid range of weight coefficient.

2) INTEGRATION OF MUTATION AND CROSSOVER
MECHANISMS

To search for better optimization schemes, the mutation and
crossover mechanisms of DE algorithm are integrated into the
NHBA algorithm. The detailed description and application
of DE algorithm can be referred to literatures [31]-[33].
A new population is generated by mutation operation. The
ith mutant-individual pm(i) can be defined as (27).

pm(i) = pp1 + FpPn3 —pn2), i=1,2,--- N, (27)

where p,1,pn2 and p,3 are three different individuals. Fy, is
the mutant weighting factor.

Subsequently, the bat population is cross-operated to gen-
erate the pcpopulation. The crossover mechanism can be
described as (28).

1,2,---,D (28)

. pm(i), if ra<F.orj=q .
pe(i) = . Jj=
Pi, otherwise
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where ra(ra € (0, 1)) is a random number and F, is the
crossover coefficient. D is the dimension of each individual
and ¢ is a random D-dimensional vector.

3) IMPROVEMENT OF LOCAL PARAMETER UPDATING
MANNER

The MRFME model is put forward to improve the updated
manners of two local searching parameters, which can be
expressed as (29) and (30).

Ri = (Rmin — Rmax) * (ite — itemax)/(1 — itemax) + Rmax
(29)

L; = (Lmax — Lmin) * (ite — itemax)/(1 — itemax) + Lmin
(30)

where ite and ite,,,, respectively indicate the current and
maximum iteration. R,,;;, and R, limit the range of pulse
rate while L,,; and L., specify the range of loudness.
Undoubtedly, the proposed MRFME strategy can meet the
basic requirement of bat algorithm, which requires the
increasing pulse and decreasing loudness when the py., indi-
vidual is accepted as the new optimal solution.

The pseudo codes of the innovative NHBA algorithm for
the minimization problems are summarized in Table 1.

IV. MULTI-OBJECTIVE OPTIMIZATION STRATEGIES

The penalty function method is commonly used to select
feasible POS when dealing with the MOOPF problems.
However, it is difficult to determine the appropriate penalty
coefficients and ensure every solution meet all system con-
straints. Then, the CPM method which measures the solution-
performance by objective and constraints-violation values is
proposed [24], [25]. The striking advantage of CPM method
is that it achieves zero-violation of obtained POS. Compared
with CPM method, the proposed CPFD strategy, which takes
both the fuzzy eigenvalue and the constraints-violation into
consideration, can seek more favorable Pareto non-inferior
solutions in IEEE 57-node and IEEE 118-node systems.

A. CONSTRAINED PARETO FUZZY DOMINANT RULE
The high-quality POS should realize none-violation of ECs
and ICs. The ECs can be satisfied when calculating the
Newton-Raphson power flow. The control variables of the ith
individual which violates the /Cs can be adjusted as (31).
yi— {u:“a" if uj > u™™
umm

min
i i

if ui<u G
The CPFD strategy is proposed to handle the unqualified
state variables. Generally speaking, the smaller constraints-
violation value means the higher adoption-priority of corre-
sponding individual. The key steps to judge the dominant
relationship of two different solutions are arranged as follows.
(i) Clarify the violation of the ith solution based on (32).

viol(uj) = » " max(Gj(x, u;), O)c € g (32)
jec

where c is the amount of /Cs on state variables.

52063



IEEE Access

G. Chen et al.: Applications of NHBA With Constrained Pareto Fuzzy Dominant Rule

TABLE 1. Pseudo codes of NHBA algorithm.

input: objective function: f{x).x=[x1,X,,....xp]"
the initial parameters of NHBA algorithm: the size of bat
population N,, the maximum iteration ite,.,, the mutant factor F,, the
crossover coefficient F., the range of frequency [fimin, fimax], the ranges
of loudness [Lin, Lmax] and pulse rate [Ryin, Riax]
Begin
ite=1
while ite < ite,,..
Update the speed and position of bat population based on (25) and
(22) to generate the Xpopulation population;
Calculate the fitness fi(p) (i=1,2,...,N,) of each individual in the
Xpopulation population;
Complete the mutation and crossover operations in the Xpopulation
population to generate the Ypopulation population;
Calculate the fitness f(p;) (i=1.2,...,N,) of each individual in the
Ypopulation population;
fori=1.2,....N,
i i) <1(p)
Fpopulation(iy= Xpopulation(i);
else
Fpopulation(i)= Ypopulation(i);
end
Calculate the fitness f{(p;) of ith individual in the the Fpopulation
population;
end
Determine the current optimal individual pj. in Fpopulation
population;
for ith (i=1,2,...,N,) individual in Fpopulation population
Generate a random number between 0 and 1 named rand|.
if randI>R;
Generate the p,,, individual which is around the py., individual
by a random perturbation;
Generate other random number between 0 and 1 named rand2
and evaluate f(p,e,);
if(rand2<L‘) && (f(pper)<.f(pbmt))
The new individual p,., will be accepted as the new current
optimal solution;
Update R; and L; based on (29) and (30);
end if
end if
end for
Renovate the information of the py., solution;
ite=ite+1;
end while
End
output: presand f(pres)

(ii) Compare the values of viol (u1) and viol (uy), where
u(uy = (Uy,Us,...,Up)) and ur(upy = (V1,V3,...,Vp)) are
two different sets of control variables.

(iii) When the condition (33) or (34) can be satisfied,
the judgment can be made that #; will dominate u5.

viol(uy) < viol(up) (33)
(viol(uy) = viol(uz)) N (Y(u1) > Y(u2)) (34)

wherey (u;) is the fuzzy eigenvalue of u; which can be cal-
culated as follows.

P(u) = uy —upy =W —Vy,---,Up—"Vp) (35)

) = Fy(Pw) = (9", -+, ¢p) (36)

Uur) = @' x @' x - qp) (37)
1, x < -1

Fy= {040, —l<x<l10 =-1/y 0=

0, x>1
(38)
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where P(u1) is the performance of u relative to up. Fjy is the
adopted fuzzy membership function which can be expressed
as (38).¢ (up) represents the dominant degree of ] relative to
uy. ¥ (u;) is actually the product of each dominance degree.

B. NON-DOMINATED SORTING RULE BASED ON THE
CPFD STRATEGY

A reasonable technology of dealing with the multi-objective
optimization such as aero-assisted vehicle trajectory planning
is to assign priority factors to different objectives according
to the mission scenarios or the requirements of decision-
makers [32], [34]. Specifically, the priority factor of primary
task should be higher than the others.

The sorting rule proposed to handle the MOOPF problem
does not assign objective-priority factors in advance, but
determines the adoption-priority according to the rank index
and the Pareto fuzzy dominant fitness (cpfdf) value of each
control variable set.

In detail, the rank index which is essential to the presented
sorting rule can be determined based on mentioned CPFD
strategy.

1) RANK INDEX

In order to select high-performance Pareto solutions in multi-
objective optimization problems, it is necessary to set a pre-
specified priority requirement to rank candidate solutions. In
this paper, the CPFD strategy which clarifies the viol and ¥
values is used to determine the rank index.

Learning from the non-dominated sorting method pro-
posed by Kalyanmoy Deb [35], [36], the rank of each indi-
vidual can be clarified as follows.

(i) Firstly, a hybrid population (HP) is composed of the
parent bat population (PBP) with size of N, and the
external archive population (EAP) with size of N,,.

(i) According to the CPFD strategy, these solutions which
are not dominated by other solutions in HP are deter-
mined and marked as rank=1.

(iii)) Eliminate the individuals with rank=1. Based on the
same CPFD dominant relationship, another set of non-
inferior solutions which will be marked as rank=2 is
found.

(IV) Repeat the above operation till each individual in HP
has its own rank index.

2) CPFDF INDEX

To gain an evenly-distributed PF, the cpfdfindex is taken into
account as well. The core steps to determine the cpfdf index
of each solution can be arranged as follows.

In the HP population with 2N, individuals, the ith
(i=1,2,...,2N,)individual can be combined with the other
(2N,;—1) individuals. For two different individuals i and j
G=(,2,...,2N,)Nj # i), the fuzzy eigenvalue of i relative
to j (¥;;) and the fuzzy eigenvalue of j relative to i (¥};) can
be obtained based on (37). Then, the standard performance
of i relative to j named as Hj; can be calculated according to
formula (39). On this basis, the cpfdfindex can be determined
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based on (40).
Hy = Vil w4 ) (39)

J
epfdf () = ZHifpy 1 j=1,2,-2N,Nj#i (40)

where cpfdf{i) represents the Pareto fuzzy dominant fitness
of the ith individual relative to the other (2N,-1) individuals.
It is actually the mean value of standard performance.

The priority of each individual can be determined based
on the suggested non-dominated sorting strategy. In detail,
the ith individual has higher adoption-priority than the jth one
when condition (41) or (42) can be met.

rank (i) < rank(j) 41)
rank(i) = rank(j) N cpfdf (i) > cpfdf () (42)

The individuals which ranked in the former N, are the
obtained POS based on the CPFD strategy and they will form
the new EAPpopulation.

The obvious difference from the sorting method of
NSGA-II algorithm [35] is that, the suggested sorting rule
based on CPFD strategy considers the cpfdf value instead of
the common-used crowding distance. This novel sorting rule
is very advantageous to select a satisfactory POS set in large-
scale systems such as the IEEE 57-node and IEEE 118-node
systems.

3) FAA APPROACH

Taking advantage of the proposed sorting strategy, a set
of Pareto non-inferior solutions can be achieved. The FAA
approach employed in this paper is to pick out a feasible BC
solution from the obtained POS [19].

The satisfaction of the ith objective function for the zth
individual (sat;(z)) and the total satisfaction value of the zth
Pareto solution (fots(z)) are defined as (43) and (44), respec-
tively.

: max /i Sfimin
;=i -
sati(z) = fmlax—_fniln fl_mln <f <f;_max
i Ji
0 ﬁ Zf;'max
z=1,2,...Nyi=1,2,.... M 43)
M
A t
fots(z) = — =124 (44)

Zivil Z?i] sati(z)

where f"** and f™** are the maximum and minimum of the
ith objective.

Calculate the fots index of each Pareto solution to deter-
mine the special solution which has the highest satisfaction,
as known as the BC solution achieved by the FAA method.

C. APPLICATION OF NHBA-CPFD ALGORITHM ON MOOPF
PROBLEMS

The NHBA-CPFD algorithm combines the great strengths
of both the NHBA algorithm and the novel non-dominated
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sorting rule, which is the integration of two multi-objective
strategies proposed in this paper.

To evaluate the powerful competitiveness of NHBA-CPFD
algorithm, in contrast to MOPSO and NSGA-III methods,
both bi-objective and tri-objective optimization trials are
studied. Details of all cases involved in this paper are shown
in Table 2. The mathematical model of objective functions is
described in Section 2.

The application of NHBA-CPFD algorithm on MOOPF
problems can be summarized in Figure 1.

The initial PBP population is randomly generated accord-
ing to (45). Each bat individual is essentially a set of
D-dimensional control variables in the power system. Des-
ignate the initial global optimal individual ppesrandomly.

u;i = ui™ + rand (u}nax - u}mn)

i€ [1,Ng ], up=[u),u?, -, uP] (45)

127
where u}“i“ and u}“i“ limit the range of control variables.

By adjusting the corresponding electrical equipment
according to the control variables of obtained BC solutions,
the system can achieve the predetermined operation state.
And it is the practical significance of devoting great effort
in studying the MOOPF problems.

V. SIMULATION AND RESULTS

The MATLAB 2014a software is employed and all testing
cases in this paper are run on a PC with Intel(R) Core(TM)
i5-7500 CPU @ 3.40 GHz with 8GB RAM.

A. SYSTEMS

For a comprehensive evaluation of the presented NHBA-
CPFD algorithm, ten simulation trials are carried out on three
different scale systems.

The structure of IEEE 30-node system is shown in
Figure 2 and the details are shown in Table 3. More infor-
mation can be found in [19], [37] and Table 4 gives the
coefficients of fuel cost and emission.

The structure of IEEE 57-node is shown in Figure 3 and
the details are obtained from [19]. The transformer taps
and voltage magnitude for the PQ and PV nodes are bound
in 0.9-1.1p.u. . The shunt capacitor is restricted in 0-0.3p.u..
Table 5 shows the coefficients of fuel cost and emission in
IEEE 57-node system.

The single line diagram of IEEE 118-node system with
128-dimensional control variables is shown in Figure 4. The
bound of voltage magnitude for PV node is set as 0.9-1.1 p.u.
and the shunt capacitor is restricted in 0-0.3 p.u.. The other
details of IEEE 118-node system can be found in [19].

B. ALGORITHM PARAMETERS

In order to figure out the influence of main algorithm param-
eters on optimization performance and determine a set of
relatively optimal combination, a bi-objective case which
aims to optimize the basic fuel cost and emission at the same
time is taken as an example.
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( start

Input: initial parameters of NHBA-CPFD algorithm: the size of bat population N,, the maximum iteration ite,,,, the mutant factor F,,, the
crossover coefficient F,, the ranges of frequency [f#uin, fF'max], loudness [L,in, Linax] and pulse rate [Rin, Roaxl

‘ ite=1

<€

A 4

Update speed and position based on (25) and (22) . Calculate Newton-Raphson load flow and clarify the values of given optimization
objectives fi(x,u) (i=1,2,...M) for every individual in the PBP population.

Complete the mutation and crossover of individuals in PBP to generate a new population MCBP. Calculate the Newton-Raphson load flow to
gain the values of f,,,(x,u) (i=1,2,...M) in the MCBP population.

Based on the proposed CPFD strategy, the dominant relationship of two individuals can be clarified. If the performance of ith individual in
MCBP population is better than ith one in PBP population, the ith individual in MCBP population will be accepted into the PBP population

‘ Determine the current optimal solution of PBP named as p;,, and perform the local search around it.

‘ ‘ ite=ite+1 ‘

A

Generate two random numbers Randl and Rand2. When RandI>R;, a random perturbation is acting on the pj. solution to produce a new
solution p,,,. Furthermore, when (Rand2< L;)&(p., dominates pp.), pye- Will be accepted as the new optimal solution as yet. At the same time, R;
will increase and L; will decrease based on (29) and (30) .

Integrate the PBP and EAP population to form the HP population with the size of 2N,. A new EAP with size of N, is renovated and it is actually
the selected POS on account of the sorting rule which combines with the suggested CPFD strategy.

!

The BC solution based on FAA method can be achieved ultimately.

v

—

_—
_—

-
-
<

ite=ite

\\\l//YES

NO

‘ Output: The obtained POS and BC solution ‘

P
( end

N
)

~. -

FIGURE 1. The flow chart of NHBA-CPFD algorithm on MOOPF problems.

TABLE 2. Objective combination.

Objl Obj2 Obj3 Obj4 Test system
CASEI v v IEEE 30
CASE2 v v IEEE 30
CASE3 v v IEEE 30
CASE4 v v IEEE 30
CASES v v v IEEE 30
CASE6 v v v IEEE 30
CASE7 v v IEEE 57
CASES v v IEEE 57
CASEY v v IEEE 118
CASEI0 v v IEEE 118

In detail, the influences of the maximum iteration and the
valid range of wc are studied in this paper. The results are
achieved by NHBA-CPFD algorithm with a population size
of 100.

Figure 5 shows the PFs with different maximum iterations.
It clearly indicates that the iteration of 100 obtains the worst
PF while the iteration of 200,300 and 400 can achieve better
PFs. Figure 5 also validates that the iterations of 500 and
600 are capable to achieve well-distributed PFs with similar
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FIGURE 2. Structure of the IEEE 30-node system.

efficiency. To reduce the computational time, the maximum
iteration in this paper is set as 500.

Then, the influence of wc is discussed. Figure 6 shows
the PFs based on the different minimum value of wc when
the top-limit is set as wcCpax 0.95. It states that the
wcmin of 0.1 gets the worse distribution and the wcy,
of 0.4 achieves the best one. Figure 7 shows the PFs based on
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FIGURE 4. Structure of the IEEE 118-node system.

different maximum value of wc when the lower-limit is set as
wcmin = 0.4. It indicates that the wcyg, of 0.92 gets the
worse distribution while the wc,,,, of 0.9 achieves a better
PFE. Therefore, it is reasonable to infer that the appropriate
range of the non-linear weight coefficient is [0.4, 0.9].

Additionally, the other parameters of four involved algo-
rithms are shown in Table 6.

C. TRIALS ON IEEE 30-NODE SYSTEM

Four bi-objective and two tri-objective testing trials are per-
formed on the IEEE 30-node system.

1) CASE1 CONSIDERING BASIC FUEL COST AND EMISSION
SIMULTANEOUSLY
In CASEI, two objectives of F, and F, are optimized con-
currently by the presented NHBA, NHBA-CPFD, MOPSO
and NSGA-III approaches. The obtained PFs are shown in
Figure 8 and it indicates that the NHBA and NHBA-CPFD
algorithms can obtain preferable POS than MOPSO and
NSGA-IIT methods. Even further, the NHBA-CPFD algo-
rithm has great potential to find more favorable PF than
NHBA algorithm.

The 24-dimensional control variables of BC solution
obtained by four algorithms are given in Table 7. Table 7 also
lists two boundary solutions found by NHBA-CPFD

VOLUME 7, 2019

algorithm including C/.E (the solution with minimum emis-
sion) and CI.F (the solution with minimum fuel cost).
More specifically, the BC solution obtained by NHBA algo-
rithm includes 0.2375 ton/h of F, and 832.6471 $/h of
F. and the BC solution obtained by NHBA-CPFD algo-
rithm includes 0.2350 ton/h of F, and 830.9592 $/h of F.,.
In addition, the CI.Eincludes 0.1943 ton/h of minimal F, and
955.0343 $/h of F,. The CI1.F includes 0.3309 ton/h of F, and
799.7640 $/h of minimal F...

In order to make the conclusion that the NHBA-CPFD
algorithm can effectively handle MOOPF problems more
persuasiveness, Table 8 gives the comparison results between
the proposed algorithms and other methods.

2) CASE2 CONSIDERING BASIC FUEL COST AND ACTIVE
POWER LOSS SIMULTANEOUSLY
In CASE2, two competing objectives of Fc and F), are studied.
The PFs obtained by four algorithms are shown in Figure 9.
Table 9 gives the control variables of BC solutions and the
comparison results shown in other literatures. Table 9 also
lists two boundary solutions found by NHBA-CPFD algo-
rithm including C2.F (the solution with minimum fuel cost)
and C2.P (the solution with minimum power loss). As can
be seen from Table 9, the BC solution obtained by NHBA
algorithm includes 835.1034 $/h of F, and 5.0658 MW
of Fp. The BC solution obtained by NHBA-CPFD algo-
rithm includes 831.8513 $/h of F, and 5.1096 MW of F),.
Besides, the C2.Fincludes 799.3296 $/h of minimal F, and
8.5486 MW of F,,. The C2.Pincludes 966.8891 $/h of F. and
2.9023 MW of minimalfF,.

3) CASE3 CONSIDERING FUEL COST WITH VALUE-POINT
AND EMISSION SIMULTANEOUSLY

In CASE3, two objectives of F._,, and F, are optimized
simultaneously. The PFs respectively obtained by different
algorithms are shown in Figure 10.

Table 10 shows the control variables of BC solutions
achieved by four involved methods. Table 10 also lists two
boundary solutions found by NHBA-CPFD algorithm includ-
ing C3.Fv (the solution with minimum fuel cost with value-
point) and C3.E (the solution with minimum emission).

In detail, Table 10 clearly states that the BC solution
obtained by NHBA algorithm includes 854.3882 $/h of
Fe_yy and 0.2598 ton/h of F,. The BC solution obtained
by NHBA-CPFD algorithm includes 855.5369 $/h of F._,,
and 0.2585 ton/h of F,. In addition, the C3.Fvincludes
831.6332 $/h of minimal F._,, and 0.3727 ton/h of F,. And
the C3.E includes 1023.2904 $/h of F._,,, and 0.1944 ton/h of
minimal F,.

4) CASE4 CONSIDERING FUEL COST WITH VALUE-POINT
AND ACTIVE POWER LOSS SIMULTANEOUSLY

In CASE4, the F._,, and F), are optimized concurrently and
the obtained PFs are shown in Figure 11. The control vari-
ables of BC solutions are listed in Table 11. Table 11 also
shows two boundary solutions found by NHBA-CPFD
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TABLE 3. Details of the IEEE 30-node system.

equipment amount details
nodes 30 -
branches 41 -
generators 6 nodes:1,2,5,8,11,and13
transformer taps 4 branches:6-9,6-10,4-12 and 28-27 limit: 0.9p.u.-1.1p.u.
capacitors 9 nodes:10,12,15,17,20,21,23,24 and 29
control variables 24

voltage of generator nodes -
voltage of load nodes -

limit: 0.95p.u.-1.1p.u
limit: 0.95p.u.-1.1p.u

TABLE 4. Fuel and emission coefficients of the IEEE 30-node system.

Generating unit

coefficient Gl G2 G5 G8 Gl G13
Fuel cost
a 0 0 0 0 0 0
b 2 1.75 1 3.25 3 3
c 0.00375 0.0175 0.0625 0.00834 0.025 0.025
d 18 16 14 12 13 13.5
e 0.037 0.038 0.04 0.045 0.042 0.041
Emission
o 0.06490 0.05638 0.04586 0.03380 0.04586 0.05151
B -0.05554 -0.06047 -0.05094 -0.03550 -0.05094 -0.05555
v 0.04091 0.02543 0.04258 0.05326 0.04258 0.06131
n 0.0002 0.0005 0.000001 0.002 0.000001 0.00001
A 2.857 3.333 8.000 2.000 8.000 6.667

TABLE 5. Fuel and emission coefficients of the IEEE 57-node system.

Generating unit

coctlicient Gl G2 G3 G6 G8 G9 G12
Fuel cost
a 0 0 0 0 0 0 0
b 20 40 20 40 20 40 20
c 0.0775795 0.01 0.25 0.01 0.0222222 0.01 0.0322581
Emission
o 0.06 0.05 0.04 0.035 0.045 0.05 0.05
B -0.05 -0.06 -0.05 -0.03 -0.05 -0.04 -0.05
Y 0.04 0.03 0.04 0.035 0.05 0.045 0.06
n 0.00002 0.00005 0.00001 0.00002 0.00004 0.00001 0.00001
A 0.5 1.5 1 0.5 2 2 1.5
algorithm including C4.Fv (the solution with minimum fuel 9801 =
cost with value-point) and C4.P (the solution with minimum 90 & . 200
power loss). As can be seen from Table 11, the BC solu- a0l Zgg
tion achieved by NHBA algorithm includes 868.9526 $/h of -l % 500
Fc_,, and 5.6761 MW of F,,. The BC solution obtained by K 600
NHBA-CPFED algorithm includes 865.9106 $/h of F._,,, and o §

5.6726 MW of F),. Besides, the C4.Fv includes 833.3204 $/h

Fuel cost ($/h)
o]
3

of minimal F._,, and 10.4024 MW of F),. The C4.P includes 860+ B
1022.0654 $/h of F._,p, and 2.9227 MW of minimal F),. 8401 ??&\}}‘"
820- Q:;;;,,:,:_‘ .
5) CASE5 CONSIDERING FUEL COST, ACTIVE POWER LOSS 800k it PUL IR RO
AND EMISSION SIMULTANEOUSLY 80 ‘

To certify the superiority of proposed NHBA-CPFD algo- 018 02 022 0-2‘E1 . _0-260 n/h<))-28 03 032 034
. . o . . . . mission (1ol
rithm comprehensively, the more difficult optimization trials

with three objectives are studied in this paper.

In CASES, three competing objectives of F., F), and F,
are optimized concurrently. The PFs respectively obtained
by MOPSO, NSGA-III, NHBA and NHBA-CPFD algorithms
are shown in Figure 12. Table 12 shows the control variables
of achieved BC solutions and three boundary solutions found
by NHBA-CPFD algorithm including C5.F (the solution
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FIGURE 5. PFs based on different maximum iterations.

with minimum fuel cost), C5.P (the solution with minimum
power loss) and C5.E (the solution with minimum emis-
sion). It intuitively states that the BC solution obtained by
NHBA algorithm includes 868.7380 $/h of F., 4.1744 MW
of F,, and 0.2111 ton/h of F,. The BC solution obtained
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FIGURE 7. PFs based on different maximum value of wc.

by NHBA-CPFD algorithm includes 865.4229 $/h of F,,
4.3535 MW of F), and 0.2116 ton/h of F,.

In addition, the C5.F includes 799.3578 $/h of minimal F,.
The C5.E includes 0.1943 ton/h of minimal F, and the C5.P
includes 3.0176 MW of minimal F),.

6) CASE6 CONSIDERING FUEL COST WITH VALUE-POINT,
ACTIVE POWER LOSS AND EMISSION SIMULTANEOUSLY
In CASE®, three objectives of F_,p, F), and F, are optimized
concurrently and the obtained PFs are shown in Figure 13.
The control variables of BC solutions obtained by NHBA and
NHBA-CPFD algorithms, compared with the results obtained
by MOPSO and NSGA-III methods, are shown in Table 13.

For CASEG6, three boundary solutions found by NHBA-
CPFD algorithm including C6.Fv (the solution with mini-
mum fuel cost with value-point), C6.P (the solution with
minimum power loss) and C6.E (the solution with minimum
emission) are listed on Table 13 as well.

More specifically, the BC solution achieved by NHBA
algorithm includes 964.8493 $/h of F._,,, 3.9018 MW of
F, and 0.2047 ton/h of F,. The BC solution achieved by
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FIGURE 8. PFs obtained by different algorithms for CASE1.

NHBA-CPFD algorithm includes 962.8123 $/h of F._,p,
3.9637 MW of F, and 0.2041 ton/h of F. Besides, the C6.Fv
includes 904.6377 $/h of minimal F._,,. The C6.E includes
0.1943 ton/h of minimal F, and the C6.Pincludes 2.9541 MW
of minimal F,.

D. TRIALS ON IEEE 57-NODE SYSTEM
To explore the universal applicability of proposed NHBA-
CPFD algorithm, simulation cases of MOOPF problems on
the IEEE 57-node system are discussed.

1) CASE7 CONSIDERING BASIC FUEL COST AND EMISSION
SIMULTANEOUSLY

In CASE7, two objectives of F, and F, are optimized
simultaneously. The obtained PFs are shown in Figure 14.
In addition, the 33-dimensional control variables of BC
solutions and two boundary solutions (C7.F and C7.E)
found by NHBA-CPFD algorithm are shown in Table 14.
In detail, the BC solution achieved by NHBA algorithm
includes 43244.5741 $/h of F. and 1.2192 ton/h of F,. The
BC solution obtained by NHBA-CPFD algorithm includes
43221.5876 $/h of F. and 1.2164 ton/h of F,. In addi-
tion, the C7.F includes 41678.6457 $/h of minimal F. and
1.6319 ton/h of F,. The C7.E includes 48186.3156 $/h of F..
and 1.0271 ton/h of minimal F,.

2) CASE8 CONSIDERING BASIC FUEL COST AND ACTIVE
POWER LOSS SIMULTANEOUSLY

In CASES, two objectives of F. and F), are optimized simul-
taneously. The PFs respectively achieved by the NBHA-
CPFD algorithm and the other three methods are shown
in Figure 15. Table 15 gives the control variables of obtained
BC solutions and two boundary solutions (C8.F and C8.P)
found by NHBA-CPFD algorithm. As can be seen from
Table 15, the BC solution obtained by NHBA algorithm
includes 41934.2468 $/h of F, and 11.0174 MW of F,. The
BC solution achieved by NHBA-CPFD algorithm includes
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TABLE 6. Main parameters of MOPSO, NSGA-11l, NHBA and NHBA-CPFD algorithms.

parameters MOPSO NSGA-III NHBA/NHBA-CPFD
size of population 100 100 100
size of EAP 100 100 100
maximum iterations 500 500 500
clic2 2 - -
mutation indictor/ percentage - 2071 -
crossover indictor/ percentage -- 20/0.1 -
number of divisions - 10 -
mutant weighting factor F,, - - 0.6
crossover coefficient F, - - 0.8
wc(min/max) - - 0.4/0.9
fr(min/max) - - 0/2
R(min/max) - - 0.1/0.5
L(min/max) -- -- 0.5/0.95
TABLE 7. Specific solutions and control variables of CASE1.
control variables MOPSO NSGA-III NHBA NHBA-CPFD CLE CLF BSA [38]
P:(MW) 59.3113 56.9231 58.1990 58.3448 73.4104 47.9982 59.3719
Pes(MW) 25.3313 28.6463 25.6741 26.0838 50.0000 20.9138 27.6576
Pgs(MW) 32.1623 34.7837 27.0218 34.3432 35.0000 20.5543 34.9989
Psii(MW) 24.3430 28.6194 26.3626 26.0900 30.0000 12.6536 27.0652
Psi:(MW) 29.2546 26.0422 31.3704 26.3332 40.0000 12.0000 26.4502
Vai(p-u.) 1.0948 1.1000 1.1000 1.1000 1.0596 1.1000 1.1000
Vaa(p.u.) 1.0839 1.0805 1.0890 1.0931 1.0483 1.0887 1.0855
Vas(p.u.) 1.0417 1.0649 1.0537 1.0564 1.0233 1.0648 1.0606
Vas(p-u.) 1.0686 1.0654 1.0639 1.0545 1.0326 1.0730 1.0757
Van(p.u.) 1.0738 1.0913 1.0880 1.0724 1.0618 1.0534 1.1000
Vais(p.u.) 1.0875 1.0945 1.0517 1.0946 1.0733 1.0516 1.1000
Tu(p.u.) 1.1000 0.9225 1.0711 0.9900 0.9609 1.0027 1.0000
Ti(p.u.) 1.0848 1.0482 0.9304 0.9135 1.0032 1.0094 0.9500
Tis(p.u.) 0.9890 0.9844 1.1000 1.0032 0.9670 1.0280 1.0000
Tse(p-u.) 1.0067 1.0127 1.0097 0.9414 1.0231 1.0213 0.9625
Qcio(p-u.) 0.0423 0.0103 0.0299 0.0297 0.0303 0.0232 3.4844(Mvar)
Qciz2(p-u.) 0.0086 0.0348 0.0473 0.0043 0.0203 0.0072 4.5129(Mvar)
Qcis(p-u.) 0.0234 0.0225 0.0157 0.0202 0.0137 0.0161 4.7990(Mvar)
Qci7(p-u.) 0.0229 0.0043 0.0450 0.0296 0.0149 0.0201 4.9965(Mvar)
Qc2o(p-u.) 0.0018 0.0493 0.0291 0.0357 0.0298 0.0103 3.9809(Mvar)
Qcai(p-u.) 0.0000 0.0384 0.0333 0.0042 0.0308 0.0243 4.7684(Mvar)
Qc(p-u.) 0.0435 0.0120 0.0500 0.0236 0.0139 0.0077 3.8535(Mvar)
Qc24(p-u.) 0.0500 0.0381 0.0235 0.0500 0.0401 0.0398 4.2332(Mvar)
Qco(p-u.) 0.0337 0.0380 0.0088 0.0261 0.0400 0.0474 1.6339(Mvar)
Emission(ton/h) 0.2500 0.2423 0.2375 0.2350 0.1943 0.3309 0.2425
Fuel cost($/h) 832.1254 836.4405 832.6471 830.9592 955.0343 799.7640 835.0199
TABLE 8. Comparison results of BC solutions for CASE1.
comparison Fuel cost($/h) Emission(ton/h)
NHBA 832.6471 0.2375
NHBA-CPFD 830.9592 0.2350
BSA[38] 835.0199 0.2425
MOEA/D [18] 833.72 0.2438
ESDE-MC [39] 830.7185 0.2483
MGBICA [40] 830.8514 0.2484
AGSO [41] 843.5473 0.2539

41925.5743 $/h of F. and 10.9884 MW of F,. Besides, E. TRIALS ON IEEE 118-NODE SYSTEM

the C8.P includes 43052.0891 $/h of F. and 9.9299 MW The IEEE 118-node system is employed to evaluate the effec-
of minimal F,. And the C8.F includes 41655.1128 $/h of tiveness of proposed NHBA-CPFD algorithm on larger scale
minimal F, and 14.4357 MW of F),. systems.
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TABLE 9. Specific solutions and control variables of CASE2.

control variables MOPSO NSGA-III NHBA NHBA-CPFD C2.F C2.P MOEA/D [18]
P (MW) 80.0000 51.3612 54.7737 52.6991 49.4563 80.0000 53.572
Pgs(MW) 25.9706 32.5928 34.1273 32.0940 21.8309 50.0000 32.890
Pgs(MW) 35.0000 34.1453 35.0000 34.9082 22.1551 35.0000 34.993
Psn(MW) 11.1284 28.9390 26.3571 26.9260 11.4655 30.0000 28.244
Psi3(MW) 20.7805 20.8168 20.5383 22.2317 12.0000 39.8845 21.963
Vai(pu) 1.1000 1.0187 1.0993 1.1000 1.1000 1.1000 1.1000
Vaa(p.u.) 1.0888 1.0059 1.0857 1.0912 1.0884 1.0981 1.0920
Vas(p.u.) 1.0806 0.9810 1.0629 1.0683 1.0629 1.0788 1.0690
Vas(p.u.) 1.0746 0.9923 1.0749 1.0762 1.0684 1.0940 1.0793
Van(p.u.) 1.1000 1.0884 1.0754 1.1000 1.1000 1.0930 1.1000
Vais(p.u.) 1.1000 1.0622 1.0984 1.1000 1.0950 1.0921 1.0999

Tu(p-u.) 1.1000 0.9293 0.9911 0.9954 1.0580 0.9759 1.0617
Ti(p.u.) 0.9000 0.9645 0.9871 0.9444 0.9035 1.0230 0.9000
Tis(p.u.) 1.0338 0.9569 0.9802 0.9918 1.0116 1.0116 0.9953
Ts6(p-u.) 0.9978 0.9246 0.9628 0.9852 0.9983 0.9866 0.9700
Qcro(p-u.) 0.0182 0.0433 0.0169 0.0098 0.0079 0.0329 5.000(Mvar)
Qcia(p-u.) 0.0182 0.0194 0.0000 0.0246 0.0491 0.0411 5.000(Mvar)
Qcis(p.u.) 0.0500 0.0464 0.0297 0.0500 0.0448 0.0458 4.503(Mvar)
Qci7(p-u.) 0.0299 0.0154 0.0391 0.0074 0.0000 0.0393 5.000(Mvar)
Qc2o(p-u.) 0.0361 0.0473 0.0108 0.0031 0.0100 0.0242 4.592(Mvar)
Qcai(p.u.) 0.0495 0.0210 0.0500 0.0251 0.0184 0.0389 4.960(Mvar)
Qca(p-u.) 0.0430 0.0422 0.0264 0.0201 0.0141 0.0097 3.069(Mvar)
Qc24(p.u.) 0.0003 0.0102 0.0500 0.0430 0.0396 0.0500 4.994(Mvar)
Qc2o(p-u.) 0.0491 0.0148 0.0500 0.0412 0.0283 0.0261 2.500(Mvar)
Fuel cost($/h) 837.6251 835.0259 835.1034 831.8513 799.3296 966.8891 835.36
Power loss(MW) 5.9861 5.9213 5.0658 5.1096 8.5486 2.9023 4.9099
TABLE 10. Specific solutions and control variables of CASE3.
control variables MOPSO NSGA-III NHBA NHBA-CPFD C3.Fv C3.E
P(MW) 78.6222 59.7779 63.1732 60.6335 43.0864 73.6854
Pgs(MW) 17.8190 23.8525 26.6166 22.6786 19.3741 50.0000
Pas(MW) 32.6052 35.0000 31.7927 33.9594 10.7656 35.0000
Pon(MW) 15.6309 21.4682 15.8564 19.2115 10.4091 30.0000
P6i3(MW) 16.4559 18.6308 17.8631 19.2282 12.0000 40.0000
Vai(p-u.) 1.0993 1.0576 1.0984 1.0848 1.1000 1.0861
Va(p-u) 1.0835 1.0460 1.0858 1.0684 1.0778 1.0717
Vas(p.u.) 1.0412 1.0201 1.0502 1.0596 1.0595 1.0231
Vas(p-u.) 1.0797 1.0339 1.0631 1.0658 1.0609 1.0358
Van(pu.) 1.0907 1.0927 1.0564 1.0064 1.0470 1.0712
Vais(p-u.) 1.0685 1.0926 1.0363 1.0495 1.0905 0.9897
Tu(p.u.) 1.0168 0.9929 1.0319 1.0801 1.0711 1.0383
Tia(p-u.) 1.1000 0.9125 1.0215 0.9675 0.9675 0.9431
Tis(p.u.) 1.1000 0.9551 1.0002 1.1000 1.0639 1.0266
Ts6(p-u.) 1.0312 0.9619 0.9963 1.0374 1.0134 0.9418
Qciro(p-u.) 0.0428 0.0368 0.0234 0.0472 0.0470 0.0394
Qcia(p-u.) 0.0123 0.0362 0.0033 0.0071 0.0182 0.0003
Qcis(p-u.) 0.0082 0.0313 0.0348 0.0057 0.0098 0.0120
Qci7(p-u.) 0.0000 0.0208 0.0428 0.0083 0.0152 0.0138
Qc20(p-u) 0.0453 0.0189 0.0235 0.0500 0.0389 0.0348
Qcai(p-u.) 0.0243 0.0330 0.0325 0.0493 0.0500 0.0478
Qcxs(p-u.) 0.0500 0.0478 0.0110 0.0379 0.0500 0.0390
Qcas(p-u.) 0.0500 0.0098 0.0372 0.0448 0.0299 0.0456
Qc2o(p-u.) 0.0021 0.0466 0.0145 0.0477 0.0367 0.0406
Feose with v-p($/h) 862.2820 861.7320 854.3882 855.5369 831.6332 1023.2904
Emission(ton/h) 0.2598 0.2537 0.2598 0.2585 0.3727 0.1944

1) CASE9 CONSIDERING BASIC FUEL COST AND EMISSION
SIMULTANEOUSLY
In CASE9, two competing objectives of F. and F, are

The BC solution achieved by NHBA-CPFD algorithm
includes 60402.7420 $/h of F. and 2.5274 ton/h of F,.

optimized at the same time. The obtained PFs are shown
in Figure 16. Additionally, Table 16 gives the control vari-
ables of BC solutions.

In detail, the BC solution obtained by NHBA algorithm
includes 60694.5466 $/h of F. and 2.6445 ton/h of F,.

VOLUME 7, 2019

2) CASET10 CONSIDERING BASIC FUEL COST AND ACTIVE
POWER LOSS SIMULTANEOUSLY

In CASEIO, the F. and F), are optimized concurrently and
the obtained PFs are shown in Figure 17. The control vari-
ables of BC solutions achieved by NHBA and NHBA-CPFD
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FIGURE 11. PFs obtained by different algorithms for CASE4.

algorithms, in contrast to the results achieved by MOPSO
and NSGA-III methods, are listed in Table 17. In detail,
the BC solution achieved by NHBA algorithm includes
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59984.8963 $/h of F. and 55.1909 MW of F,. The
BC solution achieved by NHBA-CPFD algorithm includes
59589.2455 $/h of F and 55.0038 MW of F),.

VI. PERFORMANCE EVALUATION

To evaluate the distribution and diversity of POS obtained by
different methods, the GD and HV metrics are adopted in this
paper.

A. GD

The detailed characterization of GD index can be found
in [19], [42], [43] and the formula of GD is shown as (46).
For MOOPF problems, the GD index is used to measure the
distance between the real PF and the obtained one. Generally
speaking, the closer to zero GD index is, the PF which is more
in conformity with the real one can be achieved.

(40)

VOLUME 7, 2019



G. Chen et al.: Applications of NHBA With Constrained Pareto Fuzzy Dominant Rule

IEEE Access

10
5X
. +  MOPSO
a9l s NSGA-II
. NHBA
48} % *  NHBA-CPFD
3.
RS
= :
£ 46} \"k.
173 e
3 A,
73) 45¢ -.:
44 % ?l
43 ~
4-".?..\ .
ot o>
421 '-..:...a..‘:‘ Aimte s on
41 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
1 1.1 1.2 1.3 14 15 16 17 1.8

Emission (torvh)

FIGURE 14. PFs obtained by different algorithms for CASE7.

1

432X "0 .

. « MOPSO
43f +  NSGA-I
N NHBA
a8l vy * NHBA-CPFD
‘. LY
=426} %
2 L .
= o .
S 424t T Y.
o ‘ .
5 A
T 422 \ s
Y My
42 ‘-, \s}.
“ .
~.~.
418l i
%.:73:.‘:... ..
R Y K .
416 L L L L L ]
9 10 1 12 13 14 15

Power loss (MW)

FIGURE 15. PFs obtained by different algorithms for CASES.

where de; represents the Euclidean distance between each
solution of obtained POS and the nearest one in the real PF.

The POS of six testing cases on the IEEE 30-node system
are analyzed by GD index. The boxplots of CASEI~CASE6
are shown in Figure 18.

Boxplot, a statistical tool to describe the dispersion of data,
can visually display the maximum, minimum, median, upper
and lower quartile, even outliers of a dataset. For MOOPF
problems, the closer boxplots and fewer outliers mean the
better convergence to the real PF.

Furthermore, Table 18 shows the mean and stan-
dard deviation of GD index for CASEI~CASE3 while
Table 19 shows the mean and standard deviation of GD index
for CASE4~CASEG.

Figure 18 clearly shows that the NHBA-CPFD algorithm
achieves closer boxplots and fewer outliers in all six cases
on the IEEE 30-node system. In contrast to the typical
MOPSO and NSGA-III algorithms, the NHBA algorithm
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can obtain superior POS in most cases (CASE!~CASE2and
CASE5~CASE®G). Furthermore, Table 18 and Table 19
quantitatively demonstrate that the NHBA-CPFD algorithm
can obtain the smallest mean and deviation of GD index
compared with other three methods.

In summary, the NHBA-CPFD algorithm is able to achieve
the stable operation and it can find a uniformly distributed
PF which is better consistent with the real one. In Addition,
the NHBA algorithm performs well in GD index for most
cases except CASE3 and CASE4. The effectiveness and supe-
riority of presented NHBA-CPFD algorithm can be verified

powerfully by the computer graphics technology and dataset
analysis.

B. HV

The HV index can be described as (47) [19], [42]. For
MOOPF problems, the HV index represents the volume
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TABLE 11. Specific solutions and control variables of CASE4.

control variables MOPSO NSGA-III NHBA NHBA-CPFD C4.Fv C4.p
P (MW) 50.0929 43.1222 52.3984 47.1580 41.7416 79.8105
Pss(MW) 32.6432 30.9247 31.9677 31.1918 17.6358 49.6358
Pss(MW) 35.0000 34.9731 34.6347 34.8780 14.5270 35.0000
Pou(MW) 24.0127 26.2895 19.6335 27.1173 10.2522 30.0000
Pgi3(MW) 15.4112 18.9959 20.2407 15.0551 12.0000 38.5822
Vai(p-u.) 1.0971 1.0992 1.0992 1.1000 1.1000 1.1000
Vaap.u.) 1.0815 1.0841 1.0922 1.0867 1.0786 1.0959
Vas(p.u.) 1.0654 1.0559 1.0697 1.0666 1.0267 1.0763
Vas(p.u.) 1.0673 1.0657 1.0804 1.0745 1.0609 1.0805
Vau(p.u.) 1.0784 1.0749 1.0972 1.0856 1.0309 1.0979
Vais(p-u.) 1.1000 1.0955 1.0707 1.0883 1.0676 1.1000
Tu(p.u.) 1.0824 0.9480 1.0257 0.9950 0.9911 0.9990
Tia(p-u.) 0.9031 0.9904 0.9754 0.9497 0.9807 0.9520
Tis(p.u.) 0.9807 1.0182 0.9818 1.0220 1.0321 0.9906
Tse(p-u.) 0.9876 0.9741 0.9868 0.9774 0.9670 0.9765
Qcio(p-u.) 0.0500 0.0120 0.0276 0.0344 0.0260 0.0197
Qcia(p-u.) 0.0363 0.0281 0.0277 0.0398 0.0170 0.0473
Qcis(p-u.) 0.0367 0.0498 0.0242 0.0459 0.0085 0.0353
Qci7(p-u.) 0.0144 0.0470 0.0256 0.0098 0.0414 0.0197
Qc2o(p-u.) 0.0194 0.0480 0.0397 0.0413 0.0036 0.0500
Qcai(p-u.) 0.0422 0.0483 0.0310 0.0054 0.0456 0.0322
Qca2s(p-u.) 0.0099 0.0361 0.0315 0.0085 0.0490 0.0158
Qc24(p-u.) 0.0370 0.0078 0.0269 0.0416 0.0229 0.0444
Qc2o(p-u.) 0.0267 0.0375 0.0205 0.0303 0.0120 0.0184
Feost With v-p($/h) 868.1006 865.9864 868.9526 865.9106 833.3204 1022.0654
Power loss (MW) 5.6962 5.6847 5.6761 5.6726 10.4024 2.9227
TABLE 12. Specific solutions and control variables of CASES5.
control variables MOPSO NSGA-III NHBA NHBA-CPFD C5.F CS5.E C5.P MOEA/D [18]
P (MW) 57.8898 61.1591 66.8699 62.5608 49.4783 73.5913 80.0000 59.93
Pgs(MW) 36.2905 41.2353 36.8331 35.4638 21.0250 50.0000 50.0000 4422
Pas(MW) 35.0000 34.6782 34.2827 35.0000 21.5292 35.0000 35.0000 35.00
Paii(MW) 29.2712 30.0000 27.6650 28.9848 13.1851 30.0000 30.0000 30.00
Pci3(MW) 40.0000 39.1884 30.2493 31.6893 12.0000 40.0000 40.0000 37.36
Vai(pu.) 1.0985 1.0472 1.0987 1.1000 1.1000 1.0942 1.1000 1.1000
Ve(p.u.) 1.0869 1.0378 1.0947 1.0915 1.0891 1.0910 1.1000 1.0949
Vas(p-u.) 1.0625 1.0068 1.0634 1.0671 1.0643 1.0784 1.0818 1.0786
Vas(p.u.) 1.0767 1.0213 1.0815 1.0790 1.0687 1.0778 1.0849 1.0855
Veu(p-u.) 1.0857 1.0523 1.0925 1.0254 1.0902 1.0456 1.0461 1.1000
Vais(pu.) 1.0386 1.0173 1.0986 1.0186 1.1000 1.0409 1.0580 1.0997
Tu(p-u) 1.0861 1.0036 0.9906 1.0544 0.9796 1.0747 1.0411 1.0715
Tia(p.u.) 0.9933 0.9679 0.9718 0.9829 1.0061 1.0141 1.0133 0.9000
Tis(p.u.) 1.0515 0.9689 0.9868 1.0202 1.0164 1.0628 1.0777 0.9913
Tse(p-u.) 1.0770 0.9593 0.9750 1.0180 0.9714 0.9909 1.0176 0.9706
Qcio(p-u.) 0.0140 0.0214 0.0494 0.0136 0.0493 0.0175 0.0194 4.767(Mvar)
Qciz(p-u) 0.0223 0.0078 0.0358 0.0012 0.0114 0.0136 0.0088 4.594(Mvar)
Qcis(p-u.) 0.0080 0.0311 0.0013 0.0478 0.0106 0.0491 0.0500 4.514(Mvar)
Qcir(p-u.) 0.0249 0.0407 0.0427 0.0437 0.0276 0.0350 0.0345 4.348(Mvar)
Qc2o(p-u.) 0.0391 0.0128 0.0417 0.0210 0.0343 0.0161 0.0172 5.000(Mvar)
Qcai(p-u.) 0.0272 0.0197 0.0455 0.0491 0.0120 0.0411 0.0317 4.704(Mvar)
Qc23(p-u.) 0.0103 0.0078 0.0162 0.0303 0.0303 0.0132 0.0117 3.327(Mvar)
Qcu(p-u.) 0.0172 0.0482 0.0346 0.0417 0.0337 0.0500 0.0416 5.000(Mvar)
Qc2o(p-u.) 0.0500 0.0129 0.0332 0.0248 0.0415 0.0143 0.0168 1.262(Mvar)
Fuel cost ($/h) 879.9047 898.5219 868.7380 865.4229 799.3578  954.7997  967.4658 902.54
Emission(ton/h) 0.2165 0.2115 0.2111 0.2116 0.3244 0.1943 0.1950 0.2107
Power loss(MW) 42179 4.1419 4.1744 4.3535 8.5443 3.1539 3.0176 3.4594

covered by the obtained PF in the target space. It is used to

measure the distribution uniformity and population diversity
of POS. In General, the larger HV criteria is, the more widely
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solution domain can be covered by obtained POS.
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TABLE 13. Specific solutions and control variables of CASE6.

control variables MOPSO NSGA-III NHBA NHBA-CPFD C6.Fv C6.P C6.E
Pa(MW) 80.0000 62.6736 73.7249 76.8300 62.9980 80.0000 71.7231
Pss(MW) 50.0000 37.1759 38.0811 34.6788 21.1259 50.0000 50.0000
Pgs(MW) 35.0000 34.9864 34.6799 35.0000 32.8776 35.0000 35.0000
Pcii(MW) 24.8476 29.5603 26.3694 30.0000 10.7541 30.0000 30.0000
Psis(MW) 19.1432 31.6427 34.7879 33.8819 12.0869 40.0000 40.0000
Vai(p.u.) 1.1000 1.0994 1.0964 1.1000 1.0987 1.1000 1.1000
Vaa(p-u.) 1.1000 1.0900 1.0916 1.0936 1.0873 1.0998 1.0940
Vas(p-u.) 1.1000 1.0761 1.0774 1.0605 1.0613 1.0811 1.0833
Vas(p.u.) 1.0719 1.0811 1.0835 1.0762 1.0723 1.0862 1.0623
Van(p.u.) 1.1000 1.0849 1.0953 1.0531 1.0728 1.0968 1.0767
Vai(p-u.) 1.0897 1.0847 1.0924 1.0931 1.0477 1.1000 1.0796
Tu(pu) 1.0433 1.0002 0.9809 1.0214 1.0657 1.0430 1.0796
Tia(pu.) 0.9936 0.9907 1.0111 0.9455 0.9983 0.9000 0.9165
Tis(p.u.) 0.9903 1.0118 0.9965 1.0391 1.0587 0.9773 1.0013
Tse(p-u.) 1.0368 0.9905 0.9838 0.9883 1.0404 0.9991 1.0044
Qcio(p-u.) 0.0175 0.0089 0.0405 0.0325 0.0180 0.0367 0.0228
Qciz(p-u.) 0.0473 0.0221 0.0447 0.0025 0.0084 0.0426 0.0486
Qcis(p-u.) 0.0500 0.0271 0.0089 0.0357 0.0274 0.0420 0.0413
Qci7(p-u.) 0.0000 0.0394 0.0264 0.0318 0.0078 0.0407 0.0425
Qc2o(p-u.) 0.0500 0.0083 0.0366 0.0233 0.0451 0.0216 0.0214
Qcai(p-u.) 0.0500 0.0211 0.0492 0.0422 0.0365 0.0093 0.0145
Qc2s(p-u.) 0.0500 0.0269 0.0365 0.0188 0.0107 0.0244 0.0408
Qc24(p-u.) 0.0454 0.0177 0.0205 0.0420 0.0500 0.0082 0.0178
Qc2o(p-u.) 0.0500 0.0311 0.0157 0.0446 0.0300 0.0134 0.0211
Feost With v-p($/h) 982.4655 971.7659 964.8493 962.8123 904.6377 1026.9732 1019.6235
Power loss(MW) 3.9754 4.1318 3.9018 3.9637 7.4745 2.9541 3.2668
Emission(ton/h) 0.2093 0.2095 0.2047 0.2041 0.2869 0.1949 0.1943
TABLE 14. Specific solutions and control variables of CASE7.
control variables MOPSO NSGA-III NHBA NHBA-CPFD C7.E C7.F
Pg(MW) 97.5669 99.7273 99.4683 99.9912 100.0000 100.0000
Pa3;(MW) 96.8167 90.1018 91.7357 95.9130 140.0000 41.4411
Pgs(MW) 99.0831 99.7778 99.9067 99.7928 100.0000 94.9631
Pas(MW) 324.9300 338.9631 353.2901 357.0414 271.7851 437.9550
Pgo(MW) 99.0032 99.9404 100.0000 99.7146 100.0000 94.4472
Psi2(MW) 325.6119 312.1681 298.7424 296.4971 237.6294 358.9421
Vai(p.u.) 1.1000 1.0693 1.0989 1.0999 1.1000 1.1000
Vaa(p.u.) 1.1000 1.0586 1.0957 1.1000 1.1000 1.0999
Vas(p.u.) 1.1000 1.0373 1.0942 1.1000 1.1000 1.1000
Vas(p.u.) 1.1000 1.0462 1.0986 1.0999 1.1000 1.1000
Vas(p-u.) 1.1000 1.0431 1.0995 1.0999 1.1000 1.1000
Vao(p-u.) 1.1000 1.0260 1.0994 1.1000 1.1000 1.1000
Vaia(p-u.) 1.1000 1.0291 1.0991 1.0998 1.1000 1.0962
Tio(p-u.) 1.0462 0.9110 1.0977 0.9645 0.9691 0.9614
Tao(p-u.) 1.0382 1.0976 1.0234 1.0065 0.9890 1.0244
Tsi(p.u.) 1.0307 0.9180 1.0882 1.0022 1.0140 0.9866
Tss(p.u.) 1.0905 0.9739 0.9485 1.0190 1.0623 0.9738
Tse(p-u.) 1.0925 0.9237 1.0853 1.0185 0.9984 1.0451
Ts7(p.u.) 1.0664 1.0210 1.0399 1.0142 1.0638 0.9888
Tar(p-u.) 1.0223 1.0350 1.0509 0.9919 1.0096 0.9936
Tas(p-u.) 0.9431 1.0072 1.0440 1.0021 1.0298 0.9748
Tsa(p.u.) 0.9878 0.9599 1.0997 1.0646 1.0852 1.0535
Tss(p-u.) 1.0296 0.9466 1.0449 1.0081 0.9990 1.0165
Tso(p-u.) 1.0566 0.9294 0.9650 1.0099 1.0010 1.0132
Tes(p.u.) 1.0353 0.9290 1.0109 1.0184 1.0213 1.0181
Teo(p-u.) 1.0406 0.9149 0.9932 1.0237 1.0235 1.0304
Tn(p-u.) 1.0978 0.9628 0.9744 1.0020 1.0060 1.0041
Tr(p.u.) 1.0935 0.9929 1.0665 1.0094 1.0419 0.9884
Trs(p-u.) 0.9227 1.0470 1.0662 0.9279 0.9207 0.9312
Tso(p-u.) 1.0964 0.9798 1.0998 1.0012 1.0037 1.0077
Qcis(p-u.) 0.0558 0.0514 0.2998 0.0473 0.0399 0.0544
Qcas(p-u.) 0.1671 0.1190 0.2006 0.1120 0.1129 0.1293
Qcss(p-u.) 0.1893 0.1092 0.1314 0.1523 0.1464 0.1793
Emission(ton/h) 1.2236 1.2592 1.2192 1.2164 1.0271 1.6319
Fuel cost($/h) 43458.9119 43323.7670 43244.5741 43221.5876 48186.3156 41678.6457
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TABLE 15. Specific solutions and control variables of CASES.

control variables MOPSO NSGA-III NHBA NHBA-CPFD C8.P CS8.F
Pe(MW) 87.5514 74.0796 54.4425 71.7354 34.5143 95.4736
P (MW) 60.0672 55.9676 60.4878 58.7146 91.6050 45.0297
Pge(MW) 90.8522 94.8605 74.2930 80.8100 94.5210 73.2305
Pas(MW) 369.5724 376.8044 400.8033 390.0261 329.4453 4559718
Pgo(MW) 99.9100 99.9678 99.8446 100.0000 100.0000 91.7225
Pgi2(MW) 410.0000 409.2794 410.0000 410.0000 410.0000 360.7749
Vai(p.u.) 1.1000 1.0263 1.0993 1.0996 1.0996 1.0967
Vaa(p-u.) 1.1000 1.0225 1.0955 1.0972 1.0960 1.0948
Vas(p.u.) 1.1000 1.0208 1.0912 1.0938 1.0966 1.0881
Vae(p.u.) 1.1000 1.0276 1.0965 1.1000 1.1000 1.0858
Vas(p-u.) 1.1000 1.0360 1.0992 1.0997 1.1000 1.0929
Vao(p-u.) 1.1000 1.0278 1.0877 1.0890 1.0864 1.0818
Vaia(p-u.) 1.1000 1.0198 1.0818 1.0911 1.0883 1.0750
Tio(p-u) 0.9744 1.0409 1.0570 1.0170 0.9657 1.0455
Tao(p-u) 1.0075 0.9002 0.9806 1.0584 1.0043 1.0315
Tsi(p.u.) 0.9741 1.0219 0.9741 1.0230 1.0638 0.9807
Tss(p.u.) 1.0822 0.9909 1.0983 1.0548 1.0597 1.0736
Tse(p-u.) 1.0645 1.0362 0.9921 0.9568 0.9911 0.9471
Ts(p.u.) 0.9864 0.9947 1.0641 0.9723 0.9819 0.9664
Ta(p.u.) 1.0035 0.9339 1.0337 0.9947 0.9922 0.9811
Tas(p-u.) 0.9756 0.9540 0.9684 1.0307 1.0226 1.0263
Tsa(p-u) 0.9530 0.9326 0.9707 0.9453 0.9512 0.9369
Tss(p.u.) 1.0267 0.9226 0.9805 1.0043 0.9893 1.0118
Tso(p.u.) 1.0293 0.9214 0.9580 0.9855 1.0071 0.9724
Tes(p-u.) 1.1000 0.9330 0.9747 0.9821 1.0050 0.9612
Tes(p-u.) 1.0217 0.9000 0.9416 0.9584 0.9621 0.9543
Tn(p.u.) 0.9885 0.9058 0.9845 0.9679 0.9672 0.9624
Tr(p.u.) 0.9638 1.0078 0.9431 1.0178 0.9859 1.0268
Tre(p-u.) 0.9496 0.9735 1.0493 1.0745 1.0717 1.0581
Tso(p-u.) 1.0145 0.9391 1.0135 0.9958 0.9822 1.0010
Qcis(p-u.) 0.0340 0.1298 0.1670 0.1054 0.0759 0.1205
Qcas(p-u.) 0.1822 0.1462 0.1508 0.1756 0.1861 0.1605
Qcss(p.u.) 0.0945 0.1374 0.1748 0.1065 0.0825 0.0812

Power loss(MW) 11.0649 11.4066 11.0174 10.9884 9.9299 14.4357

Fuel cost($/h) 42029.0946 41983.5570 41934.2468 41925.5743 43052.0891 41655.1128

where Vjindicates the volume formed by the ith solution and
reference points.

The boxplots of HV index for CASEI~CASEG6 are shown
in Figure 19. Meanwhile, Table 20 gives the mean and
standard deviation of HV index for CASEI~CASE3 while
Table 21 gives the details of HV index for CASE4~CASE®b.

It clearly shows that the NHBA and NHBA-CPFD algo-
rithms can achieve larger value of HV index in bi-objective
cases on the IEEE 30-node system after eliminating the
MOPSO algorithm with many outliers.

However, there is a slight insufficiency that the tri-
objective optimization cases are not doing well in HV index.
Figure 19 shows that compared with MOPSO and NSGA-
III methods, the NHBA and NHBA-CPFD algorithms can
achieve closer boxplots in most cases on the IEEE 30-node
system. The smaller deviations of NHBA and NHBA-CPFD
shown on Table 20 and Table 21 effectively illustrate the
stability operation of NHBA and NHBA-CPFD algorithms.
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C. DOMINANCE RATE OF BC SOLUTIONS

Based on the experimental results shown in Section 3,
MOPSO and NSGA-III algorithms can obtain well-
distributed PFs only in the small-scale IEEE 30-node sys-
tem while NHBA and NHBA-CPFD algorithms can achieve
uniform-distributed PFs even in the large-scale systems.

In more detail, Table 22 shows the dominant relation-
ships between the BC solutions obtained by the NHBA-
CPFD algorithm and the ones obtained by the other three
algorithms.

The U-R of Table 22 represents that the two BC solutions
do not dominate each other based on the objective values.
Table 22 intuitively indicates that the BC solutions of the
NHBA-CPFD algorithm have the 80% probability to domi-
nate MOPSO algorithm and the 60% probability to dominate
NSGA-IIT and NHBA algorithms. In particular, it is worthy to
mention that for the four cases (CASE7~CASE10) which are
carried out on the IEEE 57-node or IEEE 118-node systems,
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TABLE 16. Specific solutions and control variables of CASE9.

control NHBA- control NHBA-
b MOPSO NSGA-II  NHBA CPFD e MOPSO NSGA-III NHBA CPFD
Pa(MW)  15.8872 242017 18.2941 52108 Vae(p.u.) 1.0218 1.0754 0.9868 0.9788
Pas(MW) 6.8991 16.8434 21.4065 7.6500 Vaa(p-u.) 1.0145 1.0509 0.9836 1.0190
Pas(MW) 3.8348 7.3094 15.8496 8.4912 Vaa(p.u.) 1.0375 1.0794 0.9864 1.0095
Poio(MW) 2164285  278.5921  207.1529  236.56717  Ven(p.u.) 0.9814 0.9869 1.0013 1.0368
Pe(MW)  251.5344 1500178  198.4023  188.9828  Vgs(p.u.) 0.9641 0.9975 1.0147 1.0293
Pois(MW) 207546 24.2361 22.4010 18.1767 Vass(pu.) 0.9599 1.0544 1.0052 1.0329
Pais(MW)  25.0000 55.6633 30.4001 65.1160 Vaao(p-u.) 0.9800 1.0831 1.0412 1.0209
Po(MW)  5.1272 5.7621 8.9978 5.4255 Voa(p.u.) 1.0320 0.9911 1.0182 1.0320
PoMW) 65516 10.0953 8.7019 11.0393 Vaae(p.1.) 1.0494 1.0366 1.0003 1.0133
Paos(MW)  107.6419  100.861 1007158 100.0390  Voao(p.u.) 1.0476 0.9864 0.9968 1.0050
Po(MW)  107.8829  100.0000 1114576  103.0140  Vgsi(p.u.) 1.0816 0.9813 0.9870 0.9906
Po(MW)  12.5823 13.2068 12.2746 8.5944 Vass(p.u.) 1.0571 0.9905 0.9894 0.9923
Pe(MW)  18.1318 10.7255 9.9998 20.3871 Vase(p.u.) 1.0762 0.9913 1.0222 0.9883
Pe(MW)  52.3239 47.5384 55.1529 42.3822 Vaso(p.u.) 0.9915 1.0601 1.0018 1.0131
Pau(MW)  14.5950 21.8714 15.6786 14.4781 Veor(pu.) 1.0908 1.0497 0.9997 1.0022
Pa(MW)  42.1874 25.0000 25.2626 25.0000 Vae(p.u.) 1.0144 0.9759 1.0078 1.0166
PaMW)  9.7413 12.7501 11.6654 9.4283 Vaes(p.u.) 1.0752 1.0260 0.9964 0.9912
Pao(MW)  9.7946 12.0613 9.0105 8.1586 Vaso(p.u.) 1.0194 0.9750 1.0041 1.0348
Poi(MW)  30.5225 48.9436 74.7918 50.8135 Vaeo(p.u.) 1.0225 0.9453 0.9787 1.0122
Pow(MW)  197.8519  250.0000  219.8476  223.6021 Varo(pu.) 1.0160 1.0490 1.0348 1.0321
Pass(MW)  204.8801  146.9598  142.0671 1481755  Vgn(p.u.) 1.0298 1.0603 1.0019 0.9868
Poss(MW)  25.4822 27.2273 44.7841 32.3898 Vars(p.u.) 0.9750 0.9751 0.9806 0.9889
Pass(MW)  26.9217 25.1975 27.5473 39.1927 Vru(p-u.) 0.9749 0.9437 1.0006 0.9825
Pas(MW)  50.0000 94.5396 56.3647 54.6768 Vare(p-u.) 1.0512 1.0302 1.0087 1.0322
Poai(MW) 1549293 1407908  139.2697  125.0486  Ven(p.u.) 1.0877 1.0403 1.0109 1.0284
Pea(MW)  57.9668 40.1860 50.2893 77.2332 Vaso(p.u.) 1.0795 1.0140 1.0116 1.0258
Pos(MW) 3525528  406.9774 3983242 4168112  Vass(p.u.) 0.9589 0.9932 0.9964 0.9782
Pass(MW) 2472315 2024889  275.0035  254.0173  Vgs(pu.) 0.9787 1.0352 0.9671 0.9937
Po(MW)  35.5373 40.7117 42.5779 30.0000 Voso(p.u.) 1.0481 0.9996 1.0140 1.0327
Peo(MW)  10.0351 10.0133 22.8390 21.0943 Vooo(p-u.) 1.0345 1.0211 1.0118 0.9959
Pen(MW)  8.7784 5.5414 12.5439 7.3244 Vaor(p.u.) 1.0972 0.9712 0.9935 1.0075
Pen(MW)  5.8829 5.8237 5.3950 8.8796 Voor(p.u.) 1.0576 1.0204 0.9890 1.0243
Pa(MW)  74.7998 30.6864 30.8662 28.0854 Voo(p-u.) 1.0945 1.0937 0.9811 1.0296
Por(MW)  36.0810 25.9036 29.4534 34.9853 Vaioo(pu.) 0.9945 1.0234 1.0208 1.0362
Pen(MW) 1663017 1663802  175.6678  211.7833  Vgies(p.u.) 1.0169 1.0538 0.9853 1.0013
Paxo(MW)  40.4215 25.8462 33.6241 58.2015 Vaioa(p-u.) 1.0085 1.0169 0.9929 1.0111
Pass(MW)  10.1321 10.1511 12.9354 21.2169 Vaios(p-u.) 0.9967 1.0023 1.0143 1.0084
Pos(MW)  173.5865  227.9653  170.5792 1614976  Vai(pu.) 1.0768 1.0012 1.0416 1.0000
Pa(MW) 1773745 73.3096 69.4068 75.4951 Vano(p.u.) 1.0622 1.0093 0.9770 1.0198
Pooo(MW)  16.4651 9.8098 8.6340 10.5362 Vom(p.u.) 1.0998 1.0129 0.9985 1.0196
Per(MW) 461355 29.0455 38.4998 30,0587  Vaua(p.u.) 1.0425 1.0280 0.9722 1.0208
Po(MW) 1217730 1373909 1634723 1397410  Vaus(p.w.) 1.0904 1.0215 1.0020 1.0192
Paoo(MW)  205.5028 14657345 1251281  120.6078  Vaue(p-w.) 1.0527 0.9841 1.0060 1.0557
Paioo(MW)  114.6704  172.8365 1527393 192.6256 Ts(p.w.) 1.0159 1.0169 1.0796 0.9604
Pais(MW)  8.0627 13.2622 10.2447 11.4028 Ty(p.u.) 1.0738 1.0030 1.0509 1.0021
Paioa(MW)  30.7767 30.9723 44.3370 29.4859 Tie(p.u.) 1.0325 0.9152 0.9199 0.9932
Paios(MW)  25.0000 41.4724 62.1228 33.0573 Tsi(p.u.) 0.9577 0.9923 0.9607 0.9414
Paio(MW)  9.4323 12.8313 16.1199 14.1175 Tos(p-u.) 0.9092 0.9141 0.9230 0.9678
Paio(MW)  25.2439 25.1653 38.7978 33.5484 Tos(p-u.) 1.0809 1.0085 1.0833 1.0148
Poin(MW)  26.0875 64.6183 36.3168 37.6015 Tioa(p-u.) 1.0057 1.0483 1.0206 0.9220
Paia(MW) 259478 42.2265 43.7880 32.5831 Tior(p.u.) 1.0462 1.0878 1.0759 0.9021
Paiis(MW)  49.0916 95.8758 38.1490 52.3459 Tiz(p.u.) 0.9101 0.9674 1.0441 1.0273
Paiis(MW)  29.3181 29.7723 39.1324 36.6298 Qcaa(p-u.) 0.0447 0.2100 0.1339 0.1358
Vai(p-u.) 1.0273 0.9871 1.0073 1.0081 Qeas(pu) 0.0792 0.1783 0.1325 0.0697
Vas(p-u.) 1.0726 0.9828 0.9915 1.0267 Qeas(p-u.) 0.2838 0.2978 0.2846 0.1274
Vae(p-u.) 1.0230 1.0109 1.0192 0.9994 Qeas(p-u) 0.2543 0.0054 0.1164 0.2244
Vas(p-u.) 1.0656 1.0348 0.9933 1.0351 Quas(p-u.) 0.0358 0.0807 0.2195 0.0517
Veopu) 09997 1.0084 0.9881 0.9910 Qcra(pu.) 0.1011 0.1042 0.2268 0.2144
Vana(pu.) 1.0402 1.0569 0.9921 0.9849 Qcro(pu.) 0.0030 0.0782 0.0470 0.1977
Vais(pu.) 1.0693 1.0061 1.0106 1.0421 Qesa(p-u.) 0.1612 0.2642 0.2484 0.0983
Vais(p.u.) 1.0650 1.0522 0.9887 0.9783 Qess(p-u.) 0.1521 0.2417 0.2077 0.1310
Van(pu) 09847 0.9748 1.0158 1.0430 Qcios(p-u.) 0.2851 0.0780 0.2263 0.2606
Vaau(pu.) 1.0175 1.0352 0.9627 1.0526 Qeion(p.u.) 0.1462 0.0973 0.1985 0.2503
Veas(pu.) 1.0102 0.9595 1.0073 0.9898 Qerno(p-u.) 0.1852 0.1640 0.0401 0.0182
Emission 2.7826 24815 2.6445 2.5274
(ton/h)
F“(e;ﬂ‘i;’“ 604232970  60780.8762  60694.5466  60402.7420

the BC solutions obtained by NHBA-CPFD algorithm are
more superior to those obtained by NHBA algorithm. It pow-
erfully demonstrates that when adopting the same algorithm,
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the proposed CPFD strategy is more advantageous than CPM
method in dealing with the high-dimensional optimizations
of complex systems.
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TABLE 17. Specific solutions and control variables of CASE10.

control NHBA- control NHBA-
variables MOPSO NSGA-III NHBA CPFD variables MOPSO NSGA-IIT NHBA CPFD
Pcy(MW) 19.9176 5.0000 6.7934 5.1596 Vaas(p-u.) 1.0449 0.9895 1.0122 0.9870
Pas(MW) 6.8619 22.7851 21.2749 8.3128 Var(p.u.) 1.0201 0.9609 0.9952 0.9750
Pgs(MW) 7.7176 7.2779 21.3673 5.3250 Va(p.u.) 1.0339 0.9647 1.0107 1.0027
Psio(MW) 150.7075 186.5229 181.5324 223.7947 Vas(p.u.) 1.0303 1.0110 0.9961 1.0201
Psio(MW) 260.6861 234.1053 182.3484 152.6505 Vasa(p.u.) 1.0353 1.0121 1.0061 1.0053
Psis(MW) 10.4528 12.5793 22.6105 13.0667 Vase(p-u.) 1.0605 1.0005 0.9822 1.0342
Pgis(MW) 59.7856 46.8689 57.2657 45.7977 Vaao(p.u.) 1.0310 1.0029 0.9576 1.0718
Psio(MW) 16.8865 21.1907 5.0637 19.5838 Vaar(p.u.) 1.0786 1.0358 1.0033 1.0467
Pc2s(MW) 10.3805 8.6509 23.0570 5.0000 Vaas(p-u.) 1.0557 1.0185 1.0157 1.0419
PGas(MW) 101.3770 127.7909 133.8328 124.2746 Vaas(p.u.) 1.0201 1.0061 1.0345 1.0517
Pars(MW) 238.0933 218.8530 257.5043 321.1968 Vasa(p.u.) 1.0198 1.0029 1.0170 1.0459
P67 (MW) 8.6757 12.9486 12.3010 8.1820 Vass(p-u.) 1.0324 1.0008 1.0181 1.0503
P61 (MW) 8.0482 21.4135 25.9497 11.8425 Vass(p-u.) 1.0100 1.0195 1.0116 1.0401
Ps(MW) 98.1253 50.5916 69.1772 68.6069 Veso(p-u.) 1.0681 1.0258 1.0247 1.0435
P63(MW) 17.0775 8.4393 10.8604 22.2504 Vaei(p.u.) 1.0836 1.0104 1.0081 1.0554
Pg3s(MW) 37.1153 69.4697 36.8194 74.4961 Vae(p-u.) 1.0300 1.0289 1.0199 1.0187
PGao(MW) 8.0000 9.0326 17.2059 8.2132 Vaes(p-u.) 1.0754 1.0118 1.0078 1.0492
Pcpn(MW) 10.4144 21.9630 12.5103 15.0177 Vass(p-u.) 1.0627 1.0595 1.0524 1.0409
PGas(MW) 31.2176 53.5697 62.7834 46.5214 Vaeo(p-u.) 1.0254 1.0453 1.0161 1.0204
PGag(MW) 238.9606 164.9918 150.8057 93.7033 Varo(p.u.) 1.0291 0.9785 0.9888 1.0645
Psss(MW) 191.5523 216.8517 232.3273 2449136 Van(p.u.) 1.0499 1.0294 1.0369 1.0448
Pgss(MW) 48.9235 56.3268 39.5023 48.6081 Van(pu.) 1.0218 1.0504 0.9977 0.9971
Psss(MW) 39.4067 81.5120 77.2177 32.6459 Vgu(p.u.) 0.9959 1.0164 1.0079 0.9830
Peso(MW) 154.7012 121.4729 103.8788 173.4169 Vars(p.u.) 1.0148 1.0271 1.0088 1.0329
Pssi(MW) 177.8504 199.0160 112.1634 124.3863 Vari(p.u.) 1.0125 1.0354 1.0160 1.0359
Pse(MW) 54.3146 26.7623 28.1174 29.3542 Vaso(p-u.) 1.0057 0.9943 1.0124 1.0286
Paes(MW) 330.3925 258.6241 274.1791 254.5513 Vass(p-u.) 0.9753 0.9887 0.9798 0.9921
Pges(MW) 137.2145 201.4848 263.2416 214.6704 Vasr(p.u.) 0.9607 0.9780 0.9302 0.9343
Paeo(MW) 32.4897 57.7153 52.2267 30.4511 Vaso(p.u.) 1.0700 1.0065 1.0175 1.0682
Psro(MW) 13.9753 10.8531 12.6945 23.5177 Vaoo(p-u.) 1.0550 1.0050 1.0042 1.0633
Pan(MW) 5.2212 13.8617 5.0520 21.0105 Vaoi(p-u.) 1.0666 0.9979 1.0126 1.0642
Ps13(MW) 5.2895 6.2214 5.0288 16.3443 Vaoa(p-u.) 1.0660 1.0104 1.0221 1.0600
Pga(MW) 44.4335 30.6756 38.6052 72.2747 Vaoo(p-u.) 1.0720 0.9772 1.0130 1.0274
Psrs(MW) 47.8487 65.7396 31.9824 28.9239 Vaioo(p-u.) 1.0141 1.0034 0.9996 1.0263
P77 (MW) 164.6913 160.2489 170.2171 150.9688 Vaios(p-u.) 0.9869 1.0035 0.9820 1.0135
Peso(MW) 67.4293 27.6238 59.5682 32.9770 Vaios(p-u.) 0.9728 0.9992 0.9964 1.0125
Psss(MW) 10.3534 15.1266 19.9493 21.9112 Vaios(p-u.) 0.9848 0.9919 0.9863 1.0159
Pag:(MW) 101.6992 157.8482 102.3793 100.0000 Vaior(p-u.) 0.9779 1.0006 0.9479 1.0121
Pgo(MW) 65.2535 67.3263 64.7034 83.3234 Vaio(p-u.) 1.0549 0.9753 0.9915 0.9984
Psoo(MW) 8.4383 9.5007 16.0758 8.0934 Vai(p.u.) 1.0669 0.9486 0.9892 1.0042
Psoi(MW) 21.5391 28.7783 33.4298 46.7578 Vaia(p-u.) 1.0925 0.9800 0.9941 0.9973
Pgor(MW) 101.6862 102.4969 110.3340 112.5793 Vais(p.u.) 1.0231 0.9911 1.0021 1.0173
Pgoo(MW) 116.8600 101.0885 158.8755 108.4276 Vaie(p.u.) 1.0231 1.0136 0.9984 1.0151
P:ioo(MW) 113.5326 100.1413 117.9367 108.3333 Ts(p.u.) 1.0675 0.9698 0.9678 0.9694
PG103(MW) 8.5868 8.2474 8.0771 8.0925 Ta(p.u.) 0.9925 0.9407 1.0077 0.9768
Pg1o4(MW) 25.8162 38.9282 25.1431 29.3802 Tse(p-u.) 0.9085 1.0444 0.9782 1.0568
Pios(MW) 25.3319 41.3443 25.7605 28.4204 Tsi(p.u.) 0.9367 0.9569 0.9986 0.9019
PGio7(MW) 8.3872 8.6289 13.3849 8.1473 Tos(p.u.) 1.0546 0.9420 0.9399 1.0145
PGi1o(MW) 28.4319 26.5478 36.3842 25.4490 Tos(p.u.) 0.9420 0.9289 1.0522 1.0081
Peii(MW) 27.2072 25.3709 31.7956 25.1543 Tioa(p.u.) 1.0546 1.0886 1.0083 1.0495
Pai2(MW) 25.0000 33.4043 25.3674 37.1478 Tior(p-u.) 1.0576 0.9398 0.9193 1.0676
Ps113(MW) 55.5100 27.5689 25.0092 81.3185 Tiz(p.u) 0.9080 1.0012 0.9635 0.9391
Pg11s(MW) 31.1489 25.1972 38.5212 26.2355 Qcsa(p-u.) 0.2534 0.1113 0.2067 0.2816
Vai(p.u.) 1.0137 1.0083 1.0266 1.0198 Qca(p-u.) 0.0395 0.0250 0.2177 0.2759
Vaa(p.u.) 1.0010 1.0027 1.0433 1.0218 Qcss(p-u.) 0.0462 0.1463 0.1041 0.1006
Vas(p-u.) 1.0566 0.9955 1.0047 0.9897 Qcss(p-u.) 0.2900 0.2550 0.1350 0.0049
Vas(p-u.) 1.0058 1.0364 0.9870 1.0149 Qcas(p-u.) 0.2647 0.0055 0.1919 0.2453
Vaio(p.u.) 1.0018 0.9974 1.0252 1.0269 Qcr(p-u.) 0.0712 0.2235 0.2734 0.1835
Vai(p.u.) 0.9981 1.0062 0.9797 0.9894 Qer(p-u.) 0.2897 0.2282 0.1535 0.2978
Vais(p.u.) 0.9858 1.0219 0.9946 1.0135 Qcsa(p-u.) 0.2652 0.0616 0.0972 0.1256
Vais(p-u.) 0.9957 1.0169 0.9893 1.0045 Qcess(p-u.) 0.2044 0.1659 0.1924 0.2669
Vais(p-u.) 1.0367 1.0115 1.0042 1.0631 Qcios(p-u.) 0.1400 0.2435 0.2533 0.2349
Vea(p.u.) 1.0843 1.0285 1.0073 1.0204 Qcio7(p-u.) 0.2953 0.2120 0.2575 0.1333
Vaas(p.u.) 0.9588 1.0501 0.9858 1.0184 Qcio(p.u.) 0.0629 0.1663 0.2500 0.1355
Power loss
(MW) 57.0368 58.4603 55.1909 55.0038
Fuel cost

($/h) 59133.1054  59474.4030  59984.8963  59589.2455

D. SUPERPOSITION PFs

Each case was carried out 30 times independently. The super-
position diagrams of several typical cases are represented.
Hereinto, Figure 20 shows the results of four involved
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algorithms when dealing with a bi-objective optimiza-
tion problem (CASEI) on IEEE 30-node system and
Figure 21 gives the results of a tri-objective optimization
problem (CASES5) on the same system. Figure 22 shows the
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TABLE 18. The mean and standard deviation of GD for CASE1~CASE3.

GD CASE1 CASE2 CASE3
algorithm mean deviation mean deviation mean deviation
MOPSO 0.1479 0.0535 0.1471 0.0481 0.0990 0.0326
NSGA-III 0.0885 0.0203 0.1112 0.0249 0.0837 0.0191
NHBA 0.0815 0.0188 0.0798 0.0152 0.1222 0.0312
NHBA-CPFD 0.0669 0.0128 0.0667 0.0127 0.0762 0.0146
TABLE 19. The mean and standard deviation of GD for CASE4~CASE6.
GD CASES CASE6
algorithm mean deviation mean deviation mean deviation
MOPSO 0.0912 0.0217 0.0857 0.0195 0.4028 0.2146
NSGA-IIT 0.1820 0.0653 0.1310 0.0460 0.1032 0.0427
NHBA 0.0932 0.0226 0.0763 0.0148 0.0812 0.0239
NHBA-CPFD 0.0744 0.0143 0.0725 0.0138 0.0637 0.0121
TABLE 20. The mean and standard deviation of HV for CASE1~CASE3.
HV CASE2 CASE3
algorithm mean deviation mean deviation mean deviation
MOPSO 23.2795 6.7980 829.3944 181.2174 25.3801 6.6336
NSGA-III 13.3257 0.3111 545.7616 31.7056 6.6403 0.2127
NHBA 21.7154 0.8407 636.6639 8.1124 32.7814 0.4915
NHBA-CPFD 17.4836 0.1606 748.5426 8.1147 27.7229 0.2293
TABLE 21. The mean and standard deviation of HV for CASE4~CASE6.
HV CASES CASE6
algorithm mean deviation mean deviation mean deviation
MOPSO 1091.1038 414.2124 11.9814 15.4579 25.0119 27.6552
NSGA-III 858.4186 45.8371 29.6216 11.5932 8.6534 3.6423
NHBA 1199.2181 11.8485 7.3273 1.7977 3.7624 5.1423
NHBA-CPFD 2448.6692 159.3694 1.7520 0.2630 0.6430 0.0779
TABLE 22. The dominant relationship of BC solutions.
aloorithm The dominant relationship of obtained BCs Rati
50 CASE1 CASE2 CASE3 CASE4 CASE5 CASE6 CASE7 CASE8 CASE9 CASEIO0 °
MOPSO Yes Yes Yes Yes U-R Yes Yes Yes Yes U-R 80%
NSGA-III Yes Yes U-R Yes U-R Yes Yes Yes U-R U-R 60%
NHBA Yes U-R U-R Yes U-R U-R Yes Yes Yes Yes 60%

results of a bi-objective optimization problem (CASE7) on
IEEE 57-node system and Figure 23 gives the results of a bi-
objective optimization problem (CASE9) on IEEE 118-node
system.

The superposition results also demonstrate that the conver-
gence and extensive application of NHBA and NHBA-CPFD
algorithms are clearly superior to that of MOPSO and NSGA-
IIT algorithms. Especially, the proposed non-dominated
sorting rule based on CPFD strategy is more potential
to handle the MOOPF problems of large-scale complex
systems.

E. COMPUTATIONAL COMPLEXITY

In the end, the average running time of 30 independent exper-
iments, as a measure of computational complexity, is studied.
The mean CPU time of four typical cases, which include

52080

TABLE 23. The mean CPU time.

The mean CPU time (sec) with ite,..,=500

algorithm CASEI _ CASE5  CASE7 _ CASE9
MOPSO 19079 29884 47250 214229
NSGA-II 189.61  302.12 45375  2057.12
NHBA 20707 31738 51141 2560.90
NHBA-CPED 23406 32006  523.16  2504.91

three bi-objective cases on different scale systems and one
tri-objective case on the IEEE 30-node system, is summarized
in Table 23. It shows that compared with MOPSO and NSGA-
[T methods, the NHBA and NHBA-CPFD algorithms need
more CPU time because of local searching process. It will be
an important point for the further research on the improve-
ment of bat algorithm.
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VIi. CONCLUSION

The fast convergence and the optimal solution guiding mech-
anism of global bat algorithm make it suitable to solve
the MOOPF problems. However, the original bat algo-
rithm has the defect of being trapped in local optimum.
A novel NHBA algorithm with nonlinear weight coefficient
and MRFME model, enhanced by mutation and crossover
mechanisms, is proposed to handle the strict-constrained
MOOPF problems. Furthermore, a new non-dominated sort-
ing method based on CPFD strategy is put forward to seek an
evenly-distributed POS which can satisfy all restrictions of
power system.

Ten multi-objective testing cases considering the fuel cost
(with value-point loadings), the emission and the active
power loss are carried out on the IEEE 30-node, IEEE 57-
node and IEEE 118-node systems. Due to the complex-
structure and high-dimension of large-scale power systems,
the MOOPF problems on IEEE 57-node and IEEE 118-
node systems have more computational difficulty. It should
be exciting that, the simulation results of CASE7~CASE10
clearly indicate the presented NHBA-CPFD algorithm has
superior performance in solving such MOOPF problems of
complex electric system. The GD and HV indexes are uti-
lized to measure the distribution and diversity of obtained
POS. The evaluating results strongly demonstrate that the
NHBA-CPFD algorithm is more desirable than the common-
used MOPSO and NSGA-III algorithms, which is not only
reflected in the preferable BC solutions, but also in the
favorable-distribution and satisfactory-diversity of POS.

Therefore, the proposed NHBA-CPFD algorithm, which
integrates the advantage of NHBA algorithm in determining
high-quality BC solutions and the great edge of CPFD strat-
egy in solving the higher-dimensional optimization problems
of large-scale system, provides an innovative and effective
way to deal with the MOOPF problems.
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