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ABSTRACT The density peaks clustering (DPC) is a clustering method proposed by Rodriguez and Laio
(Science, 2014), which sets up a decision graph to identify the cluster centers of data points. Because the
improper selection of its parameter cut-off distance will lead to the wrong selection of initial cluster centers
with no corrective actions in the subsequent assignment process, DPC may not identify cluster centers with
different densities accurately. Especially, all cluster centers are settled as soon as they are detected, after
which the DPC simply assigns each point to the same cluster as its nearest neighbor of higher density.
This tends to cause the erroneous assignments of data and thus degrade the efficiency of clustering. In this
paper, we propose a robust clustering method which establishes a symmetric neighborhood graph over all
data points, based on the k-nearest neighbors and reverse k-nearest neighbors of each point. In order to
distinguish the density peaks from all data points, local densities of each point are calculated using the reverse
k-nearest neighbors. After that, initial centers for clusters are estimated over the peaks and similar clusters
are aggregated on the symmetric neighborhood graph, which ends up with every point being successfully
assigned to a cluster. To testify the efficiency of the new clustering method, numerical experiments and
comparison works have been done on a variety of artificial and real data sets for clustering.

INDEX TERMS Clustering, symmetric neighborhood, reverse k-nearest neighbors, density peaks clustering.

I. INTRODUCTION
Clustering is an indispensable and fundamental method for
data mining. Up to now, various algorithms have been pro-
posed which include partitioning methods [1]–[3], density-
based clustering [4]–[7], spectral clustering [8], [9], ensemble
clustering [10], [11], and hierarchical clustering [12]–[14].
This paper focuses on a well-known density-based clustering
method, called Density Peaks Clustering (DPC), which was
proposed by Rodriguez and Laio [15]. The DPC algorithm
measures the local density of a data point by the number
of points in a radius, and estimates a point to be a cluster
center via its local density along with the distance from points
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of higher density (see equation 2). After the DPC locates
cluster centers through a decision graph, each point will be
assigned to a cluster which its nearest neighbor of higher
density belongs to. Especially, the DPC also defines cluster
core and cluster halo.

Though the DPC sounds simple and effective, the mea-
surement of local densities heavily depends on the cut-off
distance that is difficult to seek in advance of the clustering.
In addition, the DPC usually requires each cluster center
to be selected manually on the decision graph. Moreover,
the assignment of a point to the same cluster as its nearest
neighbor of higher density may ignore the actual distribution
of data points, thereby degrading the accuracy of clustering.

In order to avoid the difficulty of choosing the parame-
ter dc, recently several researchers use k-nearest neighbors
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(kNN [25]), mutual k-nearest neighbors (MkNN [16], [17]),
and natural neighbors (NN [22]) to estimate the local densi-
ties of each point [19]–[24]. Likewise, statistical test based
clustering (STClu [19]) uses statistical test method to auto-
matically detect cluster centers, and adaptive density peak
clustering based on k-nearest neighbors (ADPC-kNN [23])
identifies some local core points with a certain density and
merges clusters if they are density reachable. Unfortunately,
STClu still suffers from the erroneous assignment of data
due to the same assignment principle as DPC, and ADPC-
kNN performs badly on data sets with different densities. For
the sake of avoiding erroneous assignments, fuzzy weighted
k-nearest neighbors density peak clustering (FkNN-
DPC [20]) assigns non-outliers based on kNN starting
from each cluster center, and then allocates the rest points,
including outliers, using fuzzy weighted kNN. Natural
neighbor-based clustering algorithm with density peaks
(NaNDP [22]) expands each cluster from its center by search-
ing natural neighbors of points in the cluster. Both FkNN-
DPC and NaNDP, however, rely on the manual selection of
initial cluster centers from decision graph on some data sets.

In this paper, we propose a new clustering method,
called Density Peaks Clustering using Symmetric Neigh-
borhood Relationship (DPC-SNR). Our new method estab-
lishes a symmetric neighborhood graph over all data points,
which is achieved using the k-nearest neighbors and reverse
k-nearest neighbors of each point. Especially, for the sake of
distinguishing the peaks from other points, local densities of
each point are calculated using the reverse k-nearest neigh-
bors, which enables more efficient identification of initial
centers for clusters. Combined with the local densities, all
points are sorted based on the distances from points of higher
density. Starting from the peak point, the DPC-SNR assigns
each point to a proper cluster through a breadth first search
on symmetric neighborhood graph. Finally, the DPC-SNR
merges every tiny cluster into a major cluster based on their
mutual connectivity.

This paper is organized as follows. Section II outlines
the DPC together with several variation of the algorithm,
and introduces the concept of symmetric neighborhood rela-
tionship. Section III describes our new clustering algorithm.
Section IV performs experiments on a number of synthetic
and real data sets, and analyzes the efficiency of our clustering
method. This paper finishes with conclusions in Section V.

II. RELATED WORKS
In this section, we will review the process of DPC and intro-
duce these studies which arouse interests in DPC.

A. DENSITY PEAKS CLUSTERING
DPC [15] thinks local density of a cluster center is higher
than other points in the same group and has a relatively large
distance from any points with a higher local density. DPC
uses the local density ρi of a point and its distance δi from
points with higher density to construct a decision graph. If ρi
and δi of a point are higher, the point may be a cluster center.

The local density ρi is defined as follows:

ρi =
∑
j

χ (dist(i, j)− dc) (1)

where dc is a cutoff distance and χ (a) = 1 when a < 0,
χ (a) = 0 when a ≤ 0. dist(i, j) denotes Euclidean distance
between point i and point j. The formula of the distance δi
from points of higher density shows as follows:

δi = minj:ρj>ρi (dist(i, j)) (2)

For the point with highest density, they conventionally take
δi = maxj(dist(i, j)). Rodriguez and Laio also use another
way to present ρi, which is defined as a Gaussian kernel
function:

ρi =
∑
j

exp(−
dist2(i, j)

d2c
) (3)

where the point j is eligible when dist(i, j) is less than dc. dc is
the only influence parameter in two formulas above. From the
public code [40], we can know that the value of dc comes from
one of the distances between two points. The algorithm firstly
sorts the values of distances, then sets p percent of the data set
as the position, and finally chooses the value of the distances
at this position as dc. Therefore, parameter p is considered
rather than dc for simplicity in our paper.
In addition, we find there is another issue in DPC. DPC

performs badly in manifold data sets with different densi-
ties. Fig. 1 presents that DPC cannot find cluster centers
in manifold data with low density, and two cluster centers
are located in manifold data with high density. There is no
influence to select cluster centers about the different values of
parameter p. In this case, DPC is not able to find the correct
clusters.

There are some new formulas to get ρi. In order to avoid
the influence of dc, many studies introduce kNN to modify
the formula of ρi. STClu [19] defines ρi as follows:

ρi =
k∑

j∈kNN (i) dist(i, j)
(4)

where k is an input parameter, kNN (i) the number of kNN of
point i. The formula of local density proposed by FkNN-DPC
[20] is:

ρi =
∑

j∈kNN (i)

exp(−dist(i, j)) (5)

Density peaks clustering based on k-nearest neighbors and
principal component analysis (DPC-kNN-PCA) [21] changes
the formula of local density, which shows as follows:

ρi = exp(−
1
k

∑
j∈kNN (i)

dist2(i, j)) (6)

where k is computed as a percent of the number of data sets.
Though the computing formula of ρi in ADPC-kNN [23]
also uses kNN, the parameter of dc is used in the formula.
Moreover, ADPC-kNN uses a new method to get the value
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FIGURE 1. DPC on manifold data sets of different densities. (a) p=0.8. (b) p=6.0. (c) p=10.0.

of dc. The local density ρi is identified by the following
formula:

ρi =
∑

j∈kNN (i)

exp(−
dist2(i, j)

d2c
) (7)

where dc = µ+
√

1
N−1

∑N
i=1(di − µ)2, µ is the mean value

of di of all points, and di = maxj∈kNN (i)(dist(i, j)).
NaNDP [22] uses natural neighbors to compute the local

density, and constructs maximum neighborhood graph to
assign non-core points. The formula of ρi shows as follows:

ρi =
Maxnb∑

j∈N (i,Maxnb) dist(i, j)
(8)

where Maxnb is the maximum number of natural neighbors,
N (i,Maxnb) the Maxnb nearest neighbors of point i.

Comparative density peaks clustering (CDP) [24] intro-
duces the mutual k-nearest neighbors to get the local density
ρi, which also redefines δi. The computational process of δi
is a little complex, thus there is no description in detail here,
which shows in the paper. The computational formula of ρi is
defined as:

ρi =
∑

j∈MkNN (i)

exp(−
dist2(i, j)

d2c
) (9)

where MkNN (i) is a set of points associated with point i in
the MkNN.
Compared the formula of ρi in DPC with formulas in

related studies above, we can see that the region of influ-
ence is diminishing. However, we think that the differences
between core points and non-core points should be increased.
Therefore, we choose reverse kNN as the region of influence,
which means the value degree from others. Cluster centers
should be surrounded by dense points so that value degree of
cluster centers will be higher. If the number of kNN about a
point is pre-computed, the complexity of computing the local
density will reduce. The cluster centers are thought to have
higher values of ρi and δi. Therefore there are two possible
methods for selecting centers. One is to use a rectangular box
in a decision graph based on matlab to select manually these
points. The other is to compute a new quantity γi = ρiδi
for each point i, then sort γi in descending order and finally
choose first m values of γi.

B. SYMMETRIC NEIGHBORHOOD RELATIONSHIP
kNN is one of the simplest methods in data mining clas-
sification technology, which arouses the interest of many
researchers [25], [26]. This approach also has been applied
to clustering [27], [28]. The distance between two points
is generally achieved by calculating the Euclidean distance.
There are also many studies about other nearest neigh-
bors based on kNN, including natural neighbors, mutual
k-nearest neighbors and shared nearest neighbors [29].
The main idea of mutual k-nearest neighbors and
nature neighbors are using symmetric neighborhood
relationship.
kNN and reverse kNN are symmetric neighborhood

relationship [30]. We always assume that there are n data
points with m dimension. After the distance between points
is computed, we should sort these distances in ascend-
ing order to find the first k nearest distances. All points
contained in the k nearest distance corresponds to kNN,
and we also get reverse kNN during the process. More
specifics about kNN and reverse kNN are discussed in
Section III.

III. CLUSTERING ALGORITHM BASED ON SYMMETRIC
NEIGHBORHOOD RELATIONSHIP
There are two respects to improve DPC by respectively
using reverse kNN and symmetric neighborhood relation-
ship for computing the local density of a point and chang-
ing the assignment method. This section will present the
details of the proposed clustering algorithm and analyze its
complexity.

This paper presents a new clustering algorithm by using
symmetric neighborhood relationship. Here is the basic idea:
firstly, find the symmetric neighborhood of each point; then
calculate local density and distance of each point using
reverse kNN, and cluster from highest value of density and
distance by undertaking a breadth first search of the sym-
metric neighborhood; finally, identify big clusters and small
clusters, and combine small clusters into big ones. The details
of DPC-SNR algorithm are shown as Algorithm 1, and the
clustering process on a simple data set is presented in Fig. 2,
where red circles and rectangles to represent outliers and
cluster centers respectively. Furthermore, different shapes
mean different clusters.
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FIGURE 2. The clustering process of DPC-SNR. (a) Data set. (b) Symmetric neighborhood. (c) Clustering. (d) Initial clusters. (e) Final clusters.

A. DENSITY PEAKS CLUSTERING IN SYMMETRIC
NEIGHBORHOOD
Let D be a database, i and j be some objects in D, and k be
a positive integer. We use dist(i, j) to denote the Euclidean
distance between object i and j.
The k-distance of i, denoted as kdist (i), is the distance

dist(i, o) between point i and point o in D, which shows as:
• For at least k objects o′ ∈ D it holds that
dist(i, o′) ≤ dist(i, o), and

• For at most (k-1) objects o′ ∈ D it holds that
dist(i, o′) < dist(i, o)

If a point j meets dist(i, j) ≤ kdist (i), then call j as one of
the kNN of i. A set of points J which contains finite points
j forms the kNN of i, denoted as kNN (i). The definition of
kNN (i) is:

kNN (i) = {J ∈ D|dist(i, J ) ≤ kdist (i)} (10)

The point i is regarded as the reverse kNN of j, and a set of
points I which contains finite points i composes the reverse
k-nearest neighborhood, denoted as RkNN (j). RkNN (i) can
be defined as:

RkNN (i) = {j|j ∈ D, i ∈ kNN (j)} (11)

The results of intersection of the k-nearest neighborhood
and the reverse k-nearest neighborhood are used to estimate
the density distribution around i, and the neighborhood space
is called as symmetric neighborhood of i, denoted as SNk (i).
SNk (i) means that two people are true friends only when they

agree with each other, which shows as follows:

SNk (i) = {o|o ∈ D, o ∈ (kNN (i) ∩ RkNN (i))} (12)

In general, searching kNN of point i will return at least
k results, while the results of RkNN will be zero, one or
many. We consider the influence of a point from other points,
therefore we use the reverse kNN of a point to calculate the
local density instead of other nearest neighbors, which makes
us identify cluster centers more easily. The new local density
can be defined as:

ρi =
∑

j∈RkNN (i)

exp(−dist2(i, j)) (13)

where RkNN (i) is the reverse kNN of point i.
This definition can guarantee that the local density ρi of

point i is affected by the distribution information of its reverse
kNN, while the original definition in [15] is calculated using
the cutoff distance dc. It is hard to ensure the value of cutoff
distance dc, which will affect the local density of points and
selection of cluster centers. Furthermore, the determination
of parameter k is easier than that of cutoff distance dc.

B. EXTENDING CLUSTER FROM PEAKS ON SYMMETRIC
NEIGHBORHOOD GRAPH
The graph constructed by linking the symmetric neighbor-
hood of each point is called as symmetric neighborhood
graph(SNG). Outliers are regarded as points with less than
two neighbors in the symmetric neighborhood. Though there
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Algorithm 1 DPC-SNR Algorithm
Input: The number of nearest neighbors, k; The using data

set, D;
Output: The set of clusters, C ← c1, c2, . . . , cm;
1: Initializing: dist[i, j] ← 0, ρi ← 0, Outlier[i] ← 0,
cl[i]←−1;

2: use the formula of Euclidean distance to calculate
the distance between point i and point j, then get
dist[i, j];

3: use a common method to get kNN and RkNN ;
4: for each a ∈ D do
5: SNk [a]← kNN [a] ∩ RkNN [a];
6: end for
7: Calculate ρi and δi for point i respectively using (13) and

(2);
8: get the product γi of ρi and δi, and sort in descending

order;
9: for each a ∈ D do

10: if SNk [a] ≤ 1 then
11: Outlier[a]← 1
12: end if
13: end for
14: C ← Assignment method(Outlier , SNk , dist , γ );

will be a boundary between two clusters with different den-
sity, we also need to add some rules to reinforce the boundary.
We assume a point x is an extending point, and a point y is
one of points in the symmetric neighborhood of x, which has
not been extended. If ymeets all the following rules, ywill be
extended. Rules include y is not a outlier, y is not visited and
the distance between x and y is less than the mean distance
between y and points from symmetric neighborhood of y. The
third rule means if y is a little far away from x, then y will not
be extended temporarily.

It can be seen from SNG that if there are close connections
between two initial clusters, then the two initial clusters may
belong to a same cluster. A point with larger values of local
density and distance is more likely to be a cluster center.
Therefore, we choose to cluster from a point with the largest
product value of local density and distance by undertaking
a breadth first search of SNG. After traversing the whole
SNG, there will be some clusters.We can obtainmain clusters
from the process of clustering, therefore, the cluster with less
than k points is a small cluster, including outliers. Then these
clusters are automatically assigned to large clusters and small
clusters. We combine small clusters into large clusters whose
number of connected edges are largest in SNG. If there still
are small unassigned clusters, we assign the small clusters to
clusters which most of points in their reverse kNN belong to.
The assignment method is described in Algorithm 2. In the
algorithm, visit[i] is a flag, which means whether i is visited.

C. THE COMPLEXITY ANALYSES OF DPC-SNR
Suppose that there are N points in the data set and let num
denote the number of clusters. The space complexity of

Algorithm 2 Assignment Method
Input: The tag parameters of points whether they are out-

liers,Outlier ; The symmetric neighborhood of all points,
SNk ; The distance between two points, dist; The product
of density and distance of all points, γ ;

Output: The final clusters, la_C ;
1: Initializing: Q← ∅, visit[i]← 0; nclust ← 0;
2: for i = 1 to n do
3: center ← γ [i];
4: if visit[center] = 1 then
5: continue;
6: end if
7: visit[center]← 1;
8: nclust ← nclust + 1;
9: cl[center]← nclust;

10: Add center into Q;
11: while Q 6= ∅ do
12: Assign the first value of Q to first
13: tmp← SNk [first];
14: Delete first from Q;
15: for each a ∈ tmp do
16: calculate the average distance ave of point a in its

symmetric neighborhood;
17: if visit[a] = 0 and outlier[a] = 0 and

dist[first, a] ≤ ave then
18: Add a into Q;
19: cl[a]← i;
20: visit[a]← 1;
21: end if
22: end for
23: end while
24: end for
25: according to the number of non-repeating values of cl,

get C ;
26: according to the value of k , get small clusters sm_C and

large clusters la_C ;
27: for each a ∈ sm_C do
28: count the number of edges connected to all large clus-

ters la_C ;
29: combine small cluster a into the large cluster with the

largest number of edges;
30: delete small cluster a from sm_C ;
31: end for
32: if there are small clusters unassigned, assign the small

clusters to clusters which most of points in their reverse
kNN belong to;

33: return la_C

DPC-SNR relies on the three aspects: the matrix storing the
distance between two points (O(N 2)), two attributes ρi and δi
(O(2N )) and three neighborhood kNN, reverse kNN and SN
(O(KN + N + N )). Spaces required by these points do not
exceed O(N 2), thus the space complexity of DPC-SNR is the
same with DPC in [15].
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The time complexity of DPC-SNR relies on the following
aspects: (a) using a common method to get kNN and reverse
kNN (O(N 2)); (b) computing the distance between two points
(O(N 2)); (c) calculating the symmetric neighborhood of each
point (O(N )); (d) calculating the local density ρi with reverse
kNN (O(LN )), L is the number of points in reverse kNN of
point i, and L is not greater than N ; (e) clustering from the
largest value of γi on SNG(O(CN 2)), and C is the number
of symmetric neighborhood of a point; (f) combining small
clusters into large clusters(O(M3)), andM is far less than N .
Therefore, the overall time complexity of DPC-SNR isO(N 2)
which is the same with DPC.

IV. EXPERIMENTS
In the section, experiments were conducted on synthetic and
real data sets to test the performance of DPC-SNR. The
performance of DPC-SNR was compared with these cluster-
ing algorithms including affinity propagation (AP) in [18],
DBSCAN in [4], DPC in [15], ADPC-kNN in [23], and DPC-
kNN-PCA in [21]. The codes of DPC and ADPC-kNN were
provided by their authors, and the code of DPC shows in
[40]. We do not consider finding the cluster halo when we
do experiments on DPC. DBSCAN, DPC-kNN-PCA and AP
were implemented with MATLAB R2017b.

Moreover, we use these parameters mentioned in their
papers to conduct these experiments, including percent p
in DPC, iteration invariant number convits and maximum
number of iterations maxits in AP, the number of nearest
neighbors k in ADPC-kNN, the number of nearest neigh-
bors k and a percentage of the number of points m in
DPC-kNN-PCA and the distance Eps and the number of
points in the current distance MinPts in DBSCAN. Espe-
cially, we set that damping coefficient lam is 0.9 in AP
throughout the experiments. We implemented the algorithms
on each data set for a number of times and listed the best result
of each method out.

A. ASSESSMENT OF CLUSTERING PERFORMANCE
We use clustering accuracy(Acc) index which is often used
in [21], [22] and Normalized Mutual Information(NMI) [41]
index to evaluate the clustering performance on these exper-
iments. And the formula of Acc is as follows:

Acc =
1
N

N∑
i=1

δ(ri,map(si)) (14)

where ri is the real cluster label, si the serial number obtained
by clustering. If a = b, δ(a, b) = 1; otherwise, δ(a, b) = 0.
The larger value of Acc means the better clustering perfor-
mance of the algorithm.

The formula of NMI shows as follows:

NMI (X ,Y ) =
MI (X ,Y )

√
H (X ) ∗ H (Y )

(15)

where MI (X ,Y ) is the mutual information between two
random variables X and Y , H (Z ) the entropy of random

FIGURE 3. The clustering results about 10NN, 11NN, 12NN, and 18NN on
data set 1.

variables Z . When the value of NMI is bigger, clustering
performance is better.

B. ANALYSIS OF DIFFERENT VALUES ABOUT THE
PARAMETER
We will discuss different values of k in different data sets,
which will be presented later. As shown in Fig. 3, we can see
that there are six centers in the data when the value of k is 10.
When the value of k is less than 10, the number of clusters is
more than six. However, when the value of k is suitable, there
will be the right number of clusters. When the value of k is
large, two clusters will be merged into a cluster. Therefore,
the best value of k is [12], [17]. We also do experiments on
other five artificial data sets, and we find there is also a range
when we get good results on these data sets. However, there
is only a best value on data set 2. If we choose a value of k
that exceeds the range, the result will be bad or all clusters
will be a cluster.

We also do experiments on real data sets. Fig. 4 shows
that there is only a best value of k with the number of real
clusters. However, there is stability in Iris and Banknote_A
on the number of clusters, Acc and NMI with the increase of
k value. There is a fluctuation in Breast_C before best values
of Acc and NMI, and then the number of clusters is 1. We can
also see that there are best values of Acc and NMI, however,
the number of clusters is wrong. We do experiments on other
eight data sets, and find that change rules of the eight data sets
are similar with four data sets previously mentioned. We also
use nature neighbors to get k in order to reduce the parameter.
However, we find that nature neighbors cannot find the best
value of k in many data sets.

C. CLUSTERING ON ARTIFICIAL DATA SETS
We choose six artificial data sets to demonstrate the efficiency
of DPC-SNR, which are illustrated in Fig. 5. Data set 1,
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TABLE 1. Comparison of two benchmarks for six clustering algorithms on artificial data sets.

FIGURE 4. Different values of k, clusters number, Acc and NMI on data
sets Breast_C, Glass, Iris and Banknote_A.

taken from [42], consists of two manifold data with different
densities and contains 373 points. Data set 2, taken from [43],
is composed of three spherical data and three irregular data
and has a total of 399 points. Data set 3 consists of three ring
data with different densities and contains 299 points. Data
set 4, from [9], a total of 312 points, is composed of three
manifold data. Data set 5 from [44], consists of five spherical
data with different densities and contains 383 points. Data set
6, has a total of 1000 points and includes four ring data with
the same density. And information about some data sets also
shows in [45]. The clustering results of these algorithms are
shown in Fig. 6–11. The comparison of these algorithms on
Acc and NMI scores are shown in Table. 1, and the running
time is shown in Table. 2.

FIGURE 5. Six original synthetic data sets. (a) Data set 1. (b) Data set 2.
(c) Data set 3. (d) Data set 4. (e) Data set 5. (f) Data set 6.

Fig. 6 shows ADPC-kNN, AP, DBSCAN, DPC-kNN-PCA
and DPC algorithms cannot find correct clusters and they
all perform badly on manifold data with different densi-
ties. However, DPC-SNR can identify correct clusters, the
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TABLE 2. The running time(s) of the algorithms on artificial data sets.

FIGURE 6. The clustering results of ADPC-kNN, AP, DBSCAN,
DPC-kNN-PCA, DPC-SNR, and DPC algorithms on data set 1.

benchmarks data of which are all 1.00 in Table. 1. Data
set 4 is also a kind of manifold data set with almost the
same density. As shown in Fig. 9, ADPC-kNN, DBSCAN,
DPC-SNR and DPC can perform well and the benchmarks
data of four algorithms are all 1.00, while DPC-kNN-PCA
still cannot get the right results. DPC-kNN-PCA uses nearby
principle to assign other non-core points, so that there are
many wrong assignments. Therefore, we can see that DPC-
kNN-PCA may be not suitable for manifold data sets.

Fig. 7 shows the clustering results of six algorithms on data
set 2. DPC-SNR can find all clusters out correctly and assign
almost all points to their corresponding clusters. However,
the two clusters on the right side are incorrectly clustered
into one by ADPC-kNN, DBSCAN and DPC, which are

FIGURE 7. The clustering results of ADPC-kNN, AP, DBSCAN,
DPC-kNN-PCA, DPC-SNR, and DPC algorithms on data set 2.

also treated as parts by DPC-kNN-PCA and AP. Similarly,
DBSCAN and DPC-kNN-PCA mistakenly identify the two
clusters on the bottom right side as one, which are divided into
many parts by other algorithms. Fortunately, all algorithms
can correctly identify two spherical clusters on the top right
side.

Fig. 8 shows DPC-SNR and DBSCAN can find all clusters
out correctly and assign all points to their corresponding clus-
ters with benchmarks data of 1.0 in Table. 1. There are similar
clustering results between ADPC-kNN and DPC-kNN-PCA,
which show three and one clusters respectively in the outer
and inner ring. DPC and AP show the opposite effect on the
outer two rings. Fig. 11 shows the clustering results of six
algorithms on data set 6. DPC-SNR and DBSCAN also can
get true clusters and the highest benchmarks data in Table. 1.
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FIGURE 8. The clustering results of ADPC-kNN, AP, DBSCAN,
DPC-kNN-PCA, DPC-SNR, and DPC algorithms on data set 3.

Clustering results of ADPC-kNN, AP, DPC-kNN-PCA and
DPC are similar, which present some fan-shaped structures.
However, ADPC-kNN cannot find out the number of clusters
correctly.

Fig. 10 shows the clustering results of six algorithms on
data set 5. DPC,DPC-kNN-PCA andDPC-SNRperformwell
on the data set, and the benchmarks data of these algorithms
are all 1.00 in Table. 1. ADPC-kNN can identify clusters
with low density, however ADPC-kNN only can find two
clusters when there are three high density spherical data.
Though DBSCAN can also find clusters with low density,
DBSCAN performs worse on high density spherical data and
considers three clusters as one. Fortunately, AP can iden-
tify correctly these clusters with some incorrect assignment
points.

From the above results and analysis, we can see that
DBSCAN, DPC and ADPC-kNN algorithms have a certain
capacity to cluster manifold data with high density. However,
as shown in the above results, they can hardly cluster the
manifold data correctly with different densities. DPC-kNN-
PCA performs worse on all manifold data. DPC-kNN-PCA
and DPC can correctly identify spherical data with different
densities, while ADPC-kNN and DBSCAN cannot. ADPC-
kNN, DPC-kNN-PCA and DPC perform badly on a ring
data, while DBSCAN can correctly identify the data. AP can

FIGURE 9. The clustering results of ADPC-kNN, AP, DBSCAN,
DPC-kNN-PCA, DPC-SNR, and DPC algorithms on data set 4.

identify spherical data, however AP perform badly on data
sets of other shapes. Therefore, from the results of artificial
data sets, we can see that DPC-SNR can get the right number
of final clusters with the influence of a parameter k . The
application scope of DPC-SNR is wider than other clustering
algorithms, though the running time of DPC-SNR is higher
in Table. 2. DPC-SNR can get satisfactory clustering results
on complex manifold, ring and spherical data sets. In order to
demonstrate the efficiency of DPC-SNR, we also do experi-
ments on real data sets as the following section.

D. CLUSTERING ON REAL DATA SETS
In order to further demonstrate the effectiveness of our algo-
rithm, we compare our algorithm with the five algorithms
mentioned above on several benchmark real data sets from
UCI [46]. These data sets are often used in clustering or clas-
sification and the detailed information are shown in Table. 3,
which are preprocessed to better serve the clustering algo-
rithm. The performance shown in Table. 4 is bench-marked
in terms of Acc and NMI, and the running time of these
algorithms is shown in Table. 5.

Moreover, we use these parameters mentioned in their
papers to conduct these experiments, including percent p
in DPC, iteration invariant number convits and maximum
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FIGURE 10. The clustering results of ADPC-kNN, AP, DBSCAN,
DPC-kNN-PCA, DPC-SNR, and DPC algorithms on
data set 5.

TABLE 3. Data characteristics of real data sets.

number of iterations maxits in AP, the number of nearest
neighbors k in ADPC-kNN, the number of nearest neighbors
k and a percentage of the number of points m in DPC-
kNN-PCA and the distance Eps and the number of points in
the current distance MinPts in DBSCAN. Especially, we set
that damping coefficient lam is 0.9 in AP throughout the
experiments.

As shown in Table. 4, DPC-SNR outperforms other five
algorithms on Breast_C, Spect_H, Banknote_A and Chess
data sets in terms of benchmark Acc and NMI. We also can

FIGURE 11. The clustering results of ADPC-kNN, AP, DBSCAN,
DPC-kNN-PCA, DPC-SNR, and DPC algorithms on
data set 6.

see that DPC-SNR outperforms DPC and DBSCAN on most
of data sets, and has the same results as DPC on Abalone
data set. DBSCAN can get higher values in terms of bench-
mark NMI onHaberman_S, Spectf_H andHayes_R data sets.
DPC-SNR can get higher values of benchmark Acc on Iris,
Haberman_S, Spectf_H and Hayes_R data sets. ADPC-kNN
gets the best results on Wisconsin_PBC and performs better
on Iris and Spect_H in benchmark NMI. While ADPC-kNN
performs worse on other data sets compared with DPC-SNR
and cannot find the number of real clusters, neither can
DBSCAN. The number of clusters of DPC and DPC-kNN-
PCA is determined artificially, thus there is no problem of
error recognition about the number of clusters. DPC-kNN-
PCA gets better results on Glass data sets in benchmark NMI,
while DPC-kNN-PCA performs worse on other data sets.
AP algorithm mostly produces bad clustering results, since
it is hard to control the number of clustering. However, AP
sometimes can get the number of real clusters and high values
of Acc and NMI. The bold data in each line is the best result.
Here, we use γi = ρiδi to select n initial cluster centers. The
running time of DPC-SNR and DPC-kNN-PCA in Table. 5 is
more than other algorithms except AP, which is affected by
the data dimension. Because the two algorithms will take a lot
of time to find kNN and compute the distance between two
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TABLE 4. Comparison of two benchmarks for six clustering algorithms on real data sets.

TABLE 5. The running time(s) of the algorithms on real data sets.

points twice. However, ADPC-kNN computes the distance
once and saves k distances about kNN instead of k points,
which benefits the process of obtaining the local density of
each point.

V. CONCLUSIONS
Clustering has found tremendous applications in many
fields, such as business intelligence [31]–[34], pattern recog-
nition [35] and cloud computing [36]–[39]. This paper
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proposed a new clustering algorithm that is robust to out-
liers. In particular, our algorithm employs reverse k-nearest
neighbors to estimate the local densities of each data point,
and clusters each point staring from the peaks among all
points on the symmetric neighborhood graph. After that, tiny
clusters including outliers are merged into larger clusters
based on their mutual connectivity on the graph. Experiments
on various artificial and real data sets demonstrated that
the DPC-SNR can successfully identify cluster centers over
these data regardless of their distributions and dimensional-
ity. Thus, the DPC-SNR can outperform the original DPC,
DPC-kNN-PCA, AP, ADPC-kNN and DBSCAN. Finally, as
the efficiency of our method tends to depend on the selection
of the parameter k , how to evaluate an optimal value for k is
left for our future study.

ACKNOWLEDGMENT
The authors are grateful to the reviewers for the valuable
suggestions and helpful comments.

REFERENCES
[1] A. Likas, N. Vlassis, and J. J. Verbeek, ‘‘The global k-means clustering

algorithm,’’ Pattern Recognit., vol. 36, no. 2, pp. 451–461, Feb. 2003.
[2] I. Khan and Z. Luo, ‘‘Nonnegative matrix factorization based consensus

for clusterings with a variable number of clusters,’’ IEEE Access, vol. 6,
pp. 73158–73169, 2018.

[3] R. T. Ng and J. Han, ‘‘CLARANS: A method for clustering objects for
spatial data mining,’’ IEEE Trans. Knowl. Data Eng., vol. 14, no. 5,
pp. 1003–1016, Sep./Oct. 2002.

[4] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, ‘‘A density-based algorithm
for discovering clusters in large spatial databases with noise,’’ in Proc.
KDD, vol. 96, Aug. 1996, pp. 226–231.

[5] A. Sharma and A. Sharma, ‘‘KNN-DBSCAN: Using k-nearest neighbor
information for parameter-free density based clustering,’’ in Proc. Int.
Conf. Intell. Comput., Instrum. Control Technol. (ICICICT), Jul. 2017,
pp. 787–792.

[6] I. Khan, J. Z. Huang, and K. Ivanov, ‘‘Incremental density-based ensem-
ble clustering over evolving data streams,’’ Neurocomputing, vol. 191,
pp. 34–43, May 2016.

[7] Y. Lv et al., ‘‘An efficient and scalable density-based clustering algorithm
for datasets with complex structures,’’Neurocomputing, vol. 171, pp. 9–22,
Jan. 2016.

[8] P. Yang, Q. Zhu, and B. Huang, ‘‘Spectral clustering with density sensitive
similarity function,’’Knowl.-Based Syst., vol. 24, no. 5, pp. 621–628, 2011.

[9] H. Chang and D.-Y. Yeung, ‘‘Robust path-based spectral clustering,’’
Pattern Recognit., vol. 41, no. 1, pp. 191–203, 2008.

[10] I. Khan, J. Z. Huang, N. T. Tung, and G. Williams, ‘‘Ensemble clustering
of high dimensional data with fastmap projection,’’ in Proc. Pacific–
Asia Conf. Knowl. Discovery Data Mining. Cham, Switzerland: Springer,
May 2014, pp. 483–493.

[11] H. Liu, M. Shao, S. Li, and Y. Fu, ‘‘Infinite ensemble clustering,’’ Data
Mining Knowl. Discovery, vol. 32, no. 2, pp. 385–416, Mar. 2018.

[12] S. Theodoridis and K. Koutroumbas, ‘‘Clustering algorithms II: Hierarchi-
cal algorithms,’’ Pattern Recognit., 2009, pp. 653–700.

[13] G. Karypis, E.-H. Han, and V. Kumar, ‘‘Chameleon: Hierarchical clus-
tering using dynamic modeling,’’ Computer, vol. 32, no. 8, pp. 68–75,
Aug. 1999.

[14] D. Cheng, Q. Zhu, J. Huang, Q. Wu, and L. Yang, ‘‘A novel cluster
validity index based on local cores,’’ IEEE Trans. Neural Netw. Learn.
Syst., vol. 30, no. 4, pp. 985–999, Apr. 2018.

[15] A. Rodriguez and A. Laio, ‘‘Clustering by fast search and find of density
peaks,’’ Science, vol. 344, no. 6191, pp. 1492–1496, Jun. 2014.

[16] M. A. Abbas and A. A. Shoukry, ‘‘CMUNE: A clustering using mutual
nearest neighbors algorithm,’’ in Proc. 11th Int. Conf. Inf. Sci., Signal
Process. Appl. (ISSPA), Jul. 2012, pp. 1192–1197.

[17] Z. Hu and R. Bhatnagar, ‘‘Clustering algorithm based on mutual
K -nearest neighbor relationships,’’ Stat. Anal. Data Mining, vol. 5, no. 2,
pp. 100–113, Apr. 2012.

[18] B. J. Frey and D. Dueck, ‘‘Clustering by passing messages between data
points,’’ Science, vol. 315, no. 5814, pp. 972–976, Feb. 2007.

[19] G. Wang and Q. Song, ‘‘Automatic clustering via outward statistical test-
ing on density metrics,’’ IEEE Trans. Knowl. Data Eng., vol. 28, no. 8,
pp. 1971–1985, Aug. 2016.

[20] J. Xie, H. Gao, W. Xie, X. Liu, and P. W. Grant, ‘‘Robust clustering by
detecting density peaks and assigning points based on fuzzy weighted
K -nearest neighbors,’’ Inf. Sci., vol. 354, pp. 19–40, Aug. 2016.

[21] M. Du, S. Ding, and H. Jia, ‘‘Study on density peaks clustering based
on K -nearest neighbors and principal component analysis,’’ Knowl.-Based
Syst., vol. 99, pp. 135–145, May 2016.

[22] D. Cheng, Q. Zhu, J. Huang, and L. Yang, ‘‘Natural neighbor-based
clustering algorithm with density peeks,’’ in Proc. Int. Joint Conf. Neural
Netw. (IJCNN), Jul. 2016, pp. 92–98.

[23] L. Yaohui, M. Zhengming, and Y. Fang, ‘‘Adaptive density peak clustering
based on K -nearest neighbors with aggregating strategy,’’ Knowl.-Based
Syst., vol. 133, pp. 208–220, Oct. 2017.

[24] Z. Li and Y. Tang, ‘‘Comparative density peaks clustering,’’ Expert Syst.
Appl., vol. 95, pp. 236–247, Apr. 2018.

[25] J. M. Keller, M. R. Gray, and J. A. Givens, ‘‘A fuzzy k-nearest neigh-
bor algorithm,’’ IEEE Trans. Syst., Man Cybern., vol. SMC-15, no. 4,
pp. 580–585, Jul./Aug. 1985.

[26] W. Wu, J. Liu, H. Rong, H. Wang, and M. Xian, ‘‘Efficient k-nearest
neighbor classification over semantically secure hybrid encrypted cloud
database,’’ IEEE Access, vol. 6, pp. 41771–41784, 2018.

[27] J. Huang, Q. Zhu, L. Yang, D. Cheng, and Q. Wu, ‘‘QCC: A novel clus-
tering algorithm based on quasi-cluster centers,’’ Mach. Learn., vol. 106,
no. 3, pp. 337–357, Mar. 2017.

[28] Y. Qin, Z. L. Yu, C.-D.Wang, Z. Gu, and Y. Li, ‘‘A novel clustering method
based on hybrid K -nearest-neighbor graph,’’ Pattern Recognit., vol. 74,
pp. 1–14, Feb. 2018.

[29] L. Ertöz, M. Steinbach, and V. Kumar, ‘‘Finding clusters of different sizes,
shapes, and densities in noisy, high dimensional data,’’ in Proc. SIAM Int.
Conf. Data Mining, May 2003, pp. 47–58.

[30] W. Jin, A. K. H. Tung, J. Han, and W. Wang, ‘‘Ranking outliers using
symmetric neighborhood relationship,’’ inProc. Pacific–Asia Conf. Knowl.
Discovery Data Mining, vol. 6. Berlin, Germany: Springer, Apr. 2006,
pp. 577–593.

[31] I. Khan, J. Z. Huang, M. A. Masud, and Q. Jiang, ‘‘Segmentation of
factories on electricity consumption behaviors using load profile data,’’
IEEE Access, vol. 4, pp. 8394–8406, 2016.

[32] X. Fu, K. Yue, L. Liu, Y. Feng, and L. Liu, ‘‘Reputation measurement for
Online services based on dominance relationships,’’ IEEE Trans. Services
Comput., to be published.

[33] G. Zou, Q. Lu, Y. Chen, R. Huang, Y. Xu, and Y. Xiang, ‘‘QoS-
aware dynamic composition of Web services using numerical tempo-
ral planning,’’ IEEE Trans. Services Comput., vol. 7, no. 1, pp. 18–31,
Jan./Mar. 2014.

[34] I. Khan, J. Z. Huang, Z. Luo, and M. A. Masud, ‘‘CPLP: An algorithm for
tracking the changes of power consumption patterns in load profile data
over time,’’ Inf. Sci., vol. 429, pp. 332–348, Mar. 2018.

[35] H. He and Y. Tan, ‘‘Automatic pattern recognition of ECG signals using
entropy-based adaptive dimensionality reduction and clustering,’’ Appl.
Soft Comput., vol. 55, pp. 238–252, Jun. 2017.

[36] L. Zhang, S. Wang, R. K. Wong, F. Yang, and R. N. Chang, ‘‘Cognitively
adjusting imprecise user preferences for service selection,’’ IEEE Trans.
Netw. Service Manage., vol. 14, no. 3, pp. 717–729, Sep. 2017.

[37] W. Gong, L. Qi, and Y. Xu, ‘‘Privacy-aware multidimensional mobile
service quality prediction and recommendation in distributed fog envi-
ronment,’’ Wireless Commun. Mobile Comput., vol. 2018, Apr. 2018,
Art. no. 3075849.

[38] Y. Xu, L. Qi, W. Dou, and J. Yu, ‘‘Privacy-preserving and scalable service
recommendation based on simhash in a distributed cloud environment,’’
Complexity, vol. 2017, Dec. 2017, Art. no. 3437854.

[39] W. Li, K. Liao, Q. He, and Y. Xia, ‘‘Performance-aware cost-effective
resource provisioning for future grid IoT-cloud system,’’ J. Energy Eng.,
2019. doi: 10.1061/(ASCE)EY.1943-7897.0000611.

[40] A. Laio. Clustering by Fast Search-and-Find of Density Peaks.
Accessed: Mar. 20, 2019. [Online]. Available: https://people.sissa.it/~laio/
Research/Res_clustering.php

VOLUME 7, 2019 60695

http://dx.doi.org/10.1061/(ASCE)EY.1943-7897.0000611


C. Wu et al.: Efficient Clustering Method Based on Density Peaks

[41] A. Strehl and J. Ghosh, ‘‘Cluster ensembles—A knowledge reuse frame-
work for combining multiple partitions,’’ J. Mach. Learn. Res., vol. 3,
pp. 583–617, Dec. 2002.

[42] A. K. Jain and M. H. Law, ‘‘Data clustering: A user’s dilemma,’’ in Proc.
Int. Conf. Pattern Recognit. Mach. Intell.. Berlin, Germany: Springer,
Dec. 2005, pp. 1–10.

[43] C. T. Zahn, ‘‘Graph-theoretical methods for detecting and describing
gestalt clusters,’’ IEEE Trans. Comput., vol. C-20, no. 1, pp. 68–86,
Jan. 1971.

[44] C. Cassisi, A. Ferro, R. Giugno, G. Pigola, and A. Pulvirenti, ‘‘Enhancing
density-based clustering: Parameter reduction and outlier detection,’’ Inf.
Syst., vol. 38, no. 3, pp. 317–330, 2013.

[45] P. Fränti and S. Sieranoja, ‘‘K -means properties on six clustering bench-
mark datasets,’’ Appl. Intell., vol. 48, no. 12, pp. 4743–4759, Dec. 2018.
Accessed:Mar. 20, 2019. [Online]. Available: http://cs.uef.fi/sipu/datasets/

[46] D. Dua and K. T. Efi. UCI Machine Learning Repository.
Accessed: Mar. 20, 2019. [Online]. Available: http://archive.ics.uci.edu/ml

CHUNRONG WU received the B.S. degree in
software engineering from Xinjiang University,
Ürümqi, China, in 2016, and the M.S. degree in
software engineering from Zhejiang University,
Hangzhou, China, in 2018. She is currently pursu-
ing the Ph.D. degree with Chongqing University,
Chongqing, China. Her research interests include
data mining and intelligent computing.

JIA LEE received the B.E., M.E., and Ph.D.
degrees from Hiroshima University, Hiroshima,
Japan, in 1996, 1998, and 2001, respectively.
He is currently a Professor with the College of
Computer Science, Chongqing University, China.
His research interests include cellular automata,
swarm intelligence, and asynchronous circuits.

TEIJIRO ISOKAWA received the B.E. degree in
electronic engineering, the M.E. degree in elec-
tronic engineering, and the D.E. degree from the
Himeji Institute of Technology, Japan, in 1996,
1999, and 2004, respectively. He is currently an
Associate Professor with the Division of Com-
puter Engineering, Graduate School of Engineer-
ing, University of Hyogo, Japan. His research
interests include nanocomputing, hypercomplex-
valued neural networks, and cognitive models in
visual systems.

JUN YAO received the B.S. degree from the Uni-
versity of Shanghai for Science and Technology,
Shanghai, China, in 2017. He is currently pursuing
the master’s degree with Chongqing University,
Chongqing, China. His research interests include
various aspects of theoretical computer science,
especially in algorithms, complexity theory, and
multi-agent systems.

YUNNI XIA (SM’14) received the B.S. degree
in computer science from Chongqing University,
China, in 2003, and the Ph.D. degree in computer
science from Peking University, China, in 2008.
Since 2008, he has been an Associate Professor
with the School of Computer Science, Chongqing
University. He has authored or coauthored over
50 research publications. His research inter-
ests include Petri nets, software quality, perfor-
mance evaluation, and cloud computing system
dependability.

60696 VOLUME 7, 2019


	INTRODUCTION
	RELATED WORKS
	DENSITY PEAKS CLUSTERING
	SYMMETRIC NEIGHBORHOOD RELATIONSHIP

	CLUSTERING ALGORITHM BASED ON SYMMETRIC NEIGHBORHOOD RELATIONSHIP
	DENSITY PEAKS CLUSTERING IN SYMMETRIC NEIGHBORHOOD
	EXTENDING CLUSTER FROM PEAKS ON SYMMETRIC NEIGHBORHOOD GRAPH
	THE COMPLEXITY ANALYSES OF DPC-SNR

	EXPERIMENTS
	ASSESSMENT OF CLUSTERING PERFORMANCE
	ANALYSIS OF DIFFERENT VALUES ABOUT THE PARAMETER
	CLUSTERING ON ARTIFICIAL DATA SETS
	CLUSTERING ON REAL DATA SETS

	CONCLUSIONS
	REFERENCES
	Biographies
	CHUNRONG WU
	JIA LEE
	TEIJIRO ISOKAWA
	JUN YAO
	YUNNI XIA


