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ABSTRACT Electromagnetic radars have been shown potentially to be used for remote sensing of biosignals
in a more comfortable and easier way than wearable and contact devices. While there is an increasing interest
in using radars for health monitoring, their performance has not been tested and reported either in practical
scenarios or with acceptable low errors. Therefore, we use a frequency modulated continuous wave (FMCW)
radar operating at 77 GHz in a bedroom environment to extract the respiration and heart rates of a patient,
who is used to lying down on the bed. Indeed, the proposed signal processing contains advanced phase
unwrapping manipulation, which is unique. In addition, the results are compared with a reliable reference
sensor. Our results show that the correlations between the reference sensor and the radar estimates are in 94%
and 80% for breathing and heart rates, respectively.

INDEX TERMS Breathing rate monitoring, FMCW radar, heart rate monitoring, Hexoskin, mm-wave,
non-contact monitoring, phase analysis, remote sensing, vital signs, TI.

I. INTRODUCTION
Monitoring vital signs of a human like heart rate and breath-
ing rate is very critical for saving lives. Individuals might
suffer from a disease such as sleep apnea, or their lives have
been threatened by a natural disaster. In the former case, there
is a need for continuous surveillance of a patient in a room
while in the latter case the problem is finding the victims
through obstacles like walls. In all of them, it is not possible
to attach a device to the subject body to record and analyze
their health-related signals. One solution is using radars with
the capability of sensing any environment dynamics. The
general principle of a typical radar is sending a specific signal
then listening to its echo in order to extract environmental
features. This idea is not new as it has been used by bats for
million years ago (see [1]) in that they use acoustic waves.

The associate editor coordinating the review of this manuscript and
approving it for publication was Qingxue Zhang.

The acoustic waves could not travel a long distance and they
are easily interfered with any mechanical movements and
they need a medium for propagation. In contrast, electromag-
netic (EM) waves can propagate without any medium and can
penetrate through obstacles and do not have the limitations of
acoustic waves.

Among popular applications of EM radars, biomedical
sensing has gained increasing attention for adopting them in
remote sensing of vital signs such as heart rate (HR), breath-
ing rate (BR), blood oxygen density etc. For instance, radars
can find HR and BR by detecting the chest wall movement.
This is greatly helpful for reducing the number of contact
biomedical sensors for monitoring of a patient over a long
time. For example, to monitor sleep apnea, in [2] the authors
proposed a remote controlling system, which uses a 24 GHz
radar.

The authors in [3] also proposed a time-varying filter
to reduce noise in order to extract the heart rate with an
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impulse radar. Initially the algorithm finds the respiration
rate. Then it adopts a time-varying filter after which the
derivative of the received signal is taken to increase the signal
to noise ratio (SNR) for the estimation of the heart rate.
Although this paper considered how to increase SNR for
detecting the heart rate, there was no thorough description of
the experiment equipment and the setup. Indeed, the accuracy
of the reference sensor has not been reported.

As we are interested in using FMCW radar it is impor-
tant to notice that there is no comprehensive analysis for
the Doppler accuracy of FMCW radars. But in [4], authors
investigated the range accuracy considering non-idealities in
FMCW generation. This is the first paper using direct digital
synthesizer (DDS) for artificially adding non-linearities and
phase noise to evaluate their effects on the range detection.

In the generation of an FMCW signal a sort of phase
randomness appears, which is called phase noise. While it is
manifesting itself in the phase, it has impact on the magnitude
of the generated signal. In addition, the phase noise degrades
the quality of the parameter estimation in any radars particu-
larly FMCW radars. In general, the phase noise effect in the
range detection of any radar kind is discussed in [5]. When
the echo signal is mixed with the transmitted signal at the
receiver, the phase noise autocorrelation becomes a function
of transmitted phase noise autocorrelation. This phenomenon
is called the range correlation effect. In brief, [5] clarifies
that the phase noise effect in the range detection of any
radar system increases as the range of the subject increases.
Fortunately, the phase noise due to the range correlation effect
is very low for our case because the subject is very close to
the radar located at a few meters distance.

In [6], the authors investigated the main reason for reflect-
ing an EM wave from a body in microwave frequencies.
In particular, there are two main reasons: 1) blood perfusion
underneath of the skin surface leading to the skin impedance
variation, 2) skin/body surfacemovement. By designing some
experiments, they found out the body displacement has a
higher influence on reflecting the signal than the impedance
change of the skin surface. Their research was conducted in
microwave frequencies at which a portion of the wave can
penetrate the body. While in mm-wave frequencies, as we
consider, the wave is totally reflected off the body surface.

Similarly, in [7], the authors used the FMCW radar for
the purpose of the vital sign detection. To choose the start
frequency, they tested the FMCW radar at different start
frequencies with different bandwidth and different subject
position. At the end, they came up with a great conclusion
that the radar reliably senses vital signs for many cases, but
they chose 9.6 GHz for the purpose of the demonstration and
implementation by considering the other factors such as the
low interference on the local wireless networks. They ana-
lyzed the magnitude and the phase of the received echo signal
and they showed that the vital signs detection can be carried
out on either phase or magnitude. This result is against the
discussion in [8] where the authors illustrated that the mag-
nitude analysis comes with higher order harmonics which

degrades the vital sign rate detection robustness, instead they
exploited the phase extraction as we will. Furthermore, [7]
did not discuss the linear phase trend that is apparent in the
captured phase. This behavior seems to be the impact of
the hardware non-linearities while they neglected with no
more clarification. The linear trend is like a flicker noise,
but in the phase domain, and it can affect the vital signs’
detection. Although the HR accuracy is reported in [7], BR
correct detection rate has not been reported. But in this work,
we will investigate both BR and HR and their waveforms
experimentally.

A similar phase acquisition using FMCW radar at 80 GHz
was presented in [9]. The authors assumed that the distance
of the target is known, therefore they did not concentrate
on designing an algorithm for finding the targets’ range.
In addition, the radar was tested in front, back, left, and right
sides of the subject when the target was sitting on a chair.
This experiment setup cannot be used for a practical clinical
purpose when a patient is supposed to laying down on the
bed with lots of background clutters. In addition, they did not
use phase unwrapping and we will show that is necessary in
mm-wave frequencies.

This paper tries to show the feasibility and validity of using
an FMCW radar for remote vital signmonitoring. It compares
the radar outputs with a reference sensor too. To achieve so,
we will provide a signal processing flow for the measurement
of the heart and breathing waveform as well as a processing
scheme to estimate HR and BR. The whole analysis relies
on a unique phase unwrapping process. With the help of
the system model, the algorithm is explained in section II.
In section III, we will introduce a mm-wave FMCW radar
equipment and discuss how to choose FMCW parameters
for our application. In section IV, the empirical results are
discussed and in the last section,V, wewill conclude the paper
with some remarks and future extensions.

II. SYSTEM MODEL
Among other radars, we chose FMCW for our study. They
have unique advantages, which cannot be presented in other
radars at once. Those are:
• Being a mm-wave radar: the high attenuation in
mm-wave frequencies provides a high isolation between
the co-located operating radars even if they are separated
in a few meters. Indeed, tiny displacements in mm are
comparable to the wavelength thus they can be detected.
This high sensitivity is required to detect the chest wall
movement, which is in mm order.

• Discriminating range or localizing: because the radar
can distinguish the reflections from different ranges,
potentially it can be used for multi-subject vital signs
detection. This feature is recognized as the main advan-
tage of an FMCW radar in [9]. Indeed, high propagation
attenuation reduces the possibility of having an echo
signal, which is bounced off multiple reflectors. Most
probably, the echo signal is reflected off a single object
if the environment is not rich scattering. In that area,
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the received signal at particular range experienced a
line of sight wireless channel. In contrast, CW radars
suffer from multipath fading because they collect all
reflections from all objects at all visible ranges in a one
sinusoid signal.

• Being robust against thermal noise: FM signals are more
robust against noise in comparison to AM signals. Also,
in FMCW radars the vital sign information is encoded in
the received phase similar to FM signals. Thus, FMCW
radar is less affected by the noise in comparison to
impulse radars.

Throughout the paper, lowercase letters, boldface-
lowercase letters and capital letters are used for scalars,
vectors and matrixes in time domain, respectively. Boldface-
capital symbols are used to represent the frequency domain
variables. All vectors are column vectors. (.)∗ is a complex
conjugate operator, and (.)T is the transpose operator. Also,
estimated parameters are denoted by ˆ(.) sign. The vectors are
column vectors by default otherwise it is mentioned.

FIGURE 1. Block diagram of an FMCW radar.

FIGURE 2. Transmitted and received chirp sequences.

A. FMCW RADAR PRINCIPLES
In any radar, the electromagnetic wave is sent into the envi-
ronment containing various objects. Then the echo of the
wave is captured at a receiver. A simplified block diagram
of such a system is shown in Fig. 1 in which both the trans-
mitter and the receiver are at the same location. Each chirp
at the output of the FMCW generator is a sinusoid signal
whose frequency is swept from fmin to fmax (Fig. 2). Here
the frequency is swept linearly with a positive slope of K
and a duration of Tr implying that the sweeping bandwidth is
fmax−fmin = KTr . The received signal at the output port of the
receiver antenna is amplified and correlated with the transmit
signal, which results in a signal called beat signal. The beat
signal contains information about the objects in the scene.

Particularly, the delay in the reflected signal is translated to an
instantaneous frequency difference between the transmitted
and the received chirps.

The power amplifier (PA) and the low-noise power ampli-
fier (LNA) at the transmitter and the receiver in Fig. 1 are
non-linear components. Fortunately, the FMCW signal is a
constant envelop signal with the peak-to-average-power ratio
(PAPR) of zero dB, which lets the amplifiers to work in their
linear region. But, they adds time-varying delays to the signal
even if they are in their linear operation. The time varying
delay is much greater than Tr and it manifests itself as a very
small Doppler shift in the baseband. This Doppler shift is in
the slow-time as we will see later. In practice, the PA and the
LNA delays will diminish after a while when they become
thermally stable.

Assume that the complex chirp signal is:

s(t) = At exp
(
j(2π fmint + πKt2)

)
, 0 < t < Tr , (1)

fmin is the start frequency (and λmax is the corresponding
wavelength) and At is the magnitude related to the trans-
mit power. Suppose that there is only a single small object
situated at the distance of R0 to the radar but it is mov-
ing around R0, which results in a time-varying distance
to the radar. Let us denote this time-varying distance by
R(t) = R0 + x(t) and x(t) is a function represents the distance
variations around R0. Furthermore, the reflected wave off the
object at the receiver is the delayed version of s(t) with a delay
of td = 2R(t)/c, which is the round-trip time of the wave.
c is the light speed throughout the whole paper. Consequently,
the IF signal for only a single chirp duration will be:

y(t) = s(t)Ã− s∗(t − td )

= AtAr exp (j(φ(t)− φ(t − td ))) , td < t < Tr , (2)

The thermal noise and other channel considerations are
ignored for simplifications, but Ar has a relationship to At by
the radar equation [10]. The beat signal, y(t), can be expressed
as follows:

y(t) = AtAr exp
(
j(2π fmintd + 2πKtd t − πKt2d )

)
≈ AtAr exp (j(2π fmintd + 2πKtd t)

= AtAr exp (j(ψ(t)+ ωbt)) , td < t < Tr (3)

y(t) ≈ AtAr exp (j(ψ(t)+ ωbt)) , td < t < Tr

ψ(t) = 4π
R0 + x(t)
λmax

, ωb = 4π
KR0
c
, (4)

the second approximate equality in (3) is obtained by ignoring
the third term in the phase, which is very small. The third
term is negligible because K is in 1012Hz/s order while td
is in 1ns thus the term is in the order of 10−6. Equation (4)
obtained after replacing td to (3) and ignoring the x(t)t term
because t is in 1µs and x(t) is almost constant for one chirp as
we will see later. Furthermore, ψ(t) varies with x(t) relative
to λmax . So, the phase variations in the scale of the maximum
wavelength can greatly change the beat signal phase. For
example, a radar operating at 6 GHz is 10 times less sensitive
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in comparison to a 60 GHz radar. Thus, as a rule of thumb,
the phase power for the same amount of physical displace-
ment is 20 dB more in mm-waves. In addition, x(t) is almost
constant within one chirp because subjects are not moving
more than 1mm per chirp equivalent to 1mm/1µs = 103 m/s.
Therefore, ψ(t) can be approximated by sampling x(t):

ψ(t) = 4π
R0 + x(t0)
λmax

, ωb = 4π
KR0
c
, (5)

where t0 is any time in [td ,Tr ]. This equation is used to detect
the range of a subject, R0. To this end, an FFT is applied over
samples of a chirp to obtain the spectrum of the beat signal,
which has peaks corresponding to the subjects at different
ranges. This FFT reveals range information so it is called
range FFT. Each range FFT bin represents a particular dis-
tance with an associated phase similar to ψ(t). Furthermore,
as we mentioned before, there can be a very small shift in
ωb due to residual delays incurred by the PA and the LNA.
Although the little frequency shift exists, it diminishes after
the radar warms up.

As mentioned before, (5) does not have any information
about variations of x(t). To observe its variation, multiple
chirps must be sent in a sequence, which is similar to the
sampling of x(t). Let’s say that x(t) is sampled each Tc, called
a frame period. Therefore, Tc ≥ Tr and x(t) appears within
the phase of the range bin corresponding to the target distance
(see (5)). Hence, it is possible to take a second FFT over the
phase samples of that range to obtain spectral information
of x(t). Because it is giving vibration frequencies, thus it is
a vibration FFT. In fact, x(t) is a function models the chest
wall displacement. As it is vibrating due to the heartbeat
and exhalation or inhalation, it is a periodic function [11].
So, the spectrum of x(t) contains peaks spaced equally with
the fundamental frequency of the vibration, fv. The concept
behind it is that any periodic function has a Fourier series (FS)
expansion with the terms, which are the harmonics of the
fundamental frequency. Those harmonics appear as the peaks
in the frequency spectrum.

The range of the objects and their vibration frequency,
if they have a vibration, are estimated by finding ωb in (5)
and the maximum value of the range phase spectrum, 9(f ).
The formulations are summarized in Table 1 with their max-
imum and minimum values. If there is no SNR limitation,
the maximum detectable range is determined by the Nyquist
sampling rate theorem, which sets a limit on the maximum
allowable baseband frequency of fb. The minimum range
detection can be expressed as c/2B where B is the sweep-
ing bandwidth [12]. But a more practical range resolution
relationship is provided in Table 1, which also considers the
range FFT resolution with the size of N meaning that there
are N samples in a chirp. On the other hand, the maximum
frequency of vibration is related to the frame rate of 1/Tc
at which the phase ψ(t) is sampled. Similarly, the Nyquist
sampling principle limits the maximum visible fv as it is
equated in the table. The minimum value of fv is determined

TABLE 1. FCMW radar range and velocity estimations and their min/max
detectable bounds.

FIGURE 3. Proposed signal processing chain of the vital signs detection.

by the number of vibration FFT points, M, since the whole
vibration spectrum is equally divided to M bins.

B. PROPOSED ALGORITHM
Fig. 3 shows the chronological order of the signal processing
chain used for cardio-respiratory rate detection. After sam-
pling the beat signal with fb,max , the range FFT is applied over
the samples of each chirp and the result is a vector, which
is called complex range profile. By collecting consecutive
complex range profiles frommultiple chirps and putting them
into a matrix in a row-wise manner, the range-slow time
matrix is constructed with M rows (i.e. M chirps).
Prior to taking the angle of the received complex signal,

one must be sure that any non-linearities, distortions, and
artifacts have been removed because the phase computa-
tion is highly non-linear and it increases the complexity of
removing those imperfections. For instance, the DC value
of both in-phase and quadrature components of the complex
signal must be removed unless otherwise, it will affect the
phase quality. Suppose that the imaginary and real parts of
a complex range bin are I (t)+ dci, R(t)+ dcr , respectively.
Then,

φ(t) = arctan
(
I (t)+ dci
R(t)+ dcr

)
6= ψ(t) (6)

where dci, dcr are DC values of the imaginary and real parts,
respectively. In [13], they showed that the phase modulation
due to the chest vibration generates so many harmonics as
well as DC terms. The DC terms do not degrade the phase
quality because they have inforamtion about the target dis-
placement. In addition, [14] also discussed that the leakage
between Tx and Rx can generate the DC terms. If there are
DC terms due to a reason rather than the target motion, then
φ(t) is not equal toψ(t) in (5). In other words, in the complex
plane, the received signal constellation is shifted from the
origin to [dcr dci]T . In Fig. 4, a constellation shift is apparent
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FIGURE 4. Constellation correction of the received complex signal.

in the point cloud before DC compensation. The center and
the radius of the cloud can be estimated based on a non-
linear least square estimation (NLLS), which is optimum
in maximum liklehood (ML) sense when the noise is white
Gaussian. After doing algebraic simplifications, the problem
will be converted to a linear least square estimator (LLSE) as
follow:

y∗ = argmin
y
‖ Ay− b ‖2 (7)

where A, b are defined in the Appendix A. y = [R cr ci]T is
a vector of unknowns in which R is a function of the center
point and the radius, and cr , ci are real and imaginary parts of
the center point, x. Fig. 4 is obtained for the actual vital signs’
waveforms. Thanks to the mm sensitivity, the complex signal
trajectory in Fig. 4 is a complete circle. This is the result
of the phase dependency on the relative chest movement
to the wavelength causing a great phase change only for
displacements in the range of mm.
After DC compensation, the phase of each column in the

range-slow time matrix is calculated by using tan−1(.) so
that the output phases are wrapped in [−π, π]. In contrast,
the phase can change beyond of±π because x(t), the physical
displacement, can be greater than λmax/4 (see (5)). Therefore,
there should be a mechanism to unwrap the phase beyond
of ±π . If ψ(t) in (5) is sampled with an appropriate sam-
pling time of Tc then it is possible to maintain the phase
difference between two consecutive samples less than π .
Equivalently, x(t) must not change more than λmax/4 within
Tc period. If this assumption is satisfied, any phase change
greater than π indicates that the phase should be corrected
by adding or subtracting 2π . This process is called phase
unwrapping, which is performed on the columns of the range-
slow time matrix separately (Fig. 3). For a detailed analysis
on the phase unwrapping process see Appendix B.

The DC value of each column is removed after phase
unwrapping to eliminate the static clutters. Then, to find
vibration frequencies, the second FFT is applied to each col-
umn resulting in a matrix contains vibrations over each range
bin. This matrix is called range-vibration map. This map is

used to search for the best range bin, which minimizes the
cardio-respiratory rate estimations errors. In fact, the best
range bin, or the column, is selected so that the rate estimation
is the closest one to a reference sensor. We shall talk about
this step of the algorithm and the reference sensor in the
experiment section.

After selecting the best range, the index of the vibration
frequency that has the largest magnitude and the two neigh-
bour indexes are taken to interpolate and find a fine vibration
frequency of the target. This is done by adopting Gaussian
interpolation with an assumption that the spectrum over the
three vibration indexes behaves analogous to a Gaussian
function.

III. OUR EQUIPMENT
For our experiments, we chose a Texas Instrument (TI)
mm-wave radar (AWR1443 [15]) operating from 76-81 GHz.
It is a general-purpose sensor with very wide applications
and it has a built-in DSP and an ARM processor for post-
processing. Although the radar can run small applications
stand-alone, we are not used to running our processing on the
chip. In fact, after configuring the radar, the chirp samples
are transferred over the UART interface to a PC to do signal
analysis in Matlab. To work with the radar, an evaluation
board of AWR1443 is used [16].

Usingmm-wave radar is best suited formm range displace-
ment detection since it is desirable for the vital signs sensing.
λmax is 3.9 mm at 77 GHz, thus little changes of x(t) in (5)
can be detected. For a typical adult, the chest moves about
1-12 mm and 0.01-0.5 mm due to breathing and heartbeat
respectively [17].

FIGURE 5. Chirp configuration (5a), and the bedroom for the tests (5b).

AWR1443 has 3 transmitters and 4 receivers, but we use
a single Tx/Rx pair. The duration of each chirp is 64µs
with an idle time of 7µs at the beginning of it. The idle
time is required for settling the FMCW generator down
when it jumps from the end frequency to the start frequency.
This means that Tr = 57µs. The slope of each chirp is
70 MHz/µs i.e. the sweeping bandwidth is 3.99 GHz. Each
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FIGURE 6. Range-slow time map (left), range-unwrapped phase map (middle), range-vibration map (right).

TABLE 2. Radar configuration parameters.

chirp is repeated every Tc = 50 ms. Fig. 5 illustrates the
chirp configuration used for the entire experiments. The chirp
configuration along with other variables are listed in Table 2.
Also withM = 256, the observation window for both BR and
HR becomes 12.8s. In order to increase the time resolution,
half of the samples for Doppler FFT comes from the previous
observation interval meaning that the observation windows
are overlapped with M/2 samples. Thus, equivalently the
observation duration is 6.4s.

TABLE 3. Range and vibration frequency bounds.

Table 3 also shows min and max allowable values of range
and vibration frequency in order to detect themwithout ambi-
guity. The vibration frequency of the chest for respiration
would be 0.1-0.6 Hz (or 6-36 times per minute) and that of
heart rate is 0.8-2Hz (or 48-120 beat perminute). These range
of frequencies are within the acceptable vibration frequency
range mentioned in Table 3.

IV. EXPERIMENTS
Fig. 5b illustrates a bedroomwith a radar attached to a ceiling
on the bed. A patient was lying on the bed facing up to the
radar during the entire study. Indeed, a wearable device is
used as a reference. This wearable sensor is a commercial
product of Hexoskin, [18]. The accuracy of the sensor is
examined in [19] in which the authors claimed that the device
measures BR and HR for different body postures with 98%
accuracy in comparison to the standard laboratory measure-
ment tools.

A. PRIMARY RESULTS
The study was performed on a patient in a 40-minute
attempt. The raw data is captured via UART port from
AWR1443Boost (see [16]) to analyze offline in Matlab.
At each stage of the signal processing chain, different maps
are extracted. Each map conveys different information about
the bedroom and vital signs and will be discussed. Finally,
to complete our analysis, we will define the system perfor-
mance metrics and the breathing and the heart rates’ accura-
cies are presented.

1) THREE DIFFERENT MAPS
The raw data does not reveal any information about the envi-
ronment until they are arranged and manipulated in specific
forms. For instance, Fig. 6 represents three different maps
obtained at different stages in Fig. 3. In all the maps, there
are three different range regions:

1) Region above the bed: spanned from 1.5-1.67 m
2) Region on the body surface: spanned from 1.68-1.84 m
3) Region on the bed: spanned from 1.88-2 m
In the first region, there is no object to reflect the signal,

though this is a silent region as it is observed in the three maps
of Fig. 6.

The second region is the body region, which contains the
reflection from different points of the body. From the radar
point of view, the target is very large such that it is not a
single point on the range profile. In fact, the two points in the
space are distinctive where their distances have a difference
greater than the range resolution. The range resolution, here,
is 3.35 cm (see Table 3), which is enough for distinguishing
the reflection from abdomen and thorax. In our study, the par-
ticipant was aware of being still during the entire examination
meaning that his body was moving up and down only due to
cardio-respiratory activities. It is also important to notice that
when we are breathing, the chest moves together with belly
and even shoulders. Therefore, a large area of the body con-
tributes to the phase modulation, thus the unwrapped phase
map indicates a phase variation over multiple ranges. Among
all range bins in the acceptable field of view, the best range
is selected with the maximum average power. The power
variation is required to distinguish the stationary clutters and
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the chest modulation (Fig. 6 (left)). This is performed in the
‘‘range bin selection’’ block of Fig. 3.

In addition, it is interesting to highlight that there is some-
how a constant reflection in the third region, bed region,
which is seen as a perfect stationary clutter. The station-
ary clutters are eliminated after removing DC from the
unwrapped phases. Therefore, the region will not have any
vibration in the range-vibration map.
From Fig. 6 one can conclude that taking the unwrapped

phase map as a base signature for vital signs monitoring has
an advantage of ignoring other parts of the visible ranges by
only reasoning on that whether the phase variation resembles
a vital signs or it does not. However, in the maps, the only
nonstationary feature is a biological activity ensuring that the
range-vibration map has only frequencies of the respiration
and heartbeat.1 This assumption providing a way to achieve
the main purpose of the study that is showing the validation
and feasibility of using a mm-wave radar for remote vital sign
sensing.

FIGURE 7. A sample of heart (bottom) and breathing (top) waveforms vs
time.

2) HEART AND BREATHING WAVEFORMS
As depicted in Fig. 3, after finding the best rang bin, one
can use to filter out the breathing or heartbeat frequencies
of ψ(t) to obtain corresponding waveforms. Each waveform
in Fig. 7 is a time-variation of the chest displacement due
to heartbeat or respiration. The magnitude of the breathing
waveform is about 10 times of the heartbeat waveform and the
later has a higher number of peaks than the former. Besides,
it is possible to count the number of peaks in each waveform

1For example, in the range-vibration map, there is a high peak at
18.75 bpm, which is corresponding to the BR in that moment.

to obtain an estimate of the vital sign rate but that gives a
poor estimation in comparison to the spectral estimation used
in our proposed algorithm. Spectral estimation is optimum
in maximum likelihood (ML) sense when the phase noise is
Gaussian. The optimality is shown in the appendix C.

B. SYSTEM PERFORMANCE
In our 40-minute trial the BR and HR are estimated based
on finding the max value in their frequency range as for-
mulated in Table 1. After removing some outliers from the
estimates, which can be due to spark noises and any other
external causes, the time trace along with the statistics of BR
and HR are shown in Fig. 8a and Fig. 8b. In these figures,
the instantaneous values of the radar and Hexoskin estimates
are compared.

To have intuitions, some statistical parameters are defined
to evaluate the similarity, robustness and confidentiality of
the radar estimations with respect to Hexoskin estimates. If e
is an error vector with the elements of ei, then the standard
deviation of the error can be stated as:

σe =

√√√√ 1
P

P∑
i=1

(ei − ē)2 =‖ e ‖, (8)

which is the standard deviation where ¯(.) and ‖ . ‖ are the
notations for statistical mean and second norm of a vector
respectively and P is the number of data points. The correla-
tion of variation (CV) is another factor represents the ratio
between the standard deviation and the mean value of the
data, d:

CV =
σe

d̄
× 100 (9)

One useful parameter is Pearson correlation coefficient
denoted as Ricc:

Ricc =

∑P
i=1

(
dri − d̄ri

) (
dhi − d̄hi

)√∑P
i=1

(
dri − d̄2ri

)∑P
i=1

(
dhi − d̄

2
hi

) , (10)

in which dri and dhi are the i’th radar and Hexoskin esti-
mations respectively. The value of Ricc is in the interval of
[−1, 1]. The value of 1 means the two data sets are fully cor-
related and 0, in contrast, means they are uncorrelated. In fact,
this correlation describes how two data sets are similar. All
the metrics are annotated in the time trace figures of Fig. 8a
and Fig. 8b.

The sample points cloud in radar-Hexoskin planes is plot-
ted in Fig. 8a (right) and Fig. 8b (right) in which r is Ricc.
The ideal case is when all the samples are sitting on y = x
line indicating that the radar data are the same as Hexoskin.
In practice, the BR data follows a similar linear behavior
around y = x line with a slop of 1 and a 0 bias. Similarly,
for HR, the linear fitted curve has a slop of 0.98 and a bias
of 0. In the acceptable ranges of HR values, the linear fitted
curve is very close to y = x line while they can diverge for
very lower or very higher invalid values. It is also good to
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FIGURE 8. Radar BR comparison with Hexoskin (a), and radar HR comparison with Hexoskin (b). (a) BR time trace (left), radar BR vs Hexoskin
BR (right). (b) HR time trace(left), radar HR vs Hexoskin HR (right).

TABLE 4. Estimation accuracy comparison to other works.

mention that the BR and HR values are well distributed in the
whole range of vital signs to show the agreement between the
radar observation and the reference sensor.

The performance of our system is compared to the other
works in Table 4. The values for the front side tests in [9] are
in the table to make a fair comparison to our experiments.
The performance reported in [9] has a high variance for a
particular radar-target orientation. However, we consider the
average performance while there might be a case the values
are less than 4%. The system performance in [7] is not better
than [9] and the best correct estimation rate they obtained is
considered here. BR accuracy for [7] was not reported but our
system shows an improvement in comparison to [9]. Our HR
estimation is much more accurate than [7] and it is so close
to [9]. Besides, the output power of our radar is higher than
the others (last column of Table 4) but the target is somehow
in a close range. Although we could not change the distance
due to the space limitation in the bedroom, it is possible to
use the radar for farther distances.

V. CONCLUSION
In this paper, we discussed a base theory of an FMCW radar
with the phase analysis perspective. This paved the way to
develop an algorithm for detecting vital signs in a realistic

setting i.e. in a bedroom. In addition, operating in mm-wave
has an advantage of being sensitive to a micron displacement.
This feature together with FMCW radar properties motivated
us to choose an mm-wave FMCW radar for our experiments.
The radar tested for vital signs monitoring in a bedroom with
a high agreement between the radar estimates and a reference
sensor. The accuracy of the radar was compared with the
other works with an improvement in the BR estimation and
a close quality in HR detection. Besides, a primary applica-
tion of our contribution can be a long-term monitoring of a
patient who is suffering from a chronic disease such as sleep
apnea. During our study, where the heartbeat waveform was
shown, we realized that the radar might be used to record
the ECG pattern, but it requires to increase the SNR level of
the heartbeat detection in the presence of breathing. Indeed,
the algorithm simply can be extended to track vital signs of
multiple targets by employing the FMCW radar localization.

APPENDIX A
ESTIMATION OF THE CENTER AND THE
RADIUS OF A CLOUD POINT
We want to minimize the squared error between the radius
and the distance of sample points to the hypothetical center
point of the cloud. Assume that we represent the complex
samples as a 2D real column vectors with the first and second
elements of real and imaginary parts of the complex sample,
respectively. If ai is the i’th sample point and x is the circle
origin and r is the radius, then

ai = x+ r
[
cos(θ )
sin(θ )

]
+ ni (A.1)

in that θ is the angle of ai and ni is an additive noise. If the
noise is i.i.d., zero-mean and Gaussian with the power of
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σ 2
n , then the optimum Maximum Liklehood (ML) estimator

of x, r is:

P = max
x,r

pr (ai|x, r)

= max
x,r

1
2σ 2

n
e
−
‖ai−x‖

2
−r2

2σ2n

= min
x,r
‖ ai − x ‖2 −r2 (A.2)

Consider all ai’s to minimize the squared error:

P = min
x,r

N∑
i=1

(
‖ x− ai ‖2 −r2

)2
= min

x,r

N∑
i=1

(
‖ x ‖2 −2aTi x+ ‖ ai ‖

2
−r2

)2
(A.3)

N is the number of samples. The last summation resembles of
the second norm of a vector. By rearranging the inner bracket
terms and putting unknowns in a vector, y, and knowns in a
vector b the following equation can be obtained:

P = min
y

‖ Ay− b ‖2 (A.4)

y = [R xT ]T , R =‖ x ‖2 −r2, and A, b are:

A =


1 −2aT1
1 −2aT2
...

...

1 −2aTN

 , b =


− ‖ a1 ‖2

− ‖ a2 ‖2
...

− ‖ aN ‖2

 (A.5)

A is a full column rank matrix for N > 3, thus has a left
inverse of A† and the optimum solution is:

y∗ = A†b = (ATA)−1AT b (A.6)

The optimum solution of P in (A.3) is equal to the optimum
solution in (A.4) when r =‖ x ‖2 −R > 0. By contradiction,
if r < 0 and y∗ = [R xT ]T is optimum the following shows
y∗ is not optimum:

0 ≤ ‖ x− ai ‖2=‖ x ‖2 −2aTi x+ ‖ ai ‖
2

< R− 2aTi x+ ‖ ai ‖
2, ∀i (A.7)

therefore each term of the summation in (A.3) with y∗ is
greater than when y = [‖ x ‖2 xT ]T implying that r has
to be zero.

APPENDIX B
PHASE UNWRAPPING
In the signal processing, the phase of the elements in the
range-slow time matrix is taken. The column of the resulted
matrix is the phase evolution of the echo signal at a particular
range. We should do the phase unwrapping on the column
corresponding to our desired target range. Let’s denote the
phase sequence as φn for n = 1, · · · ,M , namelyM is the size
of the vibration FFT. For every pair of (φn,φn+1) we knew
that |φn+1 − φn| should not be greater than π . If it is then

FIGURE 9. Phase jump cases: phase difference of greater than π (left),
phase difference of less than −π (right). The red lines are the
unacceptable paths for phase change while the green lines are the
acceptable paths.

a phase correction must be applied. The phase correction is
accomplished as bellow:
• φn+1 − φn > π : means that φn+1 > 0 and φn < 0.
As illustrated in Fig. (9, left), it seems the target followed
the path shown in the red color just in Tc period. But,
with our assumption it should pass the green path, which
is shorter and it is less than π . To achieve so, 2π must
be subtracted from φn+1.

• φn+1 − φn < −π : means that φn+1 < 0 and φn > 0.
Similarly, in Fig. (9, right) it is shown that the target
is followed the long path with the red color while the
correct one is the shorter one. To correct, this time 2π
must be added to φn+1.

Thewhole processmust be done in a sequence startingwith
n=1 and ending with n=M-1. At each iteration, φn+1 is only
updated. The algorithm 1 explains the process.

Algorithm 1 Phase Unwrapping Procedure

r is the desired detected range index;
rdesired = R(:, r) (R is the range-slow time matrix and
Matlab syntax is used to select the r’th column);
φ = tan−1(rdesired );
for n=1:M-1 do

if φn+1 − φn > π then
φn+1 = φn+1 − 2π ;

else if φn+1 − φn < −π then
φn+1 = φn+1 + 2π ;

else
Do nothing;

end

APPENDIX C
OPTIMALITY OF FREQUENCY ESTIMATION
We can write ψ(t) in discrete form by considering a noise
term as follows:

ψ[n] = θ0 +
4π
λmax

x[n]+ w[n], n = 0, 1, 2, . . . ,M − 1

(C.1)

w[n] is a phase noise and x[n] can be any member of

ej
2π
M pn, p = 0, 1, · · · ,M − 1 and M is the phase FFT size

(see Table 1 ). Let xi[n] = ej
2π
M in for n = 0, 1, · · · ,M − 1,
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thus the problem of finding the desired vital sign frequency
is to find a xi[n] such that the following will be satisfied in an
interval of M samples:

max
i

pr
(
ψ[n]

∣∣∣xi[n]) (C.2)

in which pr is the conditional probability. (C.2) is maximum
likelihood (ML) criterion and it is optimum when all possible
xi[n] can happen with equal probability and equal power.
Then it can be shown that (C.2) is equivalent to the mini-
mum Euclidean distance criterion between ψ[n] and xi[n].
Furthermore, if w[n] can be an independent and identically
distributed (i.i.d.) Gaussian random process or any other i.i.d.
random process having a pdf as a function of |x − x̄| where x
is the random process and x̄ is its mean. Then (C.2) is equal
to the following:

max
i

∣∣∣∣∣
M−1∑
n=0

ψ[n]x∗i [n]

∣∣∣∣∣ = max
i

corr (ψ[n], xi[n]) (C.3)

It is enough to show that the following is true:

argmax
α<i<β

∣∣∣9T ei
∣∣∣ = argmax

α<i<β
corr

(
ψ[n], e−j

2π in
M

)
(C.4)

where9 is a vector containing positive frequency samples of
the phase discrete-time Fourier transform (DFT). ψ[n] is the
discrete-time phase corresponding to the phase in (5), ei is a
vector having only one at the i’th position, and α, β are the
frequency indexes for the desired range of frequencies. For
instance, breathing frequency is in [0.1, 0.6] Hz and α, β are
set to 0.1 and 0.6 Hz respectively. For proving (C.4), we start
to expand the inner argument of the left-hand side of the
equation:

9T ei = DFT
(
ψ[n]~ ej

2πn
M i
)

(C.5)

= DFT

(
M−1∑
l=0

ψ[l]ej
2π i
M (n−l)

)
(C.6)

=
1
M

M−1∑
n=0

[
M−1∑
l=0

ψ[l]ej
2π i
M (n−l)

]
e−j

2π
M nk (C.7)

=

M−1∑
l=0

ψ[l]e−j
2π
M il

M−1∑
n=0

1
M
e−j

2πn
M (i−k) (C.8)

~ is a circular convolution is used to convert frequency mul-
tiplication to time-domain convolution. In (C.7) k is the index
of FFT and l is the index of convolution. After interchanging
the summation orders in (C.7), (C.8) is obtained in which
the second summation is δ(i − k). By replacing it in (C.8),
(C.4) is proved.

ACKNOWLEDGMENT
This research is conducted with the approval of office of
research ethics (ORE) in the University of Waterloo. And the
ORE reference number is 22770. Also thank to Dr. Doojin
Lee for his help in collecting experimental data.

REFERENCES
[1] M. Vespe, G. Jones, and C. J. Baker, ‘‘Lessons for radar,’’ IEEE Signal

Process. Mag., vol. 26, no. 1, pp. 65–75, Jan. 2009.
[2] N. Du, K. Liu, L. Ge, and J. Zhang, ‘‘ApneaRadar: A 24 GHz radar-based

contactless sleep apnea detection system,’’ in Proc. 2nd Int. Conf. Frontiers
Sensors Technol. (ICFST), Apr. 2017, pp. 372–376.

[3] S. M. A. T. Hosseini and H. Amindavar, ‘‘UWB radar signal processing
in measurement of heartbeat features,’’ in Proc. IEEE Int. Conf. Acoust.,
Speech Signal Process. (ICASSP), Mar. 2017, pp. 1004–1007.

[4] S. Ayhan, S. Scherr, A. Bhutani, B. Fischbach, M. Pauli, and T. Zwick,
‘‘Impact of frequency ramp nonlinearity, phase noise, and SNR on FMCW
radar accuracy,’’ IEEE Trans. Microw. Theory Techn., vol. 64, no. 10,
pp. 3290–3301, Oct. 2016.

[5] M. C. Budge andM. P. Burt, ‘‘Range correlation effects in radars,’’ in Proc.
Rec. IEEE Nat. Radar Conf., Apr. 1993, pp. 212–216.

[6] Ø. Aardal, Y. Paichard, S. Brovoll, T. Berger, T. S. Lande, and
S.-E. Hamran, ‘‘Physical working principles of medical radar,’’ IEEE
Trans. Biomed. Eng., vol. 60, no. 4, pp. 1142–1149, Apr. 2013.

[7] L. Anitori, A. de Jong, and F. Nennie, ‘‘FMCW radar for life-sign detec-
tion,’’ in Proc. IEEE Radar Conf., May 2009, pp. 1–6.

[8] C. Li, V. M. Lubecke, O. Boric-Lubecke, and J. Lin, ‘‘A review on recent
advances in Doppler radar sensors for noncontact healthcare monitor-
ing,’’ IEEE Trans. Microw. Theory Techn., vol. 61, no. 5, pp. 2046–2060,
May 2013.

[9] S. Wang et al., ‘‘A novel ultra-wideband 80 GHz FMCW radar system for
contactless monitoring of vital signs,’’ in Proc. IEEE 37th Annu. Int. Conf.
Eng. Med. Biol. Soc. (EMBC), Aug. 2015, pp. 4978–4981.

[10] C. A. Balanis, Modern Antenna Handbook. Hoboken, NJ, USA: Wiley,
2008.

[11] L. Ding, M. Ali, S. Patole, and A. Dabak, ‘‘Vibration parameter estimation
using FMCW radar,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process. (ICASSP), Mar. 2016, pp. 2224–2228.

[12] P. Pahl, T. Kayser, M. Pauli, and T. Zwick, ‘‘Evaluation of a high accuracy
range detection algorithm for FMCW/phase radar systems,’’ in Proc. 7th
Eur. Radar Conf., Sep./Oct. 2010, pp. 160–163.

[13] C. Li and J. Lin, ‘‘Random body movement cancellation in Doppler radar
vital sign detection,’’ IEEE Trans. Microw. Theory Techn., vol. 56, no. 12,
pp. 3143–3152, Dec. 2008.

[14] F. Zhu, K. Wang, and K. Wu, ‘‘A fundamental-and-harmonic dual-
frequency Doppler radar system for vital signs detection enabling radar
movement self-cancellation,’’ IEEE Trans. Microw. Theory Techn., vol. 66,
no. 11, pp. 5106–5118, Nov. 2018.

[15] AWR1443 Single-Chip 76-GHz to 81-GHz Automotive Radar Sensor Inte-
grating MCU and Hardware Accelerator | TI.com. [Online]. Available:
http://www.ti.com/product/AWR1443

[16] AWR1443 Single-Chip 76-GHz to 81-GHz Automotive Radar Sen-
sor Evaluation Module | TI.com. [Online]. Available: http://www.
ti.com/tool/AWR1443BOOST

[17] A. D. Droitcour, ‘‘Non-contact measurement of heart and respiration rates
with single chip microwave Doppler radar,’’ Ph.D. dissertation, Stanford
Univ., Stanford, CA, USA, 2006.

[18] Carre Technologies Inc (Hexoskin).Hexoskin Smart Shirts—Cardiac, Res-
piratory, Sleep & Activity Metrics. Accessed: Apr. 27, 2019. [Online].
Available: https://www.hexoskin.com/

[19] R. Villar, T. Beltrame, and R. L. Hughson, ‘‘Validation of the hexoskin
wearable vest during lying, sitting, standing, and walking activities,’’ Appl.
Physiol., Nutrition, Metabolism, vol. 40, no. 10, pp. 1019–1024, 2015.

MOSTAFA ALIZADEH received the two B.S.
degrees in electrical and computer engineering in
the sub-fields of electronics and communications
and the M.Sc. degree in electrical and computer
engineering and wireless communications from
the Amirkabir University of Technology (Tehran’s
Polytechnic), in 2012 and in 2014, respectively.
He attended to University of Waterloo as a Ph.D.
student in Fall 2016. His current research interests
include signal processing and implementationwith

more interests in biomedical signal processing, radar and sensor analysis,
MIMO radars, RF system design, and electromagnetic engineering.

VOLUME 7, 2019 54967



M. Alizadeh et al.: Remote Monitoring of Human Vital Signs Using mm-Wave FMCW Radar

GEORGE SHAKER received the B.A.Sc.,
M.A.Sc., Ph.D. degrees.

He has been an Adjunct Assistant Professor
with the Department of Electrical and Computer
Engineering, University of Waterloo, since 2014.
He is also with Sparktech Labs., (formerly DBJay
Ltd.,), where he has been the Principal Scientist
and the Head of Electromagnetics Research and
Development, since 2011. From 2011 to 2013,
he was a Senior Team Member and the Head of

Technology of DBJ’s Sister Company in China. He was heavily involved
in designing a line of compact chambers product and the line of compact
chambers for next-generationwireless systems, includingMIMOandRFIDs.
From 2006 to 2011, he was affiliated with RIM’s (Blackberry’s) RF Research
and Development Division, first as an NSERC Scholar, then as a Senior EM
Researcher, reporting directly to the RIM’s Vice President of RF Research
and Development. From 2009 to 2010, he was a Visiting NSERC MSFSS
Scholar with the Georgia Institute of Technology. Over the last decades, he
has contributed to products available from Hi-Tek International, Panasonic,
ActsPower, COM DEV Ltd., Research in Motion (BlackBerry), American
Microelectronic Semiconductors (ON-Semiconductors), Bionym, Medella
Health, Novela, DBJ Tech, Konka, Enice, China Mobile, Tri-L Solutions,
Pebble, Thalmic Labs, Lyngsoe Systems, NERV, and Spark Tech Labs.
He has coauthored two papers in the IEEE Sensors, which were among
the top 25 downloaded papers on the IEEEXplore for several consecutive
months, in 2012 and 2017. He has also coauthored over 70 journal pub-
lications, conference papers, and technical reports, along with more than
15 patents/patent applications. He has served as a TPC/TPRC Member of
the IEEE MTT-IMS, the IEEE iWAT, the IEEE EMC, the IEEE WF-IoT,
the IEEE AP-S, the IEEE EuCAP, and the IEEE iThings. He was an Invited
Speaker with several international events, including Keynote talks at the
IEEE LAPC, the IEEE iThings, and the Ambient Intelligence.

Dr. Shaker was a recipient of multiple awards, including the NSERC
Canada Graduate Scholarship (sole winner in the area of electromagnetics
across Canada, in 2007), the Ontario Graduate Scholarship (twice), the Euro-
pean School of Antennas Grant at IMST GmbH, in 2007, the top 3 IEEE
AP-S Best Paper Award, in 2009, the IEEE AP-S Best Paper Award (HM,
in 2008, 2011, and 2017), the IEEE Antennas and Propagation Graduate
Research Award, from 2008 to 2009, the NSERC CGS-FSS, in 2009,
the IEEE MTT-S Graduate Fellowship, in 2009, the Electronic Components
and Technology Best of Session Paper Award, in 2010, the Google Soli
Alpha, in 2015, and the IEEE AP-S Third Best Student Design Award,
in 2016. He has served as the Session Co-Chair and Short Course/Workshop
Lecturer in several international scientific conferences. He currently serves
as an Associate Editor for the IET Microwaves, Antennas, and Propagation.

JOÃO CARLOS MARTINS DE ALMEIDA is
currently pursuing the Ph.D. degree in electri-
cal engineering with the School of Electrical and
Computer Engineering, University of Campinas,
in Brazil. He was also a Visiting Graduate Stu-
dent with the Ubiquitous Health Technology Lab,
University of Waterloo. He has been involved in
multidisciplinary teams in the development and
testing of medical devices for minimally inva-
sively detecting health conditions, allowing better
patient care.

PLINIO PELEGRINI MORITA is currently an
Assistant Professor with the School of Pub-
lic Health and Health Systems, University of
Waterloo. He is the J. W. Graham Information
Technology Emerging Leader Chair of applied
health informatics. He is currently with the Uni-
versity Health Network, the University of Toronto,
and the Research Institute for Aging. As the Direc-
tor of the Ubiquitous Health Technology Lab
(UbiLab), he has focused his research on popula-

tion level surveillance, remote patient monitoring (RPM), and personalized
medicine technologies to be used to prevent unnecessary visits to hospitals
and drive our healthcare system toward community care and telehealth. The
UbiLab expands the area of population-level surveillance, remote patient
monitoring, and precision medicine by developing algorithms and the sys-
tems of systems that combine data from mHealth and the IoT sensor tech-
nology that can satisfy clinical standards while also providing meaningful
use for the patient to the ocean of data currently collected by these smart
technologies.

SAFEDDIN SAFAVI-NAEINI was born in Gach-
saran, Iran, in 1951. He received the B.Sc. degree
in electrical engineering from the University of
Tehran, Tehran, Iran, in 1974, and the M.Sc.
and Ph.D. degrees in electrical engineering from
the University of Illinois, Urbana–Champaign,
in 1975 and 1979, respectively. He joined the
Department of Electrical and Computer Engineer-
ing, University of Tehran, as an Assistant Pro-
fessor, in 1980, where he became an Associate

Professor, in 1988. In 1996, he joined the Department of Electrical and
Computer Engineering, University of Waterloo, ON, Canada, where he is
currently a Full Professor and the RIM/NSERC Industrial Research Chair of
intelligent radio/antenna and photonics. He is also the Director of a newly
established Center for Intelligent Antenna and Radio System (CIARS).
He has published over 80 journal papers and 200 conference papers in
international conferences. His research activities deal with RF/microwave
technologies, smart integrated antennas and radio systems, mmW/THz
integrated technologies, nano-EM and photonics, EM in health sciences
and pharmaceutical engineering, antenna, wireless communications and
sensor systems and networks, new EM materials, bio-electro-magnetics,
and computational methods. He has led several international collaborative
research programs with research institutes in Germany, Finland, Japan,
China, Sweden, and USA.

54968 VOLUME 7, 2019


	INTRODUCTION
	SYSTEM MODEL
	FMCW RADAR PRINCIPLES
	PROPOSED ALGORITHM

	OUR EQUIPMENT
	EXPERIMENTS
	PRIMARY RESULTS
	THREE DIFFERENT MAPS
	HEART AND BREATHING WAVEFORMS

	SYSTEM PERFORMANCE

	CONCLUSION
	REFERENCES
	Biographies
	MOSTAFA ALIZADEH
	GEORGE SHAKER
	JOÃO CARLOS MARTINS DE ALMEIDA
	PLINIO PELEGRINI MORITA
	SAFEDDIN SAFAVI-NAEINI


