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ABSTRACT In recent years, neural network-based voice conversion methods have been rapidly developed,
and many different models and neural networks have been applied in parallel voice conversion. However,
the over-smoothing of parametric methods [e.g., bidirectional long short-term memory (BLSTM)] and the
waveform collapse of neural vocoders (e.g., WaveNet) still have negative impacts on the quality of the
converted voices. To overcome this problem, we propose a BLSTM and WaveNet-based voice conversion
method cooperated with waveform collapse suppression by post-processing. This method firstly uses
BLSTM to convert the acoustic features between parallel speakers, and then synthesizes pre-converted voice
with WaveNet. Subsequently, several alternative iterations of BLSTM post-processing is performed, and the
final converted voice is generated by WaveNet. The proposed method can directly generate converted audio
waveforms and avoid the waveform-collapsed speech caused by a single WaveNet generation effectively.
The experimental results indicate that acoustic features trained by using the BLSTM network could achieve
better results than conventional baselines. From our experiments on VCC2018, the usage of WaveNet could
alleviate the problem of over-smoothing, which contributes to improving the similarity and naturalness of
the final results of voice conversion.

INDEX TERMS Voice conversion, speech synthesis, BLSTM, WaveNet.

I. INTRODUCTION
Voice conversion (VC) is a method for seeking to convert
one speaker’s voice into another voice while maintaining
the content unchanged. The technology of voice conver-
sion has been widely used in many fields, such as text-to-
speech (TTS), speech enhancement, emotion conversion and
other applications [1], [2]. In recent years, machine learn-
ing has contributed many solutions to solving the prob-
lems in voice conversion such as Gaussian mixture model
(GMM) [3], [4], frequency warping [5]–[7], deep neural net-
work (DNN) [8]–[10], and so on. These frameworks of voice
conversion mainly consist of two phases: a training phase
and a conversion phase. During the training phase, the rel-
evant conversion function is extracted through the parallel
corpus of source speaker and target speaker. During the
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conversion phase, the conversion function is applied on fea-
tures extracted from new input voice. However, when wave-
form generation is conducted by a pre-trained parametric
vocoder, over-smoothing would frequently appear, which
leads to the missing of detailed information in the waveform
of the converted voice and makes the converted voice sound
buzzy.

In 2016, DeepMind developed a generative model for cre-
ating audio waveforms, called WaveNet. The model works
by predicting the distribution for each audio sample con-
ditioned on previous ones [11], which enables it to model
audio waveforms accurately. Therefore, it is able to directly
generate natural-sounding voice and alleviate the problem of
over-smoothing. However, it is also reported that because the
WaveNet uses causal convolution to predict next sound sam-
ple, the occasional instability of a generated sample will have
impacts on samples generated subsequently, especially when
inaccurate acoustic features are used as local conditional
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parameters [12]. This phenomenon was also observed in our
experiments. On the other hand, in Voice Conversion Chal-
lenge 2016, long short-term memory (LSTM) demonstrated
its superiority on the mapping of spectral parameters. As an
improved version of LSTM, BLSTM has been utilized in
voice conversion given its strong ability on modeling contex-
tual relations [8].

In this paper, we propose to combine BLSTM with
WaveNet to achieve an unified cascaded model. The first
step is to train a WaveNet vocoder, which can synthe-
size the target voice through the features of target voice.
Then a feature conversion network of BLSTM (named by
BLSTM1) is trained. The converted spectral parameters by
BLSTM1 network are fed into the WaveNet as condition
variables, then pre-converted voice is generated. The fea-
tures of the pre-converted voice are extracted again and sent
to a post-processing network modeled by another BLSTM
(named by BLSTM2). Finally the converted voice is gen-
erated through the WaveNet vocoder. The proposed method
effectively avoids waveform collapse, solves the problem of
over-smoothing and improves the quality and effectiveness of
voice conversion.

The rest of this paper is organized as follows. Section II
mainly reviews some related work involved in this paper.
Section III describes the proposed method of voice conver-
sion. The training algorithm and its procedures are presented
in section IV. The setup of experiments and analysis of results
are given in section V. We conclude in section VI with a brief
summary and present the future work.

II. RELATED WORK
BLSTM is an improvement of bidirectional recurrent neural
network (RNN), which canmodel a certain amount of contex-
tual information with cyclic connections and map the whole
history of previous inputs to each output in principle.

However, in the back-propagation optimization of bidirec-
tional RNN networks, it is found that the accumulation or
attenuation of back-propagation gradients explode or vanish
over time in long range contextual transmission. An effective
way to overcome this problem is to introduce long-term and
short-term memory architectures, which can store informa-
tion in a linear storage unit for many temporal steps, and can
learn the optimal amount of contextual information related
to regression tasks [13]. Fig.1 shows a LSTM network with

FIGURE 1. A long short-term memory cell [8].

gated cells. It is a peephole LSTM unit with input, output
and forget gates. BLSTM consists of many long short-term
memory cells and the bidirectional RNN. BLSTM is found
to be able to take into account both forward and backward
sequential information, hence it is adopted in this paper to
accurately depict acoustic features.

A LSTM cell is defined by the following terms, [14]–[16]:

it = σi(Wxixt +Whiht−1 +Wcict−1 + bi), (1)

ft = σf (Wxf xt +Whf ht−1 +Wcf ct−1 + bf ), (2)

ct = ftct−1 + it tanh(Wxcxt +Whcht−1 + bc), (3)

ot = σo(Wxoxt +Whoht−1 +Wcoct + bo), (4)

ht = ot tanh(ct ), (5)

where σ is sigmoid function, bi, bf , bc, and bo are bias vectors
and i, f , o, c are the input gate, forget gate, output gate and
cell vectors, respectively. All gates share the same size as the
hidden vector h. The term xt is the input to the memory cell
at time step t . Wmn (e.g. Whi, Wci, etc.) are weight matrices.
Please refer to [17] for details of BLSTM.

BLSTM has been used for voice conversion in [8]. The
conversion process is shown in Fig.2. Fundamental frequency
(F0), spectrum envelope and aperiodic frequency (AP) are
extracted. These parameters are used for modeling voice
conversion given the fact that high quality speech can be
synthesized from these parameters. However, as mentioned
earlier, there are still some problems to be solved, and the
quality of converted voice can further be improved.

FIGURE 2. Voice conversion framework based on BLSTM, where AP, SP,
F0, and DTW represent aperiodic frequency, spectrum envelope, pitch
period, and dynamic time warping, respectively.

WaveNet is a deep auto-regressive and generative model
for producing waveforms. WaveNet can model the condi-
tional probability P (X |θ) given conditional inputs θ ;

P (X |θ) =
T∏
t=1

P (xt |x1, · · · , xt−r , θ), (6)

where t and r are the sample index and the size of the
receptive field respectively. xt is the current audio sample
and T is the total number of audio sampling. θ represents the
conditional feature vector.
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FIGURE 3. The generation framework of voice conversion based on BLSTM and WaveNet.

The formulation of the gated activation units of WaveNet
is defined as follows [18]:

z = tanh
(
Wf ∗ x+Vf ∗ y (θ)

)
� σ

(
Wg ∗ x+Vg ∗ y (θ)

)
,

(7)

where ∗ denotes a convolution operator and � denotes an
element-wise multiplication operator. σ is the sigmoid func-
tion. Vf is the convolution weight for the condition features.
It is worth mentioning that Vf ∗ y (θ) and Vg ∗ y (θ) represent
the convolutions of each layer. y(θ ) is a modified version of
the original condition features θ by adjusting its length to be
consistent with that of x.

III. PROPOSED METHOD
A. OVERALL ARCHITECTURE
Fig.3 shows the diagram of our proposedmethod. The conver-
sion process can be divided into three main stages: WaveNet
for waveform generation, BLSTM1 for acoustic feature con-
version, and BLSTM2 for post-processing. Firstly, we use
STRAIGHT to extract three types of features of speech [19]:
AP, F0 and mel frequency cepstral coefficients (MFCC).
Then each type of features is processed and converted
respectively. F0 is converted by log-linear transform. AP is
processed by copying. MFCC is converted by BLSTM1.
Then the converted parameters are used as WaveNet con-
ditions to generate pre-converted voice. Then the MFCCs
of pre-converted voices are extracted and processed by
BLSTM2. Finally, the parameters after post-processing are
used as the conditions of WaveNet to generate the final
converted voice.

The number of waveform samples in time domain is nor-
mally larger than the number of frames. In order to align
the frame-level conditional variables (i.e. MFCC, F0, AP)
with the sample-points of time-domain, linear interpolation

FIGURE 4. The framework of MFCC conversion based on BLSTM.

is utilized here. At the same time, minimum mean squared
error (MSE) criterion is used as the loss function in BLSTMs
and cross-entropy is used as the loss function in WaveNet
training. Considering the influence of acoustic feature con-
version and the waveform-collapsed speech caused by occa-
sional error in the process of waveform generation, the
post-processing training and a two-stage voice generation
process are used in the whole process of network conversion.
In this way, the quality of converted voice is expected to be
further improved.

B. FEATURE CONVERSION
Feature conversion includes spectrum envelope conversion
and F0 conversion. MFCC is used as the feature to be con-
verted by BLSTM [20]. Fig.4 shows the framework for real-
izing the conversion of MFCC based on BLSTM.

For simplicity and effectiveness, log linear transform is
applied to F0 conversion as follows,

pt (Y ) =
pt (X) − u(X)

σ (X)
× σ (Y ) + u(Y ), (8)

where pt (X) and pt (Y ) are the original logF0 and the converted
logF0, respectively. u(X) and u(Y ) are the means, σ (X) and
σ (Y ) are the standard deviations of the training data for the
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FIGURE 5. The structure of conditional waveNet vocoder. The vocoder consists of casual convolution, residual blocks, and
skip connections. The residual blocks are denoted by dark grey boxes, whose conditional features are shown in dotted
red boxes. The dark grey box in the bottom right corner shows the zoomed-in internal structure of a residual block, where
σ and tanh represent sigmoid and tanh activation functions, respectively. Causal represents causal convolution and Relu
represents rectified linear unit. Skip connection is to prevent the gradient dispersion and degradation caused by the
increase of network layers. #dim and #ch represent dimensions and number of channels, respectively.

source and the target speakers, respectively [2]. These means
and standard deviations are extracted from training data.

C. CONDITIONAL WAVENET VOCODER
As shown in Fig.5, a conditional WaveNet vocoder is used
to generate speech samples. In our WaveNet model, MFCC,
F0 and AP are used as condition variables. The WaveNet
consists of 50 connected residual blocks. Each of the residual
blocks includes a dilated causal convolution and a gate acti-
vated function. The input waveforms are quantified to 8 bits
based on µ-law encoding and the generated waveforms are
restored by the µ-law decoding [21].

In order to ensure the original condition features θ to be
aligned to x, the method of linear interpolation is used to
replace the copying method, which is to make each sample
point of x correspond to correct and accurate conditional y(θ )
as much as possible. Moreover, the linear interpolation also
maintains the continuity between adjacent frames and the
correlations between sample points. In practical operation,
we only perform linear interpolation expansion on MFCC,
but make copying on both F0 and AP to avoid using too many
parameters. The method of linear interpolation upsampling
can be seen in Fig.6, where n represents the number of sample
points per frame and 1y represents incremental difference
between adjacent sample points after interpolation.

D. POST-PROCESSING
WaveNet is based on causal convolution to predict the
next voice sample. However, it sometimes generates very
noisy speech called waveform collapse when only a limited
amount of training data is available or significant acous-
tic mismatches exist between the training and testing data.

FIGURE 6. The computing of incremental difference between adjacent
sample points [2].

Such limitations on the corpus and limited ability of the
model are frequently observed in real-word scenarios, such
as voice conversion and speech enhancement [12]. The term
waveform-collapsed speech refers to the phenomenon that
affected by the bad synthesizing effect of a previous less
accurately predicted point, the subsequent synthesized speech
is thus seriously distorted. In order to overcome the prob-
lem of speech collapse, a post-processing network is added
after generating the pre-converted voice. Its motivation is
to make the converted feature as close as possible to the
target feature through the post-processing network, and to
reduce the reconstruction error of features caused by a single
sample-generation process.

IV. TRAINING ALGORITHM AND PROCESS
Fig.7 represents the training framework of the BLSTM voice
conversion with conditional WaveNet. The details are given
in Algorithm 1. Firstly, WaveNet vocoder is trained. The
upsampled target features (MFCC, F0 and AP) and voices
are fed into WaveNet. The WaveNet is subsequently trained
to restore the target voices effectively given the conditional
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FIGURE 7. The training framework of the BLSTM voice conversion with
conditional waveNet, where STRAIGHT represents the step of the analysis
and extraction of features, waveNet represents a pre-trained waveNet,
and the dotted boxes contain two isolated operations, i.e.
logF0 transform and spectrum conversion by using BLSTM.

information. Subsequently, BLSTM1 is trained to perform
feature conversion. When the input is the original source
voice, the MFCCs of target voice and source voice aligned
after pre-processing are fed into BLSTM1. BLSTM2 is
then trained to perform post-processing. Pre-converted voice
is generated by BLSTM1 and WaveNet. The MFCCs of
pre-converted voice and target voice are sent to BLSTM2,
and MSE is used again as loss function in BLSTM2. Finally,
with the parameters (MFCC, F0 and AP) obtained from post-
processing, converted speech waveform is synthesized by the
trained WaveNet.

V. EXPERIMENTS AND RESULT ANALYSIS
A. EXPERIMENTAL SETUP
VCC2018 is the 2nd Voice Conversion Challenge to evaluate
different voice conversion systems and approaches using the
same voice data. The corpus includes two subsets, a parallel
one (HUB) and a non-parallel one (SPOKE). We choose
VCC2SF1, VCC2SF2, VCC2SM1 and VCC2SM2 as the
source voice data. The source database contains these sen-
tences uttered by two male and two female speakers. Each
speaker has 81 sentences. The target database consists of two
male and two female speakers. For each speaker, 66 sentences
are used for training data, with the remaining 15 sentences
are used for testing. The waveforms in the directory are in
RIFF/WAVE format. The sampling rate is 22.05 kHz and is
stored in 16-bit format.

To make comprehensive evaluation on datasets of different
language, experiments on amandarin dataset ofCASIA is also
conducted [22]. The folder of same-text-300 consists of two
males and two females speakers. The female speaker liuchang
and the male speaker wangzhe are used as source speakers,
while the female speaker zhaoquanyin and the male speaker

Algorithm 1 The Whole Training Framework for Parallel
Voice Conversion
Require:
1: x: source voice; y: target voice;
2: Initial WaveNet parameter θW , BLSTM1 parameter θB1 and

BLSTM2 parameter θB2;
3: Extract the acoustic characteristics of x:mx = MFCCx , fx =
F0x and Ax = APx ;

4: Extract the acoustic characteristics of y: my = MFCCy, fy =
F0y and Ay = APy;

5: DTW(mx , my): m′x = mxDTW , m′y = myDTW ;
6: Learning rate η, the number of WaveNet training iterations
n1, the total number of training iterations in the two previous
steps n2, the number of BLSTM1 training iterations (n2 −
n1), the number of total iterations n3.

Begin step 1: Train the WaveNet as vocoder for waveform
generation.
1: for epoch = 1, · · · , n1 do
2: for training data in (m′y, fy, Ay, y) do
3: upsample (m′y, fy,Ay) and generate ŷ from theWaveNet:

ŷ = W ( m′y, fy, Ay )
4: update θW with cross-entropy loss criterion:

θW ← θW − ηW∇θW Lcross−entropy
(
y, ŷ
)

5: end for
6: end for

End
Begin step 2: Train BLSTM1 as the feature conversion net-
work.
1: for epoch = n1, · · · , n2 do
2: for training data in ( m′x , m

′
y) do

3: generate m1 from the BLSTM1:
m1 = B1(m′x , m

′
y)

4: update B1 (m′x , m
′
y) with MSE criterion:

θB1 ← θB1− ηB1 ∇θB1LMSE ( m
′
y, m1 )

5: end for
6: end for

End
Begin step 3: Train BLSTM2 as the post-processing net-
work.
1: for epoch = n2, · · · , n3 do
2: for training data in (ŷ, m1, fx , Ax ) do
3: f ′x : log-linear converted fx .
4: upsample (m1, f ′x ,Ax ) and generate x̂ from the trained

WaveNet:
x̂ = W

(
m1, f ′x ,Ax

)
5: extract the acoustic characteristics:

x̂: m2 = MFCCx̂ ; ŷ: m̂y = MFCCŷ
6: generate m3 from the WaveNet:

m3 = B2
(
m2, m̂y

)
7: update θB2 with MSE criterion: θB2 ← θB2 −

ηB2∇θB2
(
LMSE

(
m̂y,m3

))
8: end for
9: end for
10: upsample (m3, f ′x ,Ax ) and then generate the final voice:

Yfinal = W
(
m3, f ′x ,Ax

)
End
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ZhaoZuoxiang are used as target speakers. The folders of
normal in each speaker are used as training and testing. For
each speaker, 66 sentences are randomly selected as training
data, and 15 sentences are selected as testing data. The results
on the mandarin dataset is shown in the section of experi-
mental results. The feature extraction framework is based on
STRAIGHT [23], which is used to extract a 39-dimensional
MFCC, 129-dimensional AP, and 1-dimensional F0 for each
frame with 25ms length and 5ms shift.

The learning rate of WaveNet was set as 0.0001. The
optimization method was chosen as Adam. At the same time,
conditional information and conditional filter also performed
causal convolution with different layers. The total number of
dilated causal convolution channels was 32, and the dilations
of 50 layers were set to 5 sets of [20, 21, 22, 23, . . . , 29].
The 1 × 1 convolutions in the residual block were set to
32 channels, and the number of 1 × 1 convolution channels
between the skip-connection and the softmax layer was 512.
The initial filter width was set to 32.

We have concluded through experiments that the WaveNet
was trained with ground truth is better than WaveNet trained
with estimated values, especially when the training data set is
limited. In the BLSTM1 network, the number of hidden units
was chosen as 50, and the initial learning rate is 0.0001. The
optimization function was Adam. The epoch size was set to
1.0 × 105. And if the loss was less than 0.003, the training
would be terminated. In the BLSTM2 post-processing net-
work, the number of hidden units was chosen as 50, and the
initial learning rate was 0.0002. The epoch size was set to
2.0× 103. In addition, we had tried to replace the traditional
linear conversion method of F0 by using the BLSTM neural
network. However, it was found that the conversion effect was
unsatisfactory, so linear transformation was still utilized to
reduce the volume of the training model.

In order to prove the effectiveness of the proposed
method, the following three methods were selected for com-
parison: GMM-VC, WaveNet-VC, BLSTM+WaveNet-VC,
N12-VC.

Alternative BLSTM and Wavenet-VC(ABW-VC): It
refers to the voice conversion method proposed in this paper.

GMM-VC(G-VC): A conventional GMM-based voice
conversion system. We selected the GMM voice conversion
method in VCC-2018 as the baseline of voice conversion.

WaveNet-VC(W-VC): Niwa et al. introduced the
WaveNet-VC method, which directly models the target
voice and source features [2]. A WaveNet-based model with
5 blocks (50 layers in total) was used. Specifically, dilations
in the 10 layers were set to [20, 21, 22, 23,. . . , 29], and this
was repeated five times to form a total of 50 dilated causal
convolution layers. The number of channels for dilated causal
convolutions and residual connections was 32.

BLSTM and WaveNet-VC(BW1-VC): A method used
BLSTM network to transform the feature of MFCC, and
then utilized the converted MFCC for WaveNet to synthesize
the converted voice without post-processing. The BLSTM
network had 50 hidden units, and the initial learning rate was

0.0001. The optimization method was Adam. The number of
training epochs was set to 1.0× 105.
N12-VC: This method used waveform filtering to generate

waveforms. And it was submitted to VCC2018 [24]. The con-
version results of this method were published and compared
with the proposed method. This method demonstrated good
performance in VCC2018 and was superior to most of the
participating algorithms.

B. EXPERIMENTAL RESULTS
Objective and subjective tests were conducted on the HUB
task corpus of Voice Conversion Challenge 2018 and a man-
darin data set of CASIA, both of which have data from
parallel speakers.

The objective measurement is the mel cepstral distortion
(MCD), which is defined as:

MCD(con,tar)[dB] =
10
ln 10

√√√√2
I∑
i=1

(micon − mitar )2, (9)

where micon and mitar are the mel cepstral coefficients of
converted features and target features, respectively [21]. I
refers to the total number of frames in a sentence.

The smaller the MCD value, the closer the converted voice
is to the target voice. Fig.8 and Fig.9 show the MCD scores
of different methods on two different databases (i.e. mandarin
and English voice datasets), respectively. It should be noted
that the Source in the figures represents the MCD values
between the source voice and the target voice.

MCD is the objective evaluation metric of voice conver-
sion. As is shown in the average bars of Fig.8 and Fig.9, it can
be seen that the proposed algorithm (ABW-VC) performed
better than two other algorithms based onWavenet, i.e.W-VC
and BW1-VC. However, it failed to reach a lower MCD value
than G-VC with direct mel-cepstrum conversion by using
Gaussian mixture models (GMM) which was demonstrated
as a strong baseline in VCC2018. One possible reason would
be that two different objective functions were utilized in their
training, i.e. mel-cepstrum distortion for GMM and wave-
form reconstruction error for WaveNet. G-VC took directly
minimizing MCD as its goal while WaveNet prefered to
produce waveform sounds similar to the target voices. It is
worth noting that all the values in Fig.8 and Fig.9 are the
average values of all the test data.

To prove the excellent effect of WaveNet, Chen et al.
focused on the high quality of WaveNet synthesized voice
compared to speech synthesis straightly [20]. WaveNet was
reported to be superior to traditional speech synthesizer in
terms of naturalness or similarity. Fig.10 and Fig.12 show
the mean opinion scores (MOS) of the conversion methods
mentioned above for similarity. Fig.11 and Fig.13 show the
mean opinion scores (MOS) for naturalness.

As shown in Fig.10, Fig.11, Fig.12 and Fig.13, the pro-
posed algorithm reached the highest average scores of MOS
for naturalness and similarity among different databases,
which demonstrated the effectiveness of the method for
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FIGURE 8. MCD scores of conversion on the HUB dataset, (F: Female,
M: Male, F-M: Female to male conversion).

FIGURE 9. MCD scores of conversion on the CASIA dataset, (F: Female,
M: Male, F-M: Female to male conversion).

FIGURE 10. MOS of the converted voice from HUB dataset with the 95%
confidence intervals for similarity (F: Female, M: Male).

both English and Mandarin. Although the conversion of F-F
(female to female) was slightly poor, other metrics of the
proposed VC system were obviously better than those from
the baselines. Especially for the case of F-M (female to male),
the performance was greatly improved. It can be seen that our
method achieved an above-average accuracy for similarity
in cross-gender and M-M (male to male). The improvement
of F-F conversion is trivial, which may bring difficulties to
distinguish the similarity of the converted voice and the target

FIGURE 11. MOS of the converted voice from HUB dataset with the 95%
confidence intervals for naturalness (F: Female, M: Male).

FIGURE 12. MOS of the converted voice from CASIA dataset with the 95%
confidence intervals for similarity (F: Female, M: Male).

FIGURE 13. MOS of the converted voice from CASIA dataset with the 95%
confidence intervals for naturalness(F: Female, M: Male).

voice and the similarity of the target voice and the original
voice.

At the same time, it is worth noting that the performance
of ABW-VC was better than that of BW1-VC, which showed
that the additional post-processing part improved the overall
quality of the converted voice effectively.

VI. CONCLUSION
In this paper, a BLSTM and WaveNet based voice con-
version method with waveform collapse suppression by
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post-processing was presented. We studied how to train the
model of features conversion by BLSTM and how to realize
the model ofWaveNet with local conditional parameters. The
WaveNet-converted voice was optimized through subsequent
iterations to prevent waveform collapse. By comparing with
several different methods of voice conversion on the Man-
darin and English datasets, it was found that although the
improvement of the proposed method in objective measures
was trivial, it was able to improve the effect of subjective
auditory greatly. Meanwhile, it made the converted voice
sound more natural and fluent, especially in cross-gender
voice conversions. At the same time, the proposed method of
voice conversion tookWaveNet with post-processing to solve
the problem of over-smoothing caused by other speech syn-
thesizers and to reduce the occurrence of waveform-collapsed
speech effectively.

In a word, our method achieved a relatively high degree
of naturalness and similarity comparing to other baseline
methods on average. As future work, we will study the reason
why the effect of conversion between female speakers was
trivial, and keep optimizing the method of voice conversion
to improve its performance.
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