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ABSTRACT Proactive content caching at the wireless network edge, such as users and small base stations
(SBSs), is an effective way to deal with high mobile traffic. In this paper, based on the user mobility and
social relationships, we investigate the optimal caching strategy in device-to-device (D2D) communications
underlying heterogeneous networks, where several SBSs are within the coverage of a macrobase station
(MBS). Except for SBSs, important users (IUs) hired by an operator also cache files. First, assuming that
user preference, i.e., the probability distribution of different file requests of users, are unknown, we cluster
users and predict each user preference based on their history file requests by fitting to the Zipf distribution.
Second, we derive the closed-form expression of the average system cost by jointly considering the mobility
of users and the social relationship between them. With the purpose of minimizing the average system cost,
we optimize the SBSs and IU caching strategies. The optimization problem is NP-complete. To solve the
problem, we demonstrate that this problem belongs to the minimization of a supermodular function over a
partition matroid, and thus, we provide a locally greedy caching algorithm with an approximation ratio of 2
to obtain the sub-optimal solution in polynomial time. Finally, since the operator can reduce the system cost
by hiring more IUs, requiring higher payments, we reach a tradeoff by determining the number of IUs. The
simulation results show that the proposed caching strategy outperforms the traditional caching strategy, and
the suboptimal solution obtained by proposing the greedy algorithm is close to the optimal solution.

INDEX TERMS Caching, mobility, partition matroid, social relationship, supermodular function.

I. INTRODUCTION
According to a recent study published by Cisco, data traffic
will increase exponentially from 2016 to 2021 [1], accounting
for 63% of the total Internet traffic. Locally caching pop-
ular files is a key technology to meet the huge demand of
data traffic. 5G heterogeneous networks relieve the traffic
load of MBS by deploying SBSs. However, the backhauls
of SBSs will become a bottleneck of system performance.
Caching technology enables SBSs and IUs to proactively
cache popular files locally. When users request cached files,
they can receive them directly from the SBSs or IUs, instead
of occupying the backhaul of SBSs or bandwidth of MBS

The associate editor coordinating the review of this manuscript and
approving it for publication was Qingchun Chen.

when receiving them. Caching technology avoids network
congestion in traffic peak periods and reduces the delay, thus
improving the quality of service (QoS) [2].

Compared with content libraries, the cache capacity of
SBSs and IUs is relatively small, so it is necessary to develop
a proper caching strategy to increase the cache hit ratio. There
have been some studies on caching in wireless networks.
In [3], [4], and [5], the users’ social properties are utilized
when developing the caching strategy. In [3], the social ties,
jointly with physical distance, are used as a factor that affects
the caching cost, and a social-aware non-cooperative game is
established to minimize the total cost of the whole network
by incentivizing selfish users to cache data for others. In [4],
based on the users’ information in the social network, users
are divided into different sets and a user can receive the object
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file with a lower price from users in the same set. The goal of
this paper is to minimize content provisioning costs. Social
properties are also considered in [5] to select important users
to cache contents, thus formulating a many-to-one match-
ing game of choosing important users, and a many-to-many
matching game of deciding caching files. However, these
three papers do not take the user mobility into account and
assume that the user preference is known, which is unrealistic.

There are studies that provide caching strategy for scenar-
ios with mobility, such as [6], [7], and [8]. In [6], the user
mobility are considered, which are modeled by a Markov
chain, and an optimization problem ofminimizing the amount
of data downloaded from MBS is formulated. An optimal
distributed caching policy or a distributed greedy caching
policy is proposed to solve the problem depending on delay
deadline. Quer et al. [7] used a Markov chain to model the
user mobility in a D2D underlying heterogeneous network,
and optimized the users’ and SBSs’ caching strategies to
minimize the system cost. However, standard linear inte-
ger programming tools are used to solve the optimization
problem when there are a lot of users, and the complexity
of solution is very high. These two studies do not consider
unknown file popularities or the effect of social properties.
Zhang et al. [8] jointly considered the social properties and
mobility of users, while predicting the cache hit ratio, and
designed a greedy algorithm to obtain a caching strategy
aimed at maximizing the caching gain. However, the sce-
nario is not a heterogeneous network that will be widely
used in 5G, so the proposed caching strategy may not apply
to heterogeneous networks that are more complicated. The
authors in [9], [10], [11], [28] and [29] all considered caching
strategies for scenarios where the content popularities or
user preferences are unknown. Reference [9] formulated the
problem of maximizing utility, which is the inverse of delay,
and the contents are clustered to reduce complexity. Based
on regret learning at a small cell base station and cloud,
the content popularity is learned to aid the cache and update
content. The aim of the study in [10] is tominimize the service
delay. To develop a caching strategy, users are grouped by
cluster analysis and reinforcement learning is used to learn
the content popularity. In [11], the optimization problem of
maximizing the total expected reward is demonstrated to be a
knapsack problem if the popularity of the files is known. Then
the popularity is learned by applying a multi-armed bandit
model based on demand history, and thus the optimal caching
strategy can be obtained. The authors in [28] presented Trend-
Caching, a novel caching replacement method that optimizes
cache performance based on learning the unknown popularity
of video contend. Müller et al. [29] proposed a novel algo-
rithm, which can learn context-specific content popularity
by regularly observing context information of the scene, for
context-award proactive caching. However, these papers only
focus on predicting the popularity and do not consider the
user mobility and social properties. In addition, Golrezaei
et al. [27] utilized the caching helpers, such as femtocells,
to enhance the performance of caching. A distributed caching

problem was formalized and approximation algorithms are
proposed to solve this problem. Leonardi and Neglia [12]
optimized the overall performance in a dense cellular network
where base stations have limited-size cache. A class of simple
and fully distributed caching policies was introduced to solve
this problem and achieved excellent performance. But these
two papers don’t consider that hiring users to caching files in
D2D enabled scenarios can further improve the performance
of caching, and also does not consider the mobility and
sociality of users either.

However, mobility and sociality is of great importance
when we determine the caching strategy. Caching technology
has been successfully applied in wired networks, but there
are some challenges when applying it to wireless network.
One of the most important reasons causing these challenges
is the user mobility in wireless network. A caching strat-
egy that does not consider mobility may perform poorly in
mobile wireless network. For example, in the current time
slot, the SBS caches a file which is high likely to be request
by a user in its coverage, but in the next time slot, this user
may leave this SBS, and a new user who is high likely to
request another file may enter the coverage of this SBS. As a
result, the cache hit ratio will be drop duo to the mobility.
As to sociality, it may also affect the establishment of D2D
connection. In real life, accepting files sent by others can
be very dangerous because these files may contain viruses.
For security reasons, people usually only accept files sent by
familiar people. If we do not consider sociality and cache files
in a user whose neighbors are not familiar with him, even if
the physical condition of the communication holds, caching
files in him is invalid.

Considering users’ mobility and social relationship among
them, this paper predicts user preference based on their his-
tory requests and studies caching strategies of SBSs and IUs
to minimize system cost in a D2D communication underly-
ing heterogeneous network consisting of a MBS and several
SBSs. The main contributions of this paper are summarized
as follow.
• We use K-means to cluster users into different types
according to their history file requests based on the
assumption that users with similar interests have basi-
cally the same file preferences. Then we can obtain each
type’s empirical probability distribution of requesting
different files based on history file requests. Since this
probability distribution is inaccurate when the histori-
cal data is limited, it is fitted to the Zipf distribution,
which is widely used to describe content popularity or
user preference and provides a more accurate predicted
probability distribution.

• We derive the probabilities of three different ways for
users to receive their requested files in the next time
slot, which are from the IUs, SBSs and MBS, based
on the user preference, user mobility, social relationship
between users, and caching strategy of the IUs and
SBSs. The average system cost of the next time slot
based on probability theory is then derived, and thus
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the optimization problem for minimizing the average
system cost, which is a nonlinear integer programming
problem, is obtained.

• The optimization problem is NP-complete. We first
provide the method to obtain the optimal solution by
substituting variables. However, the complexity of this
method is too high so a suboptimal solution with lower
complexity is required. We demonstrate that the objec-
tive function of this problem is a monotonous supermod-
ular function, and the constraints can be regarded as a
partition matroid. On this basis, we provide a polyno-
mial time greedy algorithm with a ratio of 2 to obtain
suboptimal solution.

The remainder of the paper is organized as follows: in
Section II we introduce the system model; In Section III
we propose the prediction algorithm of user preference; In
Section IV, the optimization problem of minimizing average
system cost is formulated, and the locally greedy caching
algorithm is proposed to obtain suboptimal solution; In
Section V we provide the method of determining the number
of IUs; In Section VI the simulation results are presented to
show the performance of the proposed algorithm. In section
VII we concludes the paper.

II. SYSTEM MODEL
We consider a scenario as shown in Fig. 1. There is oneMBS,
which has the whole file library, in the network. There are
U users and S SBSs in the coverage of MBS. Users can
communicate with each other through D2D. User u ∈ U =
{1, 2, . . . ,U} can only cache Vu files. Each SBS s ∈ S =
{1, . . . , S} has the same cache capacity VSBS . The coverage
of small base stations may overlap. In reality, file can be
classified into different classes, such as sports program and
military program and so on. So we divide file library into C
classes and each class c ∈ C = {1, . . . ,C} contains Fc files.
Thus the whole file library is a set of F = C ∗ Fc files and
we denote it with F = {1, . . . ,C ∗ Fc}.

We assume that all the files have the same size. The min-
imum communication time for downloading a file through
D2D or small base station is tmin and tmin′ respectively.

Time is divided into slots with a discrete index t ∈ N, and
all time slots have the same duration which is T . The duration
usually lasts for several minutes. The start time of time slot t
is τt , and we can get τt+1 − τt = T since the duration of one
time slot is T . At the beginning of each time slot, the MBS
can know the information of whether the distance between
users meets the requirements of D2D communication, i.e.,
users’ initial D2D connection situation Dt

= {d ti,j : i =
1, . . . ,U; j = 1, . . . ,U} in the current slot, where d ti,j is
1 if user i and user j can communicate through D2D and is
0 otherwise. In each time slot, each user randomly requests
one file according to their preferences, and these U requests
constitute file request vector Rt

= {r tu : u = 1, . . . ,U},
where r tu ∈ F is the file requested by user u in time slot t .
To simplify the model, we assume that each user requests a
file at the beginning of a time slot.

FIGURE 1. D2D communication underlying heterogeneous network.

There are three ways for users to obtain request file, from
the caches of the important users around him through D2D
communication, from the caches of the SBSs connecting to
him, from the MBS, respectively. Like [7], we use ξ1, ξ2, ξ3
to represent the system cost of these three ways respectively
and they satisfy ξ1 < ξ2 < ξ3. The system cost here can
be regard as proportion of downloading delays or consumed
bandwidths or battery usages through these three ways. After
receiving the user’s file request, IUs and SBSs decide whether
to send the requested file to the user randomly according to
the mobility between them. For example, when the speed
of an IU relative to the request user is fast, the IU is more
unwilling to send the requested file to request user because he
has to stop moving and wait for the completion of requested
file’s transmitting. In the current time slot, MBS infers Dt+1

based on the known Dt , then synthetically considers the
mobility and social relationship of users to determine the
optimal caching strategy for the next time slot, and places the
files that need to be cached at IUs and SBSs.

D2D communication among users is mainly affected by
mobility. If two users are in close proximity, i.e., the dis-
tance of these two users is less than a certain distance, their
mobile devices will be connected through WiFi or Blue-
tooth direct in a D2D manner. It’s worth noting that the
‘‘certain’’ distances of different pairs of users are different,
and is related to channel fading, transmit power and so on.
However, because of users’ mobility, the physical distance
between users is always changing. However, only within
a certain distance can D2D communication be established.
Therefore, whether physical relationship exists between two
users, i.e. the physical distance between them is within the
maximal D2D communication distance, can be considered
as a probabilistic problem [8]. If there is a physical rela-
tionship between two users, we call them connected and the
time of connection is referred as connection time. The time
between two adjacent connections is referred as interval time.
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Tomodel users’ mobility, we assume that the connection time
and the interval time obey the exponential distribution [8].
In addition, because users only can communicate with SBSs
when they are within the coverage of SBSs, and the relative
distance between the user and the SBS can change due to the
mobility of the user although the location of the SBSs is fixed,
similar to D2D communication, we can also use exponential
distribution to model the connection time and interval time
between the user and the SBS.

Let PC t
i,j indicates the physical relationship between user i

and user j in time slot t , and PC t
i,j = 1 if they are connected

and PC t
i,j = 0 otherwise. According to probability the-

ory [13], continuous-timeMarkov chain can be used to model
the connection between users. If we know the connection
situation between user i and user j at time t0, the probability
of user i and user j being connected at time tc can be obtained
by

P(PC tc
i,j = 1|PC t0

i,j)

=


λi,j − λi,je−(λi,j+µi,j)(tc−t0)

λi,j + µi,j
, if PC t0

i,j = 0

λi,j + µi,je−(λi,j+µi,j)(tc−t0)

λi,j + µi,j
, if PC t0

i,j = 1
(1)

whereµi,j and λi,j are the exponential distribution parameters
of the connection time and interval time between user i and
user j respectively.
Similarly, we assume that the connection time and the

interval time between user u and SBS s obey the exponen-
tial distributions with parameters µ′u,s and λ

′
u,s, respectively.

Indicator variable PDtu,s represents the physical relationship
between user u and SBS s. If we know the connection situa-
tion at time t0, then we can obtain the probability that user u
and SBS s are connected at tc time by

P(PDtcu,s = 1|PDt0u,s)

=


λ′u,s − λ

′
u,se
−(λ′u,s+µ

′
u,s)(tc−t0)

λ′u,s + µ
′
u,s

, if PDt0u,s = 0

λ′u,s + µ
′
u,se
−(λ′u,s+µ

′
u,s)(tc−t0)

λ′u,s + µ
′
u,s

, if PDt0u,s = 1

(2)

Based on security considerations, the successful estab-
lishment of D2D communication in this paper also involves
social relationship. Only users with close social relation-
ship are willing to establish D2D communication. Let Si,j
denotes social closeness between user i and user j, using the
Adamic/Adar method in [14], we can calculate it according
to the Adamic/Adar method in [14], we can calculate it based
on their social attributes by

Si,j =
∑

k∈Ai∩Aj

1
log(frequency(k))

(3)

where Ai denotes the social attributes of user i, the social
attributes are the public information or tags posted by users

on social network, such as the groups that a user join, the city
a user lives in, a user’s net friends, hobbies and interests
of a user and so on. Since these social attributes are public
and don’t involve user privacy, they are not sensitive and the
operator can obtain them by cooperating with social network
service providers. frequency(k) denotes the number of users
that have social attribute k . The implication of expression (3)
is as follows. If user i and user j have a common social
attribute which few people have, this social attribute can be
more able to explain the social closeness of these two users.
We denote social closeness threshold with ST , and social
relationship indicator with si,j. There is a social relationship
between user i and user j when Si,j >= ST and si,j = 1.
Otherwise, there is no social relationship between them and
si,j = 0. We describe social relationship among users with
graph Gs(VU ,Es), where VU is the set of users and Es is the
social relationship among them.

Caching files in a users’ device occupies storage space of
the device. Because of the selfish nature of users, users are
reluctant to cache files. Only IUs hired by operators will act as
cache nodes. We introduces the concept of social importance
to help operator to select IUs:

θu = α · Vu + β · Bu, u = 1, . . . ,U (4)

where Vu and Bu are cache capacity and betweenness central-
ity respectively. α and β are weight coefficients and α+β =
1. Betweenness centrality can be calculated by [14]:

Bu =
U−1∑
i=1

U∑
j=i+1

bi,j (gu)
bi,j

, (5)

where bi,j denotes the number of shortest paths between
vertex i, j ∈ VU in graph Gs. bi,j (gu) denotes the number
of shortest paths passing user u.
Ranking users in descending order by social importance,

the operator will select the top N users as IUs when needing
N IUs. In the following, IUn represents the n-th IU, i.e. the
user who has the n-th biggest social importance.
The main symbols and notations are summarized in Tab. I.

It is worth noting that this table does not list all the symbols
and notations that appear in this paper. Some symbols for
temporary use, such as those introduced to simplify derivation
and proof, are not included in this table.

III. PREDICTION OF USER PREFERENCE
In our scenario, we assume that each user’s file preference
is unknown, and MBS only has history file requests H =
{H1,H2, . . . ,HU} during the past Tb time slots, where Hu =(
hu,1, hu,2, . . . , hu,Tb

)
is the history file requests of user u, and

hu,tb ∈ Hu is the file requested by u in the tb-th time slot of
former Tb time slots. According to the history file requests
H, the initial empirical probability of user u requesting files
from class c can be calculated based on request times by:

∧

Pu,c =

Tb∑
tb=1

1A(hu,tb ∈ c)

Tb
, u ∈ U , c ∈ C (6)
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TABLE 1. Main notations.

where 1A(x) is indicator function, and 1A(x) = 1 if x is true
and 1A(x) = 0 otherwise.

In real life, users can be divided into different types. For
example, some users like science fiction movies best, and
some users like comedy programs best. That is to say, users of
the same type can be considered to have basically the same
probability distribution [7]. If we can accurately determine
the number of user types and the users included in each user
type, not only can we reduce the number of categories of
user preference, but also increase the number of each user’s
history file requests because all users belonging to one type
can be treated as one user. It makes the empirical probability
distribution more accurate, which is conducive to the further
prediction of user preference.

We use the K-means [15] to classify user types. But before
using K-means, the value of K should be confirmed first.
We use the Gap Statistic method [16] to determine K.

The process of Gap Statistic method is as follows: First,
K-means algorithm is applied to differentK , andK clustering
centers Mk , k = 1, . . . ,K and K clusters Ok , k = 1, . . . ,K
are obtained after each clustering is completed. Then the sum
of the distances from all data points to their clustering centers
under the current K value is calculated as a measure of the
current model, which is denoted as DK .

DK =
K∑
k=1

∑
X∈Ok

‖X −Mk‖, (7)

where X ∈ Ok represents a data point belonging to
cluster Ok .

Afterwards we define Gap(K ) = E(logDK ) − logDK
as Gap Statistic. E(logDK ) is the expectation of logDK .
Monte Carlo simulation is usually used to generate this value.
Finally, The best K is the K that maximizes Gap(K ).
After determining the optimalK value, we use thisK value

to perform K-means algorithm and thus obtaining K cluster-
ing centers which denote empirical probability distribution of
the K types of users. Then the probability distribution is used
to predict user preference.

It is the fact that a user is most likely to request the several
files he is most interested in, and the more interested he is
in a file, the more likely he is to request it. So the user pref-
erence fits well with the characteristics of Zipf distribution,
which has been used in some references, such as [17], [18],
to describe user preference. Therefore, we fit the empirical
probability distribution acquired by K-means to Zipf distri-
bution. The Zipf distribution is as follows:

Pc =
(1/rank(c))s

C∑
i=1
(1/c)s

, c = 1, 2, . . . ,C (8)

where Pc denotes the probability that a user requests files
belong to c-th file class, rank(c) ∈ {1, . . . ,C} represents the
rank of c-th file class for this user,s is the parameter of Zipf
distribution, which describes the skewness of user preference.

We can see that Zipf distribution is decided by s. Therefore
fitting the empirical probability distribution to Zipf distribu-
tion only needs to determine the corresponding s.
By the logarithm of both sides of (8) [19], we can obtain:

In(Pc) = −sIn(rank(c))− In

(
C∑
c=1

(1/c)s
)
,

c = 1, 2, . . . ,C (9)

It can be seen that the logarithm of the probability of each
file class’ being requested is linearly related to the logarithm
of the rank of this class, with a slope of −s and an intercept

of−In(
C∑
c=1

(1/c)s). The top-ranking class in Zipf distribution

occupies the majority of requests, so we only consider the
five largest request probabilities in the empirical probability
distribution. After carrying out linear regression analysis on
the logarithm of both request probability and rank, we obtain
the parameters of Zipf distribution, and then calculate the
request probability of each class according to the rank in
the empirical probability distribution. Then, assuming that
the probability distribution of requesting files belonging to
the same class obeys uniform distribution, the predicted user
preference can be obtained: PZ = {P̂1, P̂2, . . . , P̂U }, where
P̂u = (P̂u,1, . . . , P̂u,1∗Fc , . . . , P̂u,C∗Fc ), u = 1, . . . ,U is
the preference of user u, and P̂u,f denotes the probability of
user u requesting file f , which can be calculated by:

P̂u,f =
P̂Cu,cf
Fcf

, f = 1, 2, . . . ,F (10)

VOLUME 7, 2019 53781



G. Shan, Q. Zhu: Sociality and Mobility-Based Caching Strategy for D2D Communications Underlying Heterogeneous Networks

where cf is the class that file f belongs to and satisfies
cf−1∑
i=1

Fi + 1 ≤ f ≤
cf∑
i=1

Fi, P̂Cu,cf denotes the probability of

user u requesting files of class cf by fitting Zipf distribution.

Algorithm 1 User Preference Prediction Algorithm
Input: history file request H = {H1,H2, . . . ,HU}

Output: predicted user preference PZ
1: Calculate the initial empirical probability distribution
according to (6)
2: for K = 1 : U do
3: Calculate DK according to (7)
4: Calculate E (logDK ) by Monte Carlo Simulation
5: Calculate Gap(K ) = E(logDK )− logDK
6: end for
7: optK = argmax(Gap(K ))
8: According to the initial empirical probability distribution,
use K-means algorithm to cluster users into optK types, and
obtain each type’s users set OK and clustering center MK ,
where K ∈ {1, . . . , optK }
9: for K = 1 : optK do
10: Sort MK in descending order, thus obtain the result

M sorted
K and the ranking vectors of users belong to K -th

user type: RK =
{
rk,1, . . . , rk,C

}
, where rk,c is the rank

of c-th file class for K -th user type
11: x = {log i : i = 1, . . . , 5}, y = {logM sorted

K (i) :
i = 1, . . . , 5}

12: Conduct linear regression on (x, y) them and get s
13: for c = 1:C do
14: Calculate K -th user type’s file class preference

PK ,c, c = 1, . . . ,C according to (8)
15: Let P̂Cu,c = PK ,c,∀u ∈ OK
16: According to (10), calculate the predicted user

preference P̂u,∀u ∈ OK
17: end for
18: end for
19: PZ = {P̂1, P̂2, . . . , P̂U }

User preference prediction algorithm is given in Algo-
rithm 1. The input of the algorithm is the users’ history
file request. Based on this, the initial empirical probability
distribution of each file class is obtained. Then, the number
of user types is calculated by Gap Statistics to cluster users.
Finally, the user preference is predicted by fitting to Zipf
distribution.

IV. THE OPTIMIZATION PROBLEM OF MINIMIZING
AVERAGE SYSTEM COST
From the operator’s point of view, every penny it pays to
hire IUs will bring the greatest benefit to the system. This
benefit comes from reducing the system cost by hiring IUs to
cache files. However, even if the IUs are determined, because
capacities of IUs and SBSs are limited, different caching
strategy leads to different system cost, thus the operator still
has to develop proper caching strategy of IUs and SBSs

to minimize the system cost under this selection of IUs.
Therefore, before the operator selects IUs, it must first be
able to determine the caching strategy that can minimizing
the system cost when the selection of IUs is given. It should
be noted that because of the social importance, selecting IUs
means choosing users with the greatest social importance
as IUs. This section first discusses how to optimize caching
strategy to minimum average system cost when selecting IUs.

A. PROBLEM FORMULATION
The system cost for all users to receive the requested files in
time slot is

ξ (t) =
∑
u∈U

ξu(t) (11)

where ξu(t) is the cost for user u to receive the requested file
in time slot t , and it is

ξu(t) =


ξ1, if case1
ξ2, if ¬ (case1) ∧ case2
ξ3, if ¬ (case1 ∨ case2) ∧ case3

(12)

where, case1 denotes that user u acquires files from IUs
through D2D communication; case2 denotes that user u
acquires files from SBSs; case3 denotes that user u acquires
files from the MBS;

Because the caching strategy cannot be changed in current
time slot t and the user file request has been determined,
the system cost ξ (t) is determined. What we need to do
is optimizing the caching strategy in time slot t + 1 to
minimize the average system cost E (ξ (t + 1)) based on the
D2D connections between users, user preference, mobility
and sociality of users in time slot t . We substitute E(ξ ) for
E (ξ (t + 1)) to simplify the notation in the following. The
average system cost is as follows:

E(ξ ) =
∑
u∈U

E (ξu)

=

∑
u∈U

[ξ1P (case1)+ ξ2P (¬ (case1) ∧ case2)

+ ξ3P (¬ (case1 ∨ case2) ∧ case3)]

=

∑
u∈U

[ξ1P (case1)+ ξ2 (1− P (case1))P (case2)

+ ξ3 (1− P (case1)) (1− P (case2))P (case3)] .

(13)

Using the law of total probability, we have

E(ξ ) =
∑
u∈U

∑
f ∈F

P
(
r t+1u = f

) [
ξ1P

(
case1|r t+1u = f

)
+ ξ2

(
1− P

(
case1|r t+1u = f

))
P
(
case2|r t+1u = f

)
+ ξ3

(
1− P

(
case1|r t+1u = f

))
×

(
1− P

(
case2|r t+1u = f

))
∗ P

(
case3|r t+1u = f

)]
(14)
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where P
(
r t+1u = f

)
denotes the probability of user u request-

ing file f , and it is equal to P̂u,f , which can be obtained
through user preference prediction algorithm.

We assuming that the operator hires N IUs in time slot
t+1, and the caching strategy of IUs isX t+1

IU =

{
Xt+1
IU1
, Xt+1

IU2
,

. . . ,Xt+1
IUN

}
, where Xt+1

IUn = (x t+1IUn,1
, x t+1IUn,2

, . . . , x t+1IUn,F ) is the

caching strategy vector of n-th IU and x t+1IUn,f is a binary
variable which equals 1 when n-th IU caches file f and equals
0 otherwise.

Wefirst derive the probability of receiving request file from
IUs when user u requests file f , i.e. P

(
case1|r t+1u = f

)
.We

have that

P
(
case1|r t+1u = f

)
= P

(
Au,f ,1 ∨ . . . ∨ Au,f ,N |r t+1u = f

)
= 1− P

(
¬Au,f ,1 ∧ ¬Au,f ,2 ∧ . . . ∧ ¬Au,f ,N |r t+1u = f

)
= 1−

N∏
n=1

(
1− P

(
Au,f ,n|r t+1u = f

))
(15)

where event Au,f ,n indicates that user u can obtain the
requested file from the n-th IU. The first equality holds
because as long as one IU is willing to transmit the file to
user u, the user can obtain the request file from IUs through
D2D communication, i.e. satisfying case1. The third equality
holds because the willingness of different IUs to transmit files
to the request user is independent of each other.
Assuming that the probability of n-th IU’s being willing

to transmit request file to user u is P
(
td2du,n ≥ tmin

)
, where

td2du,n is the duration of connection time between user u and
n-th IU and tminis the minimum communication time for
downloading each file through D2D, we have that

P
(
Au,f ,n|r t+1u = f

)
= P

(
PCτt+1u,IUn = 1, td2du,n ≥ tmin, su,IUn = 1,x t+1IUn,f

= 1|r t+1u = f ,PCτtu,IUn

)
= P

(
PCτt+1u,IUn = 1|PCτtu,IUn

)
P
(
td2du,n ≥ tmin

)
×P

(
su,IUn = 1

)
∗ P

(
x t+1IUn,f = 1

)
= P

(
PCτt+1u,IUn = 1|PCτtu,IUn

)(∫ +∞
tmin

µu,IUne
−µu,IUn tdt

)
× su,IUnx

t+1
IUn,f

= P
(
PCτt+1u,IUn = 1|PCτtu,IUn

)
e−µu,IUn tminsu,IUnx

t+1
IUn,f .

(16)

The first equality holds because PCτtu,IUn is known in time
slot t and event Au,f ,n is equal to that there is physical
relationship as well as social relationship between n-th IU
and user u at the beginning of time slot t + 1, and the
n-th IU caches file f and the n-th IU is willing to transmit
request file to user u. The second equality holds because

these events can be considered independent of each other and
P
(
PCτt+1u,IUn = 1|PCτtu,IUn

)
can be calculated by (1).We substi-

tute Pd2d t+1u,n for P
(
PCτt+1u,IUn = 1|PCτtu,IUn

)
e−µu,IUn tminsu,IUn

to simplify the notation and get

P
(
Au,f ,n|r t+1u = f

)
= Pd2d t+1u,n x

t+1
IUn,f . (17)

We substitute (17) into (15) and obtain

P
(
case1|r t+1u = f

)
= 1−

N∏
n=1

(
1− Pd2d t+1u,n x

t+1
IUn,f

)
. (18)

Similar to IUs’ caching strategy, we denote caching strategy
of SBSs with X t+1

SBS = {X
t+1
SBS1

,Xt+1
SBS2

, . . . ,Xt+1
SBSS }, where

Xt+1
SBSs = (x t+1SBSs,1

, x t+1SBSs,2
, . . . , x t+1SBSs,F ) is the caching strategy

of SBS s. In the same way, we can get

P
(
case2|r t+1u = f

)
= 1−

S∏
s=1

(
1− Psbst+1u,s x

t+1
SBSs,f

)
(19)

where Psbst+1u,s = P
(
PDτt+1u,s = 1|PDτtu,s

)
e−µu,stmin . Noticing

that whether users can communicate with SBSs doesn’t take
social relationship into account, the expression of Psbst+1u,s
does not contain indicative variable that represent social rela-
tionship compared to Pd2d t+1u,n .
Because users can communicate withMBS all the time and

MBS has the whole file library, so we have

P
(
case3|r t+1u = f

)
= 1. (20)

Substituting (18)-(20) into (14), we can get

E(ξ ) =
∑
u∈U

∑
f ∈F

P̂u,f

[
ξ1

(
1−

N∏
n=1

(
1− Pd2d t+1u,n x

t+1
IUn,f

))

+ ξ2

(
N∏
n=1

(
1− Pd2d t+1u,n x

t+1
IUn,f

))

×

(
1−

S∏
s=1

(
1− Psbst+1u,s x

t+1
SBSs,f

))

+ ξ3

(
N∏
n=1

(
1− Pd2d t+1u,n x

t+1
IUn,f

))
(

S∏
s=1

(
1− Psbst+1u,s x

t+1
SBSs,f

))]
=

∑
u∈U

∑
f ∈F

P̂u,f [ξ1 + (ξ2 − ξ1)

×

(
N∏
n=1

(
1− Pd2d t+1u,n x

t+1
IUn,f

))
+ (ξ3 − ξ2)

×

(
N∏
n=1

(
1− Pd2d t+1u,n x

t+1
IUn,f

))
(

S∏
s=1

(
1− Psbst+1u,s x

t+1
SBSs,f

))]
. (21)
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The goal is to minimize the system cost by optimizing
the caching strategy, so the optimization problem can be
expressed as

min
xt+1SBS,f ,x

t+1
IUn,f

E (ξ)

s.t.
F∑
f=1

x t+1SBSs,f ≤ VSBS , s = 1, 2, . . . , S

F∑
f=1

x t+1IUn,f ≤ VIUn , n = 1, 2, . . . ,N

x t+1SBSs,f ∈ {0, 1}, x t+1IUn,f ∈
{0, 1} (22)

where the first constraint is the cache capacity limit of all
SBSs, and the second constraint is the cache capacity limit
of IUs.

B. PROBLEM ANALYSIS AND SOLUTION
From (21), we can see that this problem is a pseudo-Boolean
optimization problem whose objective function is a pseudo-
Boolean function. Therefore, this problem is a nonlinear
integer programming problem which is NP-complete [20].
But the existing integer programming tools can only solve
linear integer programming. In [20] and [21], a method is
provided to replace the product term of two binary variables
x1 and x2 in the nonlinear integer programming with a new
binary variable. This method only needs to substitute x1,2 for
x1x2 in the objective function, and then add four constraints:
(1) x1,2 ≥ 0; (2) x1,2 ≤ x1; (3) x1,2 ≤ x2; (4) x1,2 ≥ x1 +
x2 − 1. Based on this method, we give a method to replace a
product term of k binary variables with a new binary variable.
Lemma 1: By adding k + 2 constraints: (1) x1,...,k ≥ 0;

(2) x1,...,k ≤ x1; . . . ; (k + 1) x1,...,k ≤ xk ; (k + 2) x1,...,k ≥
x1+, . . . ,+xk − (k − 1), the product term of k binary vari-
ables x1, x2, . . . , xk , k ≥ 2 can be replaced by a new binary
variable x1,2,...,k in the nonlinear integer programming.

Proof:
(i) When k = 2, according to [20], we can know that

Lemma 1 holds.
(ii) Assuming that Lemma 1 holds when k = n, then we

can get the following inequalities: (1) x1,...,n ≥ 0; (2)
x1,...,n ≤ x1; . . . ; (n+ 1) x1,...,n ≤ xn; (n+ 2) x1,...,n ≥
x1 + x2+, . . . ,+xn − (n− 1).

(iii) When k = n + 1, we have to add four constraints (1)
x1,...,n+1 ≥ 0; (2) x1,...,n+1 ≤ x1,...,n ; (3) x1,...,n+1 ≤
xn+1;(4) x1,...,n+1 ≥ x1,...,n + xn+1 − 1 to substitute
x1,...,n+1 = x1x2 . . . xn+1 = x1,...,nxn+1 for the product
term of x1,...,n and xn+1. According to inequalities (2)-
(n + 1) in (ii), we know that constraint (2) in (iii)
can be changed to n constraints which are x1,...,n+1 ≤
x1; . . . ; x1,...,n+1 ≤ xn; Combining the inequality (n +
2) in (ii) with the constraint (4) here and we can get
x1,...,n+1 ≥ x1,...,n+ xn+1−1 ≥ x1+ . . .+ xn+ xn+1−
n. Therefor the four constraints here can be changed
into n + 3 constraints which are (1)x1,...,n+1 ≥ 0;
(2) x1,...,n+1 ≤ x1; . . . ; (n+1) x1,...,n+1 ≤ xn+1; (n+3)

x1,...,n+1 ≥ x1+, . . . ,+xn+1−n. Lemma 1 holds in this
case.

To sum up, Lemma 1 hold when k ≥ 2, i.e. Lemma 1 is
proved.

By using the conclusion of lemma 1, the nonlinear integer
programming problem (22) can be transformed into a linear
integer programming problem. However, due to the need
to add new binary variables, the complexity may be very
high. Exactly speaking, because all the monomials containing
the product term of two or more variables in the expansion
of (21) need to use a new variable to substitute the product
term, this method makes the number of variables change
from (N + S)F to

(
2N + 2N+S − 2

)
F . The worst-case time

complexity of linear integer programming algorithm is non-
polynomial time, and the number of variables increases expo-
nentially with N . When N and F is large, the solution com-
plexity is very high, which makes it basically impossible to
solve problem (22). Therefore, suboptimal algorithm needs
to be explored.

Supermodular function is often used in pseudo-Boolean
optimization.When the objective function ismonotone super-
modular function, the upper bound of suboptimal value
obtained by properly designed greedy algorithm will achieve
good results [21].
Definition 1: If � is a finite set and f : 2� → R is a

set function, where 2� is the power set of �. If this function
satisfies the following condition:

f (�1)+ f (�2) ≤ f (�1 ∪�2)+ f (�1 ∩�2) . (23)

where �1, �2 is the subset of �. Then function f is a super-
modular function.

Reference [20] provides a method for distinguish-
ing whether a pseudo-Boolean function is supermodular,
as described in Proposition 1 below:
Proposition 1: A pseudo-Boolean function is supermodu-

lar if and only if all of its second derivatives are nonnegative:

1ij (x) =def
∂f

∂xi∂xj
(x) ≥ 0. (24)

Lemma 2: The objective function in question (22) is a
monotone decreasing supermoduler function.

Proof: Let x = {x t+1IU1,1
, . . . , x t+1IU1,F

, . . . , x t+1IUN ,F ,
x t+1SBS1,1

, . . . , x t+1SBSS ,F } be the caching strategy vector of all IUs
and SBSs, then the objective function in question (22) can be
regarded as a function of x:

f (x) ==
∑
u∈U

∑
f ∈F

P̂u,f [ξ1 + (ξ2 − ξ1)

×

(
N∏
n=1

(
1− Pd2d t+1u,n x

t+1
IUn,f

))
+ (ξ3 − ξ2)

×

(
N∏
n=1

(
1− Pd2d t+1u,n x

t+1
IUn,f

))

×

(
S∏
s=1

(
1− Psbst+1u,s x

t+1
SBSs,f

))]
. (25)
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where we know 0 ≤ P̂u,f ,Pd2d t+1u,n ,Psbs
t+1
u,s ≤ 1 according

to their expressions. We uniformly express x t+1IUn,f , x
t+1
SBSs,f as

x t+1k,f for the convenience of proof. When 1 ≤ k ≤ N ,
x t+1k,f represents x t+1IUk ,f ; When N + 1 ≤ k ≤ N + S, x t+1k,f

represent x t+1SBSk−N ,f . We uniformly express Pd2d t+1u,n ,Psbs
t+1
u,s

as Pall t+1u,k , When 1 ≤ k ≤ N , Pall t+1u,k represents Pd2d t+1u,k ;
When N + 1 ≤ k ≤ N + S, Pall t+1u,k represents Psbst+1u,k−N .
Then (25) can be transformed into

f (x) =
∑
u∈U

∑
f ∈F

P̂u,f [ξ1 + (ξ2 − ξ1)

×

(
N∏
k=1

(
1− Pall t+1u,k x

t+1
k,f

))
+ (ξ3 − ξ2)

×

(
N+S∏
k=1

(
1− Pall t+1u,k x

t+1
k,f

))]
. (26)

(a) We first prove that f (x) is a monotone decreasing func-
tion of x. Take any variable x t+1k,f and take its first derivative.
•When 1 ≤ k ≤ N , the first derivative is

∂f

∂x t+1k,f

(x) =
∑
u∈U

∑
f ∈F

P̂u,f
[
− (ξ2 − ξ1)Pall

t+1
u,k

×


N∏

k1 = 1
k1 6= k

(
1− Pall t+1u,k1x

t+1
k1,f

)
− (ξ3 − ξ2)Pall

t+1
u,k

×


N+S∏
k2 = 1
k2 6= k

(
1− Pall t+1u,k2x

t+1
k2,f

)
. (27)

Because ξ1 < ξ2 < ξ3, we have ξ2 − ξ1 >

0, ξ3 − ξ2 > 0. Because 0 ≤ Pall t+1u,k ≤ 1,∀u,∀k ,

so 0 ≤

N∏
k1 = 1
k1 6= k

(
1− Pall t+1u,k1x

t+1
k1,f

)
≤ 1, 0 ≤

N+S∏
k2 = 1
k2 6= k

(
1− Pall t+1u,k2x

t+1
k2,f

)
≤ 1, we can get ∂f

∂yt+1k,f
(x) ≤ 0

in this case.
•When N + 1 ≤ k ≤ N + S, the first derivative is

∂f

∂x t+1k,f

(x) =
∑
u∈U

∑
f ∈F

P̂u,f

×

− (ξ3 − ξ2)Pall t+1u,k


N+S∏
k1 = 1
k1 6= k

(
1− Pall t+1u,k1x

t+1
k1,f

)

(28)

Because ξ3−ξ2 > 0, 0 ≤ Pall t+1u,k ≤ 1,∀u,∀k, 0 ≤ P̂u,f ≤ 1,
we can get ∂f

∂yt+1k,f
(x) ≤ 0 in this case.

By summing up above two cases, we have that for any
variable x t+1k,f

∂f
∂yt+1k,f

(x) is nonpositive, i.e. f (x) is a monotone

decreasing function of x.
(b) Then we prove that f (x) is a supermodular function.

Take any two variables x t+1k1,f 1, x
t+1
k2,f 2 and take their second

derivative.
•When f 1 6= f 2, observing (26), we can see that there is

no monomial in the polynomial expansion of f (x) that has
the factor x t+1k1,f 1x

t+1
k2,f 2, i.e. in this case ∂f

∂xt+1k1,f 1∂x
t+1
k2,f 2

(x) = 0.

• When f 1 = f 2 = f and k1 ∈ {1, . . . ,N } , k2 ∈
{1, . . . ,N }, the second derivation is

∂f

∂x t+1k1,f ∂x
t+1
k2,f

(x) =
∑
u∈U

∑
f ∈F

P̂u,f(ξ2−ξ1)Pall t+1u,k1Pall
t+1
u,k2


N∏

k = 1
k 6= k1, k2

(
1− Pall t+1u,k x

t+1
k,f

)
+ (ξ3 − ξ2)Pall

t+1
u,k1Pall

t+1
u,k2

×


N+S∏

k = 1
k 6= k1, k2

(
1− Pall t+1u,k x

t+1
k,f

)
 .
(29)

According to analysis above we have ξ2 − ξ1 > 0, ξ3 − ξ2 >
0, 0 ≤ Pall t+1u,k ≤ 1, P̂u,f ≥ 0, thus we get ∂f

∂xt+1k1,f 1∂x
t+1
k2,f 2

(x) ≥

0 in this case.
• When f 1 = f 2 = f and k1 or k2 ∈

{N + 1, . . . ,N + S}, the second derivation is

∂f

∂x t+1k1,f ∂x
t+1
k2,f

(x) =
∑
u∈U

∑
f ∈F

P̂u,f (ξ3 − ξ2)Pall
t+1
u,k1Pall

t+1
u,k2

×


N+S∏

k = 1
k 6= k1, k2

(
1− Pall t+1u,k x

t+1
k,f

)
(30)

where ξ3 − ξ2 > 0, 0 ≤ Pall t+1u,k ≤ 1, P̂u,f ≥ 0,
so ∂f

∂xt+1k1,f ∂x
t+1
k2,f

(x) ≥ 0 in this case.

Summing up above three cases, we have ∂f
∂xt+1k1,f 1∂x

t+1
k2,f 2

(x) ≥

0 for ∀k1, k2 ∈ {1, . . . ,N + S} ,∀f 1, f 2 ∈ F . According to
proposition 1, we have that f (x) is a supermodular function.
In summary, f (x) is a monotone decreasing supermodular

function and Lemma 2 is proved.
Pseudo-Boolean optimization problems with supermodu-

lar objective functions can be classified into different types
based on their different constraints. Greedy algorithms used
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to obtain sub-optimal solution are also different. Here we give
a concept to distinguish different types of pseudo-Boolean
optimization problems which is matroids.
Definition 2: A matroid is a set system (E,L), where E is

a nonempty finite set(called the ground sets) andL is a family
of subsets of E , i.e.L ⊆ 2E , (called the independent sets) and
∅ ∈ L, with the following properties:
(a) L has augmentation property: if A ∈ L,B ∈ L, and
|A| < |B|, then there exists x ∈ B\A such that A∪{x} ∈
L.

(b) L has hereditary property: ifB ∈ L,A ⊆ B, thenA ∈ L.
B is called an independent subset of E , thus any subset
of B is also an independent subset of A.

The type of a pseudo-Boolean optimization problem is
judged by the type ofmatroid corresponding to the constraints
of this problem. We first give the definition of partition
matroids and then prove that constraints in problem (22)
correspond to a partition matroid.

Definition 3: E =
k⋃
i=1

Ei is the disjoint union of k sets,

l1, . . . , lk are positive integers, and

L =
{
L : L =

k⋃
i=1

Li,Li ⊆ Ei, |Li| ≤ li for i = 1, . . . , k

}
(31)

Then we call that (E,L) is a partition matroid.
Lemma 3: Constraints in problem (22) correspond to a

partition matroid.

Proof: Let EF =
N+S⋃
i=1

EFi, When i ∈ {1, . . . ,N }, EFi =

{1, . . . ,F} is the ground set of i-th IU which represents the
files he can cache; When i ∈ {N + 1, . . . ,N + S}, EFi =
{1, . . . ,F} is the ground set of SBS i − N which represents
the files SBS i− N can cache. Let

LF =
{
LF : LF =

N+S⋃
i=1

LFi,where LFi ⊆ EFi,

|LFi| ≤ V’i for i = 1, . . . ,N + S

}
, (32)

where V’i represents the cache capacity of IUs or SBSs,
and when i ∈ {1, . . . ,N } ,V’i = VIUn ; when i ∈
{N + 1, . . . ,N + S} ,V’i = VSBSi−N . In addition, LFi ={
f : x t+1i,f = 1, f = 1, . . . ,F

}
is the caching strategies of IUs

and SBSs which satisfy the constraints in problem (22), thus
LF is the set of all feasible caching strategies. According to
the definition 3, we have that (EF, LF) is a partition matroid
and Lemma 3 is proved.

Based on the above discussion, problem (22) belongs to the
problem of minimizing the supermodular function defined
over a partition matroid. To solve this problem, [22] showed
that locally greedy algorithm can achieve at most 2 times
the optimal objective function value. Of course, this is the
result when the size of the input matroid is very large, and

when the size is small, this algorithm can achieve much better
results [20], [22], [23]. So we use locally greedy algorithm to
obtain suboptimal solution of problem (22).

Algorithm 2 Locally Greedy Caching Algorithm(LGCA)

Input:
∧

P u,f ,Pall
t+1
u,k ,V’i (i = 1, 2, . . . ,N + S)

Output: Sub-optimal caching strategy vector xsubopt
1: xsubopt = O1,(N+S)F
2: for i = N + 1,N + 2, . . . ,N + S, 1, . . . ,N do
3: j = 0,Fleft = {1, . . . ,F}
4: while j < V’i do
5: fopt ← argmaxf ∈Fleft

[
f
(
xsubopt

)
−

f
(
xsubopt |xsubopt [(i− 1)F + f ] = 1

)
6: xsubopt [(i− 1)F + fopt] = 1
7: Fleft = Fleft\

{
fopt
}

8: j = j+ 1
9: endwhile
10: end for

As shown in algorithm 2, Firstly, we initialize the caching
strategy of all IUs and SBSs as a row vectors containing
1 × (N + S)F elements. The for-loop from step 2 to 10
determines the caching strategy of one IU each time. In step 2
i is assigned in that order for the convenience of determining
the number of IUs, which we be explained in the following.
In Step 3, j represents the number of files that have been deter-
mined to place in the cache, andFleft represents the remaining
set of optional files. Step 5 is to find out caching which file
will reduce the value of objective function at the maximum
degree, where f

(
xsubopt |xsubopt [(i− 1)F + f ] = 1

)
repre-

sents what is f
(
xsubopt

)
equal to if the [(i− 1)F + f ] -th

element in xsubopt changes from 0 to 1.
Now we analyze the complexity of the algorithm. Each

instruction in the while-loop executes V’i times. The running
time of each instruction is constant except for the fifth instruc-
tion. The complexity of fifth instruction is O (F) because it
traverses all f to find out the file that reduces the objective
function most. That is to say, the total running time of steps
4 to 9 is O (V’i (F + 1)) = O (V’iF). Steps 3 and while-loop
are executed once in each for-loop. Step 3 requires constant
running time. The running time of while loops is O (V’iF),
so the running time of each for-loop isO (V’iF), too. For-loop
need to be executed N + S times, thus the total complexity is

O

(
F
N+S∑
i=1

V’i

)
= O (FV0) (33)

where V0 =
N+S∑
i=1

V’i is the sum of cache capacities of

all IUs and SBSs. In addition to for-loop, step 1 requires
constant running time, so the running time complexity of the
whole algorithm is O (FV0), which is polynomial time. The
sub-optimal value obtained by LGCA is closest to the optimal
value in polynomial time [22].
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V. THE SELECTION OF IMPORTANT USERS
After solving the problem of minimizing the average system
cost while selecting N IUs, the next problem is how to decide
N , i.e. how to decide how many IUs should be select to act
as cache nodes. We consider this problem from the opera-
tor’s point of view. System benefit per unit cost (SBPUC) is
defined to measure the benefits to operators while selecting
N important users. Its expression is

GN (t + 1) =
(1− ε) ξ0 (t + 1)− ξNs (t + 1)

NH
(34)

where ξNs (t) is the sub-optimal value of the average system
cost when selecting N IUs at time slot t + 1 by using LGCA.
ξ0 (t + 1) is the sub-optimal value of the average system cost
when only SBSs cache files at time slot t + 1. 0 ≤ ε ≤ 1
is the ratio of system cost that the operator hopes to reduce
by hiring IUs, compared to the cost without hiring IUs, i.e.
the operator wants the average system cost be smaller than
(1− ε) ξ0 (t + 1) by hiring IUs. H is the price of hiring an
IU. It is worth noting that the maximal value of N is U , since
the operator may hire all users as IUs in order to reduce the
system cost as much as possible.

The implication of SBPUC is as follows: because caching
will consume storage of user devices, the operators need to
pay IUs cache files because of users’ selfish nature; at the
same time, hiring IUs will reduce the system cost. In order
to meet the basic requirements of QoS or system upgrade,
compared with only small base station caching files, the oper-
ator has a minimum expected reduction of average system
cost. If the average system cost is lower, this is the additional
benefit of hiring IUs to the operator. To achieve a trade-off
between the cost of hiring IUs and the additional benefit,
we define the ratio of extra benefit to the cost of hiring
IUs as the SBPUC to help select IUs. Obviously, we need
the N , which is the number of selected IUs, that maximizes
GN (t + 1). Let this N be Nopt (t + 1), we have

Nopt (t + 1) = argmax (GN (t + 1) ,N = 1, 2, . . . ,U) .

(35)

It’s worth noting that we don’t have to calculate
GN (t + 1)U times to find Nopt (t + 1). From the expres-
sion of GN (t + 1) we can see that different values of N
only affect ξNs (t + 1) and NH . NH is easy to calculate but
ξNs (t + 1) need to be calculated by LGCA. Recalling the
LGCA, in which we determine the caching strategy of SBSs
and N IUs in turn, we can only execute LGCA once when
N = U to obtain all GN (t + 1). The method is to let N be
U in LGCA, then add several instructions between step 9 and
step 10 which are: if i = U + S, then ξ0 = f

(
xsubopt

)
;

elseif i ∈ {1, . . . ,U}, then Gi =
(1−ε)ξ0−f (xsubopt)

iH , CS(i) =
xsubopt

(
1 :
(
S + Nopt

)
F
)
and then add an instruction after

step 10 which is Nopt = argmaxi=1,...,U (Gi). Nopt is the
number of IUs the operator should select in time slot t + 1
and CS(Nopt ) is the caching strategy of SBSs and Nopt IUs.

VI. PERFORMANCE EVALUATION
The simulation scenario in this paper is oneMBSwith 4 SBSs
and 20 users in its coverage, and users can communicate with
each other through D2D. Files are divided into 15 classes
and each class contains 6 files, i.e. there are 90 files in the
whole file library. The cache capacity of each SBS is 30 and
the cache capacity of each user is 8 or 12 or 16 with the
probability of 0.3, 0.6 and 0.1. The duration of each time slot
is 300 seconds. The cost of receiving files from IUs, SBSs
and MBS is 1, 10 and 100, respectively. It takes at least 30s
for the user to receive a file successfully through D2D and
takes at least 60s to receive a file successfully from the SBSs.
The cost of hiring each IU is 10.

The study of [8] shows that the order of magnitude of
the parameter of the exponential distribution corresponding
to the connection time in reality is 10 ^−3, and for interval
time the order of magnitude of the parameter is 10^−4.
As a result, to model physical relationship between users,
we assume that µi,j and λi,j are random numbers obeying
uniform distribution U (1.5 ∗ 10 ∧−3, 3.5 ∗ 10 ∧−3) and
U (6 ∗ 10 ∧−4 , , 8 ∗ 10 ∧−4) respectively. While simulat-
ing the connection between users and SBSs, considering
that for each user, there is one SBS that he often stays at,
i.e. the relative movement between them is slow, and this
user are less likely to stay at other SBSs, we let µ′u,s =
µ′1 = 10 ∧ −3, λ′u,s = λ′1 = 9 ∗ 10 ∧ −4 if u ∈
{(s− 1)U/S + 1, . . . , sU/S} and µ′u,s = 3 ∗ µ′2 = 10 ∧
−3, λ′u,s = λ′2 = 5 ∗ 10 ∧ −4 otherwise. For the social
relationship among users, we assumes that there are 30 user
attributes, and the probability of each user possessing any one
of the attributes is equal. This paper assumes that the social
closeness threshold is 6.8. The weight α and β in (4) are both
0.5. ε in (34) is 0.9.
In the simulation, there are two types of users. Ranking

of different file classes for these two user types are any two
permutation of {1, . . . ,F}. Then the two types of user pref-
erences obey Zipf distributions with parameters of 1.2 and
2 respectively. According to the probability distribution, users
randomly select a file class, and then randomly select a file
belonging to this class according to uniform distribution.

Fig. 2 shows a comparison of the system cost obtained
through three different ways. From top to bottom, the first
curve shows the system cost obtain by random caching,
which random places file in IUs and SBSs’ caches until their
caches are full. The second curve shows the system cost
obtained by using popularity-based caching strategy, which is
a widely used caching strategy [24]–[26]. The idea is to cache
the files with the greatest popularity at each caching node.
In this paper, to achieve popularity-based caching strategy,
after predicting the preferences of all users, we take the
average of all user preferences as the global file popularity,
and all IUs and SBSs place the most popular files in their
caches until their caches are full. The bottom curve shows
the system cost obtained by our proposed suboptimal caching
strategy. We can see that the performance of random caching
is the worst because it doesn’t consider the impact of user
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FIGURE 2. Comparison of proposed suboptimal caching strategy,
popularity-based caching strategy, and random caching.

FIGURE 3. Comparison of proposed suboptimal caching strategy, caching
strategy without considering mobility, and caching strategy without
considering social relationship.

preferences and just caches files randomly. The system cost
obtained by using this strategy is far greater than that of
popularity-based caching strategy and our proposed caching
strategy. The performance of popularity-based caching strat-
egy is much better than that of random caching, but because it
does not take into account the joint optimization of different
IUs and SBSs, its system cost is larger than that of our
proposed caching strategy, and this gap increases with the
increase of the number of IUs.

Fig. 3 demonstrates the necessity of developing a caching
strategy that considers mobility and sociality. There are three
curves in this figure. The above curve shows the system cost
by using caching strategy without considering mobility. This
curve is obtained in the following way: First, remove the
mobility in this paper’s scenario, i.e., if a user can commu-
nicate with another user or SBS in the current time slot, they
must can communicate in the next slot. Then, apply LGCA
algorithm to this modified scenario to obtain the caching
strategy without considering mobility, and then apply this
strategy to this paper’s scenario that considers mobility, and
get the system cost corresponding to this strategy. We can

see that because the caching strategy without considering
mobility neglects the mobility in the scenario and regards the
connection situation of the current time slot as the connection
situation of the next time slot, the system cost obtained by
using this strategy is larger than that of the proposed caching
strategy. The middle curve shows the system cost by using
caching strategy without considering sociality. This curve is
obtained in the following way: First, remove the sociality in
this paper’s scenario, i.e., if two users physically meet the
requirements of D2D communication, then they can establish
D2D communication, regardless of whether they have social
relations or not. Then apply LGCA algorithm to this modified
scenario to obtain the caching strategy without considering
sociality, and then apply this strategy to this paper’s scenario
that considers sociality, and get the corresponding system
cost. Although the system cost of this strategy is basically
the same as that of our proposed strategy when there are
few IUs, with the increase of the number of IUs, compared
with the cost of our proposed strategy, the system cost of this
strategy is larger and the gap is increasing. This is because
it ignores the fact that some users can’t communicate with
each other duo to unreliability, resulting in some files placed
at the user are invalid because people around this user may
not willing to communicate with him because they have no
social relationship.

Fig. 4 shows a comparison of the system cost between
the suboptimal caching strategy and the optimal caching
strategy. The optimal caching strategy here is obtained by
the method provided in Part A of Section IV. Specifically,
using Lemma 1, the optimization problem in (22) can be
transformed into a linear integer programming problem, and
then the optimal caching strategy can be obtained by using
the standard linear integer programming optimization tools
to solve the problem. Because the direct solution is NP-
complete, in order to reduce the computational complexity,
the scenario for comparison only contains one SBS, and we
only show the comparisonwhen the number of IUs is between
1 and 4 (when the number is more than 4, the optimal value
is hard or to be directly solved and may cannot be directly
solved because too many variables lead to high complexity).
From Fig. 4, we can see, the gap between the optimal value
and the sub-optimal value is very small.

Fig. 5 shows the impact of mobility on average system cost.
For simplicity, we ignore the order of magnitudes of exponen-
tial distribution parameters of connect time and interval time,
which are 10 ∧ −3 and 10 ∧ −4, respectively. In this figure,
theµ′1, λ

′

1 (the exponential distribution parameters of connect
time and interval time between a user and the SBSs he often
stays respectively) and µ′2, λ

′

2 (the exponential distribution
parameters of connect time and interval time between a user
and other SBSs) of mobility 1 are 2, 8, 4, 2.5 respectively,
which means that the user is more likely to establish commu-
nication with the SBSs he often stays, and all µi,j is 3, all λi,j
is 6. These six parameters of mobility 2 are 1.66, 8.5, 3.66, 3,
2.5, 6.5, respectively. These six parameters of mobility 3 are
1.33, 9, 3.33, 3.5, 2, 7, respectively. These six parameters
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FIGURE 4. Comparison of suboptimal value and optimal value.

FIGURE 5. The impact of mobility on average system cost.

of mobility 4 are 1, 9.5, 3, 4, 1.5, 7.5, respectively. From
curve 1 to curve 4, the µ keeps decreasing while the λ keeps
increasing, which means that the connect time is longer and
longer and interval time is smaller and smaller both between
two users and between a user and a SBS, which means that
users are moving more and more slowly. Because the D2D
communication among users and the connection between a
user and a SBS are more and more stable, the average system
cost is smaller and smaller.

Fig. 6 shows the impact of social relationship on average
system cost. From curve 1 to curve 4, the social closeness
thresholds are 6.1, 6.6, 7.1, 7.6, respectively, which means
that the social closeness keep increasing and thus making the
number of a pair of users having social relationship become
smaller and smaller. Since the establishment of D2D commu-
nication requires social relationship, it is harder and harder to
establish D2D communication between a user and a IU. As a
result, the average system cost becomes more and more.

Fig. 7 shows the impact of different pricing, i.e. the differ-
ent proportions of the costs of three ways to obtain a request
file. We consider five different proportions of IUs service
cost, SBSs service cost and MBS service cost, which are
1:10:100, 1:20:90, 1:30:70, 1:49:51, and 10:1:100, respec-

FIGURE 6. The impact of social relationship on average system cost,
the social closeness thresholds of social relationship 1, social
relationship 2, social relationship 3, and social relationship 4 are 6.1, 6.6,
7.1, and 7.6, respectively.

FIGURE 7. The impact of different pricing on the caching strategy. The
coordinate values of the x-axis correspond to five different cost
proportions: 1:10:100, 1:20:90, 1:30:70, 1:49:51, and 10:1:100,
respectively.

tively. Among the first four proportions, (MBS service cost
- IUs service cost) / (MBS service cost - SBS service cost) is
increasing, which means that IUs service can reduce system
cost to a greater extent than SBSs service, because the reduc-
tion of system cost is relative to the cost without caching,
i.e., MBS service cost. As a result, The IUs hit rate corre-
sponding to the first four proportions is increasing, while the
SBSs hit rate is decreasing. This is in order to make better
use of IUs, so that more requests are served by IUs and less
requests are served by SBS, since IUs service can reduce
system cost more. The fifth ratio shows another extreme case:
IUs service cost is more than SBSs service cost, which means
SBSs service can reduce system cost more, so the SBSs hit
rate is the largest of the five and the IUs hit rate is the
smallest. Note that the MBS hit rates corresponding to these
five proportions are basically same. This is because the cost
of MBS service is always the largest, that is to say, it always
needs to minimize theMBS hit rate, soMBS hit rate is always
around the minimum hit rate.
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FIGURE 8. The SBPUC corresponding to different number of IUs in time
slot 30.

Fig. 8 shows the SBPUC corresponding to the different
number of IUs in any time slot (this figure is the time slot 30).
It can be seen that SBPUC is the largest when the number is 4,
so it is most appropriate to select four IUs according to social
importance in the time slot 30.

VII. CONCLUSION
In this paper, we investigated how to develop the caching
strategy in the D2D communication enabled heterogeneous
network, while jointly considering users’ mobility and social
relationships, tominimize system cost.Wefirst predicted user
preference through Zipf regression based on users’ history
file requests. Moreover, we derived the closed-form expres-
sion of average system cost and formulated the optimization
problem of minimizing average system cost. Unfortunately,
this problem is NP-complete. Although the optimal solution
can be obtained, the time complexity is much higher than
the polynomial time. Furthermore, we proved the objective
function of this problem is a supermodular function and the
constraints can be mapped to a partition matroid, thus the
local greedy algorithm can be used to develop suboptimal
caching strategy within polynomial time. Finally, we pro-
posed the method to decide the number of IUs. Simulation
results show that the proposed caching strategy can achieve
smaller system cost than traditional popularity-based caching
strategy and random caching strategy. Furthermore, the per-
formance gap between the optimal caching strategy and the
sub-optimal caching strategy is very small.
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