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ABSTRACT Risk impacts on the operation of electric power distribution networks, when large amounts
of distributed photovoltaics (PVs) are included, are gradually increasing to become a critical consideration
for distribution networks’ operations. In this paper, a risk assessment method is proposed which considers
large-scale distributed PV feeding into distribution networks. Cluster partitioning is used to group large-scale
distributed PV, to more accurately calculate the operational risk indicators for distribution networks with
large-scale distributed PV compared to traditional risk assessment methods. A copula function is used to
describe the correlation between the PV output and the load, in order to more accurately calculate power flow
information compared to the traditional independent model of output and load. Node voltages over-limits
and branch power flows outside boundaries are selected as the risk indicators, and a comprehensive
risk indicator is introduced to more comprehensively and meaningfully evaluate the risk of distribution
networks’ operation. Also, the effects on the operational risk of the distribution network of load fluctuations,
and, PV quantity, capacity, and location are analyzed and discussed. Finally, the IEEE34-bus system was
simulated, and the results for different scenarios were calculated and analyzed. The simulation results
demonstrate the effectiveness of the proposed method.

INDEX TERMS Distributed, large-scale, photovoltaics, risk assessment.

I. INTRODUCTION
Solar energy is rapidly developing, and photovoltaic (PV)
power generation for input to electric power grids is one
of its main applications. Compared with traditional power
generation technology, PV power generation has outstanding
advantages in terms of abundant sunlight resources, clean-
liness, freedom from noise and pollution. It has received
more and more attention and development [1], [2]. The
time-domain output power from PV generation is random
and uncertain [3]. When PV power sources are connected to
distribution networks, large-scale [4], the many distributed
small-capacity PV sources drive changes in the entire dis-
tribution network flows. These flows are different from tra-
ditional distribution network power flows. It can bring new
problems in power quality, power flow distribution, system
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loss, security and stability of distribution networks [5]–[8].
It is of great importance to evaluate the reliability and safety
of distribution networks’ operation with large amounts of
distributed PV power generation.

In recent years, methods for systematic risk assessment of
distribution networks with distributed generation have been
gradually established. Risk assessment models support the
foundations of power system design [9]. The main com-
ponents of distribution networks include distribution lines,
transformers, user loads, circuit breakers and so on [10].
Therefore, risk assessment of distribution networks with dis-
tributed generation mainly studies distributed power mod-
els, component outage model for various types of power
distribution equipment and load models [11]. In terms of
PV power generation, the solar radiation intensity obeys a
Beta distribution over short periods. Then, according to the
linear relationship between PV output and solar radiation,
the Beta distribution model for the PV output power is
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derived [12], [13]. The probabilistic model for PV power
output is based on the theory of non-parametric kernel density
estimation, as was proposed in [14] which improved the
modeling of PV’s output statistical distribution. The ran-
dom fluctuations loads also create risks for the safe and
stable operation of distribution networks [15]. A normal
distribution approximation is usually used to characterize
the uncertainty of continuous loads. Samper [16] conducted
a risk assessment for planning for the high penetration
of solar PV installations in distribution systems. Modified
risk-adjusted cost ratios are used to optimize the size and
allocation of battery energy storage systems (BESS), con-
sidering distributed PV generation, uncertainties in weather
conditions, PV penetration, load growth, and the costs
of BESS.

As a very important aspect of distribution network assess-
ment, risk assessment deepens and further develops deter-
ministic and probabilistic assessment methods [17], [18],
combining the probability of accidents with their conse-
quences, and quantitatively reflects the risks to the distribu-
tion networks’ operation [19]. There are now many methods
for risk assessment of distribution networks, which can be
categorized as analytical methods, simulation methods, and
mixed methods combining analytical and simulation–based
approaches [20], [21]. The analytical method established
a reliability probability model according to the structure
of the system and the logical relationship within it. The
model is solved accurately by means of recursion or iter-
ation. The probability of each possible fault and the loss
of distribution networks’ function after the fault occurs are
calculated by means of fault enumeration. Thus, system-level
risk indicators are comprehensively formed [22]. When the
analytical method is used, the probability distribution of the
state of distribution networks can be calculated by using a
Gram-Charlier series expansion and the dynamic probability
power flow algorithm which is based on semi-invariant addi-
tivity [23]. Current simulation methods are generally based
on Monte Carlo simulation [24], [25], which can extract
random numbers subject to an arbitrary distribution. Accord-
ing to the individual probability distributions of loads, dis-
tribution network components, and weather conditions [26],
a random sampling is used to select the parameters, form a
system state sequence, and then analyze the generated state
set. When this simulation approach is used, the probability
distribution of the state of the distribution networks is calcu-
lated by Monte Carlo sampling of the probability distribution
of PV output power [27].

The ultimate purpose of risk assessment is to obtain the
statistics indicating the quantitative risk level of system,
to guide planning and operation of the distribution net-
works [28], [29]. In order to reasonably reflect the risk
level of a system, current risk assessment indicators generally
focus on two aspects: the probabilities of abnormal state
occurrences, and, the consequences of those possible abnor-
mal states. Zhang et al. [30] considers the impact of capacity

and location on a single PV access point and uses the risk
index on the node voltage limit and branch flow limit to assess
the risk of distribution network. Li et al. [31] established
a probability and severity model of line overload for when
there was wind power connected to the grid. Considering the
temporal uncertainty of wind power, and the probability and
consequences of line load fluctuations, a Cholesky decom-
position was used to model the correlation between load and
power. A point estimation method was used to calculate the
risk indicator for active line power overloads [9]. In addition,
the optimal power flow model [32], [33] can be used to
calculate the risk indicators of system load shedding, voltage
over-limit [34], [35], and so on.

For the power system, the output characteristics of PV
power generation are quite different from traditional dis-
patchable power generation. The above literature provides a
good research basis for the risk assessment of distribution
networks that integrate PVs. However, for risk assessment
of distribution networks integrating large-scale distributed
PVs, more technical requirements and improved methods are
needed. The contributions of this work are: (i) clustering
distributed PVs before conducting risk assessment on dis-
tribution network that integrate large-scale distributed PVs;
(ii) probabilistic power flow models that take into account
distributed PV and load correlations for risk assessment;
(iii) Propose a comprehensive risk indicator for voltage and
power flow limits, considering the impact of load fluctua-
tions and the number, capacity, and locations of large-scale
distributed PVs on risk.

Bearing these ideas in mind, the remainder of this paper is
arranged as follows. Section II explains the cluster partition of
large-scale distributed PVs. Section III explains the stochastic
model of the distribution network components; Section IV
explains the risk indicators for over-limits node voltages and
off-limits branch power flows, and comprehensive risk indi-
cator. Section V shows the simulation results and analysis of
distribution network integrating large-scale distributed PVs.
Finally, Section VI offers the conclusions from this research.

II. LARGE-SCALE DISTRIBUTED PHOTOVOLTAICS
CLUSTER PARTITON
‘‘Large-scale distributed PVs’’ has not been clearly defined
so far. According to the current status of equipment and
operation of distribution networks in China, the ‘‘large-scale
distributed PVs’’ means that the number of effective nodes
that the PVs directly connect to can reach 30% or more of
the number of nodes in distribution networks. The effective
node means that the PV capacities of this node reaches at
least 20% of the transformer capacities within this node. The
number of PVs is high in distribution networks with large-
scale distributed PVs, and it would be very complicated to
simulate each PV in detail. Therefore, this paper considers the
clustering method to group PVs with similar characteristics
into clusters for more practical simulation.
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A. CLUSTER INDICATOR
Some of the PVs in power systems with large-scale dis-
tributed PVs have similar characteristics. Clusters can be
grouped according to indicators as follows.

1) ACTIVE POWER REGULATION CAPACITY Pr

When the voltage level of a system is too high and its reactive
power regulation capability is limited, the active power of
distributed PVs can be reduced to ensure that the system
operates at a safe voltage level. The range of active power
output regulation is:

Pr ∈ [0,PMPPT ] (1)

PMPPT =
n∑
j=1

PjMPPT (2)

where PMPPT is the active power of distributed PVs under
its maximum power point tracking control mode, and PjMPPT
is the active output of PVs under maximum power point
tracking control mode of the j-th PV inverters within the node.

2) REACTIVE POWER REGULATION CAPACITY Qr

Reactive power regulation capacity is one of the important
criteria for cluster partitions. When emergency situations
such as regional faults occur, the cluster can provide neces-
sary reactive power support for the region. When the system
voltage level is too high, the reactive output of PVs can be
adjusted to ensure that the system operates at a good volt-
age level. The reactive power regulation range of distributed
PVs is:

Qr ∈ [Qmin,Qmax] (3)
Qmin =

n∑
j=1

Qjmin

Qmax =

n∑
j=1

Qjmax

(4)

Qjmin = −

√
S2j − P

2
jMPPT

Qjmax =

√
S2j − P

2
jMPPT

(5)

whereQmin andQmax are the capacitive and inductive reactive
power of the node respectively,Qjmin andQjmax are the capac-
itive and inductive reactive power of the j-th PV inverters
within the node, respectively, and Sj is the rated capacity of
the PV inverters.

B. DYNAMIC CLUSTER
The cluster partition of large-scale distributed PVs is similar
to community structure. The characteristics of nodes within
the cluster are similar, and the characteristics of clusters are
quite different. Therefore, the community theory can be used
to achieve a reasonable partition for cluster with large-scale
distributed PVs. First, the partition indicators are normalized
and the weights are determined, then the similarity matrix
of the distributed PVs is calculated, and finally the cluster
is created using the modularity function.

1) NORMALIZATION OF PARTITION INDICATORS
In order to eliminate the dimensional influence among the
various indicators proposed in the previous section, each
indicator should be normalized. The normalization formula
is shown in (6):

x ′im =
xim −min (xim)

max (xim)−min (xim)
(6)

where ximis the m-th partition indicator of the i-th node,
max(xim) and min(xim) are the maximum and minimum val-
ues of the m-th indicator of the i-th node, respectively, and
x ′imis the m-th indicator of the i-th node after normalization.

2) CONSTRUCTING the SIMILARITY MATRIX
The similarity between two nodes is calculated using a scalar
method. A similarity matrix is then formed. The more similar
the two nodes are, the closer the elements in the similarity
matrix are to 1. The formula is shown in (7)-(8):

r (i, j) =


1, i = j[
1
L

2∑
m=1

αk
(
xij · xjm

)]
, i 6= j

(7)

L = max

(
2∑

m=1

αk
(
xij · xjm

))
, i 6= j (8)

where αk is the weight of the m-th indicator, and xjm is the
m-th indicator of the j-th node.

3) THE MODULARITY FUNCTION AND
THE PARTITION ALGORITHM
Considering a single distributed PV source as a node, each
node has a connecting edge and the weight of the connecting
edge is the similarity of the distributed PV sources. The
distributed PV network is constructed. The modularity func-
tion [36] is an indicator for community structure: the closer
the modularity function value Q is to 1, the more reasonable
the community partition results are. Cluster and community
structures have similar characteristics. Their calculation is
shown by (9):

Q =
1
2s

∑
i,j

(
gij −

sisj
2s

)
δ
(
Gi,Gj

)
(9)

where gij is the edge of the network, si and sj are the sum of
the weights of edges on the nodes i and j, respectively, s is the
weight of all edges in network. VariableGi is the cluster where
node i is located: when Gi = Gj, δ =1, otherwise δ =0.
The Fast Unfolding [37] cluster algorithm is used to parti-

tion clusters. First, each node acts as a cluster separately and
then nodes are merged according to the gradient for increase
of the Q-value function, to obtain a new cluster until the value
of Q no longer increases. Finally, the optimal partition for the
distributed PV cluster is obtained.

III. STOCHASTIC MODEL OF SYSTEM COMPONENTS
Since PV systems’ outputs and loads have strong uncertain-
ties, they are modeled from a probabilistic perspective.
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A. STOCHASTIC OUTPUT PROBABILITY MODEL FOR
LARGE-SCALE DECENTRALIZED PHOTOVOLTAICS
In this paper, the non-parametric kernel density estimation
method is used to describe the stochastic model for PV gener-
ation at each node. Suppose P1,P2, . . . ,Pn are n samples of
PV output powerP, and the probability density function of the
output power is fpv(p). Then, the kernel estimate of fpv(p) is:

f̂PV (p) =
1
nh

n∑
i=1

K
(
p− Pi
h

)
(10)

where K is the kernel function of kernel density estimation,
h is the bandwidth, and n is the sample capacity.

According to the theory of kernel density estimation, when
n → ∞, h →0 and nh→ ∞, f̂PV (p)will converge to fpv(p),
so the accuracy of the kernel density estimation depends on
the bandwidth and the kernel function. When bandwidth h
is constant, the performance of kernel density estimation of
different kernel functions is almost the same [14], so the
choice of bandwidth has a great deal of influence on fitting the
kernel density estimation. If the value of h is too large, it will
cause f̂PV (p) to be excessively smooth, mask some structural
features of fpv(p), and a large estimation bias occurs; if the
value of h is too small, the deviation will decrease, which
will make f̂PV (p) less smooth and fpv(p) will have larger
fluctuations.

ISE (Integrated Square Error) can be used to measure
whether a kernel density estimation function f̂PV (p) is a good
estimate of the probability density function fpv(p):

ISE
(
f̂PV
)
=

∫ (
f̂PV (p)− fPV (p)

)2
dp (11)

Next, the expected value of ISE to get the MISE (Mean
Integrated Square Error) is found:

MISE
(
f̂PV
)

= E
(∫ (

f̂PV (p)− fPV (p)
)2
dp
)

=

∫
E2
(
f̂PV (p)− fPV (p)

)
dp

+

∫
D
(
f̂PV (p)− fPV (p)

)
dp

=

∫
Bias2

(
f̂PV (p)

)
dp+

∫
Var

(
f̂PV (p)

)
dp

=

∫ ((
h2

2

)
µ (K ) f ′′ (p)+ o

(
h2
))2

dp

+

∫ ((
1
nh

)
R (K ) f (p)+ o

(
1
nh

))
dp

=
h4

4
µ2 (K )R

(
f ′′
)
+

1
nh
R (K )+ o

(
1
nh

)
+ o

(
h4
)

(12)

µ (K ) =
∫
x2K (x)dx (13)

R (K ) =
∫
K 2 (x)dx (14)

R
(
f ′′
)
=

∫ (
f ′′PV (p)

)2dp (15)

where Bias
(
f̂PV (p)

)
and Var

(
f̂PV (p)

)
are the deviations

and variances of kernel density estimation, respectively.
Omitting the high-order term in (12) to obtain the AMISE

(Asymptotic Mean Integrated Square Error) leads to:

AMISE
(
f̂PV
)
=
h4

4
µ2 (K )R

(
f ′′
)
+

1
nh
R (K ) (16)

Taking the partial derivative of (16) and using the optimal
bandwidth where AMISE reaches its minimum value gives:

hAMISE =
(

R (K )
µ2 (K )R (f ′′)

)1/5
n−1/5 (17)

The final kernel density estimate of fpv(p) can be obtained
by bringing the optimal bandwidth into (10).

B. LOAD PROBABILITY MODEL
Loads estimates are obtained from forecasts, so there are
uncertainties. This paper uses a normal distribution approx-
imation to characterize the uncertainty of loads. Assuming
that the expected value and the variance of a load’s active
and reactive power are µP, σ 2

P , and µQ, σ
2
Q, respectively,

the probability density functions for active and reactive power
are, respectively:

f (P) =
1

√
2πσP

exp

(
−
(P− µP)2

2σ 2
P

)
(18)

f (Q) =
1√

2πσQ
exp

(
−

(
Q− µQ

)2
2σ 2

Q

)
(19)

IV. SYSTEM RISK INDICATOR
This paper mainly considers the risk of output disturbances
of large-scale distributed PVs and the load fluctuation to
the good operation of a distribution network. Without con-
sidering the system failure, the indicators for evaluation of
node over-voltages and off-limits branch power flows are
established to quantitatively evaluate the safety risk level of
a system. Using the probability distribution of node voltages
and probabilistic branch load flows, the probability density
function and the cumulative distribution function can be
obtained. According to the cumulative distribution function,
the probability of exceeding the voltage limits at each node
and the power flow through each network branch can be
obtained. The risk level can be determined by the severity
indicator.

A. RISK INDICATOR FOR OVER-LIMIT NODE VOLTAGES
It is necessary to establish a voltage risk indicator. Lower
voltages increase the power and energy loss in a distribution
network. Lower voltage also affects the stability of distribu-
tion network operation and can lead to system collapses and
large area power outages. When the voltages are too high,
it effects the insulation of power equipment.
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The probability formulas of voltages exceeding the upper
and lower limits of node voltage are as follows:{

Pr
(
V̄i
)
= Pr (Vi > Vimax) = 1− F (Vimax)

Pr
(
Vi
)
= Pr (Vi < Vimin) = F (Vimin)

(20)

The voltage offset is used as a severity consequence function
in the risk definition. The upper and lower limits of node
voltages are calculated as follows:

Sev
(
Vi
)
=


Vimin − Vi
Vmin

, Vi < Vimin

0, Vi ≥ Vimin

(21)

Sev
(
Vi
)
=


Vimax − Vi
Vmax

, Vi > Vimax

0, Vi ≤ Vimax

(22)

where Vi represents the voltage amplitude of at node i,Vimax
and Vimin are the upper and lower limits of the voltage ampli-
tudes allowed by node i, respectively, and F(V ) represents the
cumulative node voltage distribution function.

The risk indicator of node voltage over-limit is then:

Rv = max
(
Pr
(
Vi
)
Sev

(
Vi
)
,Pr

(
Vi
)
Sev

(
Vi
))

(23)

B. RISK INDICATOR FOR OFF-LIMITS
BRANCH POWER FLOW
When the power flow in a line is within its normal range,
it has little influence on outage probability of that line; when
the power flow in a line is greater than its thermal stability
limit, the line overload and overcurrent protection devices
operate. The larger the power flow, the smaller the protection
action time, and the smaller the possibility of adopting control
measures to reduce the power flow to within the normal
range and the greater the probability that the line will trip.
Disconnecting the line could lead to loss of power supply for
users and result in serious economic losses. Therefore, for
the risk assessment of distribution systems integrating large-
scale distributed PVs, we must pay attention to the problem
of branch overload and set up risk indicators for it.

In calculating a line’s over-limit probability, only the upper
limit of the branch is considered, and the probability of the
branch flow exceeding its limits is calculated as:

Pr (Sij) = Pr (Sij > Sijmax) = 1− F(Sijmax) (24)

The severity function for branch overload is as follows:

Sev
(
Sij
)
=

∣∣∣∣Sij − Sijmax

Sijmax

∣∣∣∣ (25)

where Sij is the active power of branch ij, and Sijmax is the
upper limit of active power allowed by branch ij. Assuming
that the upper limit is 1.3 times the normal value, and that
the normal value is the expected value of branch power
when distributed power is not connected;F(Sij) represents the
cumulative distribution function for branch power flow.

The risk indicator for branch power flow rising above its
limit is:

Rs = Pr (Sij)Sev(Sij) (26)

C. COMPREHENSIVE INDICATOR
In this paper, the entropy weighted method [38] is used to
calculate the weight of indicators for over-limit node voltages
and over-limit branch power flows. Then, the comprehensive
indicator of risk assessment is calculated. Supposing that
there are m nodes with n risk assessment indicators (n=2,
indicators of voltage over-limit and branch power flow off-
limit), the original quantity matrix is:

R = (rij)m×n (27)

where i = m, j = n =2, and rij is the evaluation value of the
j-th indicator of the i-th node.
The steps for calculating the weight of each indicator are:
Step1: Calculate the proportion Pij of the j-th index value

in the i-th node:

pij = rij

/
m∑
i=1

rij (28)

Step2: Calculate the entropy value ej of the j-th indicator in
all nodes:

ej = −k
m∑
i=1

(
pij · ln pij

)
ik = 1/ lnmj (29)

Step3: Calculate the entropy weightWj of the j-th indicator:

Wj =
(
1− ej

)/ n∑
j=1

(
1− ej

)
(30)

The comprehensive risk assessment indicator is:

R = RvW1 + RsW2 (31)

where W1 and W2 are the weights for indicators of node
voltages rising over their limits and over-limit branch power
flows, respectively, and Rv and Rs are the risk indicators
of node voltage over-limit and branch power flow outside
boundaries, respectively.

The flowchart for the risk assessment considering large-
scale distributed PVs feeding into a distribution network is
shown in Fig. 1.

V. SIMULATION RESULTS AND DISCUSSION
According to the evaluation model and indicators, a cluster
is selected to calculate the risk based on the IEEE34-bus
distribution network system and using the MATLAB plat-
form. According to the voltage level of different scales of
distributed PV sources, as shown in Table 1, the total capacity
of distributed PV sources of the medium voltage distribution
network (10 kV) should be between 0.4 MW and 6 MW. The
reference voltage of the system is 24.9 kV. The reference volt-
age of the root node is 1.03 p.u., or 25.64 kV. The reference
capacity of the system is 1 MVA.
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FIGURE 1. Flowchart of risk assessment, considering large-scale
distributed photovoltaics feeding into a distribution network.

TABLE 1. Voltage levels for different scales of distributed pv.

A. IMPACT OF LOAD FLUCTUATIONS ON SYSTEM RISK
The impact of load fluctuations on the system risk were
studied without any distributed PV in the distribution system.
It was assumed that the nodes’ loads follow the normal dis-
tribution. Their expected values were the original load of the
system. The standard deviation was assumed to be 40%, 70%,
and 100% of the expected value. In this example, node 1 was
considered to be the equilibrium node, and all other nodes
were considered to be PQ nodes. Risk indicators for each
over-limit node voltage and off-limit branch power flow could
be obtained. Comparisons of results for different standard
deviations are shown in Fig. 2.

When the standard deviations of load stochastic model
increases, it means that the fluctuations of load are larger,
which means there is a risk of exceeding the limit of node
voltage and branch current. From Fig. 2(a), it can be seen
that under the same standard deviation, the risk values of
each over-limit node voltage increases with the increase of
the node number. Nodes 19, 23, 25, and 33 belong to the
edge node of the distribution network system, and risk values
falls sharply with this trend. For different standard devia-
tions values, the number of over-limit nodes increases with
the increasing standard deviation. Also, the risk value of
over-limit voltages at each node is also larger, and risk values
for over-limit voltages at each node for a standard deviation
of 100% were doubled when compared with that of 40%.

FIGURE 2. Risk indicators for different load fluctuations. (a) Risk
indicator for each over-limit node voltage. (b) Risk indicator for each
off-limit branch active power.

From Fig. 2(b), it can be seen that for the same standard
deviation, the risk of off-limit active power at each branch
decreases with the increase of the branch number. Branch
numbers of 4, 9, 11, 12, 14, 15, 18, 20, 22, and 24 are lateral
branches of the distribution network system, thus showing
a sharp drop. For different standard deviations, as the stan-
dard deviation increases, the number of over-limit branches
increase, and risk of over-limit active power at each branch
also increases. When the standard deviation is 100%, the risk
of the active power exceeding the power limit of each branch
is four times higher than it is for a standard deviation of 70%.
In practice, the risk caused by load fluctuations to a system
can be reduced from the perspective of suppressing the load
fluctuations.

B. IMPACT OF THE QUANTITY OF LARGE-SCALE
DISTRIBUTED PHOTOVOLTAICS SOURCES
ON SYSTEM RISK
The joint probability density of PV output and load with a
capacity of 200 kW is shown in Fig. 3. From Fig. 3 it can
be seen that the joint probability density model of the PV

FIGURE 3. Joint probability density of photovoltaics output and load.
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output and the load, based on copula theory, better reflects the
correlation between them. The copula function [39] is a func-
tion that connects the joint distributions of multidimensional
random variables with their one-dimensional marginal distri-
butions and describes the correlations between variables. The
joint probability distributions of the PV sources and the load
is obtained by using the copula function. The probabilistic
power flow was calculated using the semi-invariant method.
The probability density functions and cumulative distribution
functions of each random variable were obtained using the
Gram-Charlier series expansion.

For the following examples, it was assumed the expected
load value at a node is the original system load value, and
the standard deviations were 20% of the expected value.
Comparative analysis was carried out for three cases with no
distributed PV sources, 10 nodes (randomly select nodes 2, 4,
15, 20, 22, 23, 31, 32, 33 and 34) with distributed PVs, and 20
nodes (randomly add nodes 6, 7, 8, 12, 14, 16, 18, 19, 21 and
25 based on 10 nodes) with distributed PVs. Taking node
10 and branch 27 as examples, the probability density curves
of the node voltages and branch active power quantities are
shown in Fig. 4.

FIGURE 4. Probability density curve for different PV source quantities.
(a) Probability density curve for node voltages. (b) Probability density
curves for branch active power.

From Fig. 4, it can be seen that when there is no dis-
tributed PVs, the selected node voltage fluctuates in the range
of 0.966-0.994 p.u., and the active power value of selected
branch is in the range of 0.017-0.046 p.u. When there are
10 nodes including distributed PVs, the voltage fluctuations
are in the range of 0.923-1.034 p.u. and active power value

is in the range of -0.208-0.256 p.u. When there are 20 nodes
including distributed PVs, the voltage fluctuations are in the
range of 0.901-1.055 p.u. and active power values are in the
range of -0.210-0.258 p.u. The number of PV sources has
an impact on the node voltages and branch power flows of
the distribution network system. The inclusion of PV sources
increases the voltage fluctuations’ ranges, and those fluctua-
tion ranges increase as the number of PV sources increases.
Also, multiple nodes containing PVs can the active power
of a selected branch have a negative value, which signifies
changes in the original system’s power flow distribution, and
even changes in the direction of branches’ power flow.

The risk indicators for over-limit node voltage and over-
limit branch active power under different PV source quanti-
ties are shown in Fig. 5.

FIGURE 5. Risk indicators for different PV source quantities. (a) Indicators
for each node voltage over-limit risk. (b) Indicator of each branch’s
over-limit active power.

From Fig. 5, it can be seen that increasing the numbers of
PV sources will lead to increasing risk indicators for node
over-limit voltage and over-limit branch active power. The
risk of over-limit branch active power with twenty nodes
containing PVs is 1.2 times higher than it is with ten nodes
containing PVs.

C. IMPACT OF THE CAPACITY OF LARGE-SCALE
DISTRIBUTED PHOTOVOLTAIC SOURCES
ON SYSTEM RISK
The following example assumes that the expected load value
of a node is the nominal load system value, and the standard
deviation is 20% of expected value. With PV sources con-
nected to 20 nodes of the system, comparative analysis was
carried out for three cases where the capacity of each node
was 100 kW, 200 kW and 300 kW. Taking node 10 and branch
27 as examples, the probability densities of node voltages and
branch active power flows were obtained as shown in Fig. 6.
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FIGURE 6. Probability density curves for different PV source capacities.
(a) Probability density curve for node voltage. (b) Probability density
curve of branch active power.

From Fig. 6(a), it can be seen that when PV sources
with a capacity of 100 kW are connected to twenty nodes,
the selected node voltage fluctuates within the range of
0.937-1.021 p.u. When the PV source capacity was 200 kW,
the selected node voltages fluctuated within the range
of 0.901-1.055 p.u. When the PV source capacity was
300 kW, the selected node voltages fluctuated in the range of
0.867-1.088 p.u. It can be seen that voltage fluctuation ranges
increase with increase PV capacity. From Fig. 6(b), it can
be seen that when PV sources with a capacity of 100 kW
are respectively connected to ten nodes, the active power
value of the selected branch is between -0.093 and 0.148 p.u.
When the PV capacity source was 200 kW, the active power
value was between -0.208 and 0.256 p.u.When the PV source
capacity was 300 kW, the active power value was between -
0.319 and 0.361 p.u. The change of PV capacity changes the
original power flow distribution, and the range of the active
power value increases with increasing PV source capacity.

The risk indicators for node voltage that go over limits and
branch active power outside limits with different PV source
capacities are shown in Fig. 7.

From Fig. 7(a), it can be seen that when PV sources with a
capacity of 100 kW are connected to ten nodes, the maximum
risk value of voltages going over-limits at all nodes is 0.108.
When the capacity is 200 kW, the maximum risk value is
0.147. When the capacity is 300 kW, the maximum risk value
is 0.172. When PV sources with a capacity of 300 kW are
connected, the risk value of the voltage over-limit is 0.6 times
higher than it is with PV sources with a capacity of 100 kW.
From Fig. 7(b), it can be seen that risk value of active power
off-limit increases with the increase of PV source capac-

FIGURE 7. Risk indicators for different photovoltaics source capacities.
(a) Risk indicator for each node voltage going over-limit. (b) Risk indicator
for each branch active power going outside its limit.

ity. When PVs with a capacity of 300 kW is connected,
the risk of over-limit active power is 20 times higher than that
of 200 kW.

D. IMPACT OF THE SOURCE LOCATIONS OF LARGE-SCALE
DISTRIBUTED PHOTOVOLTAICS ON SYSTEM RISK
With 150kW PVs connected to ten nodes (node 2, 4, 15, 20,
22, 23, 31, 32, 33 and 34), the input node was changed from
node 22 to node 11. Risk indicators for over-limit voltage and
active power values in this case are shown in Fig. 8.

FIGURE 8. Risk indicators when changing PV source locations. (a) Risk
indicator for each node voltage going over-limit. (b) Risk indicators for
each branch’s active power going over its limit.
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TABLE 2. comprehensive risk indicator.

From Fig. 8(a), it can be seen that when change PVs from
node 22 to node 11, the value of the risk of node the voltage
going over-limit around node 22 is decreased by 3%. It can
be seen from the above comparison, the influence of PVs
on the voltage of the distribution network depends mainly
on the electrical distance between one node and the node
containing PVs. If the electrical distance to a PV source is
very short, the risk of that node voltage going over its limits
will be relatively large. From Fig. 8(b), it can be seen that
after moving the PV source, the risk of active power going
outside its limits, between nodes 11 and 22 (branch 11-14,
14-17, 17-18 and 18-20) is reduced by 58%. This is related
to the electrical distance between the PV access point and the
branch, and also to the load carried by the branch.

E. COMPREHENSIVE INDICATOR
In this section, risk indicators for node voltages going outside
their limits, and branch active power over-limits in the previ-
ous section are selected, that is, when 150 kW of PV sources

FIGURE 9. The structure of the IEEE34-bus distribution network system.

TABLE 3. The load parameters of the ieee34-bus distribution network
system.

are connected to nodes 2, 4, 15, 20, 22, 23, 31, 32, 33 and 34.
Comprehensive indicators can quickly reflect the overall risk
of a location. It is calculated by the entropy weight method.
The comprehensive risk indicators for each node excluding
balanced nodes are shown in Table 2.

VI. CONCLUSION
This paper proposes a risk assessment method considering
power distribution networks that integrate large-scale dis-
tributed PVs. High distributed PVs are clustered for faster
simulation while maintaining accuracy. Risk indicators for
node voltage going outside limits and branch active power
flows over limits are calculated for the selected clusters.
Then, a comprehensive risk indicator is obtained, and the
risks to the distribution network’s performance are compre-
hensively evaluated. Simulations verify the effects of load
fluctuations, PV quantities, PV capacities, and different PV
locations on the operational risks to the distribution net-
work, and proving the effectiveness of the proposed method.
In practice, we can reduce risk of to the performance dis-
tribution networks by reducing the fluctuations of load and
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TABLE 4. The branch parameters of the ieee34-bus distribution network system.

controlling the number, capacity and location of access points
for PV sources.

APPENDIX
The structure of the IEEE34-bus distribution network sys-
tem is shown in Figure 9. Load and branch parameters of
the IEEE34-bus distribution network system are presented
in Table 3 and Table 4.
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