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ABSTRACT Analysis-synthesis dictionary pair learning, which can provide a comprehensive view of
data representation, has been applied in various computer vision tasks. Although good performance has
been reported in image denoising, discriminative dictionary pair learning for image classification remains
unsolved. In this paper, we propose a novel model of graph-regularized discriminative analysis-synthesis
dictionary pair learning (GDASDL), in which a graph-regularized term and a discriminative term are
incorporated into dictionary pair learning. By taking advantage of graph constraints, the proposed GDASDL
can preserve the local geometry structure of the data. Global information is introduced by associating label
information with dictionary atoms. In this paper, an iteration algorithm is presented to efficiently solve the
proposed GDASDL.We extensively conduct experiments on three public image datasets and one face dataset
in comparison with the existing dictionary learning approaches, and the experimental results show that the
proposed model achieves superior performance using a simple linear classifier.

INDEX TERMS Representation learning, dictionary learning, image classification, local geometry structure.

I. INTRODUCTION
In recent years, sparse representation has been success-
fully applied to various vision tasks, including image
denoising [1]–[3], face recognition [4], [5] and image clas-
sification [6]–[8]. In sparse representation, the dictionary
(i.e., a set of representation bases) plays a significant role,
which can be set as off-the-shelf bases (wavelets) or learned
from training data. It has been shown that a learned dictionary
is more powerful than a prespecified dictionary in some
specific applications(such as image classification).

According to the way of encoding input signals, the dic-
tionary learned in sparse representation can be classified into
two categories: synthesis dictionary and analysis dictionary.
A synthesis dictionary is used to approximate an input signal
by a linear combination of a few dictionary atoms. Specif-
ically, x = DZ, where x ∈ Rm×1 is the input signal,
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D = [d1, . . . ,dk ] ∈ Rm×k is a dictionary with atoms as
its columns, and z ∈ Rk×1 is the sparse representation.
An analysis dictionary � = [ωT1 ; . . . ;ω

T
k ] ∈ Rk×m with

atoms as its rows aims to represent a signal with z = �x,
where z contains mostly zeros. Some recent studies [9], [10]
have shown compelling relations between the analysis dic-
tionary and the synthesis dictionary, and further research in
this direction is pending. According to the property of the
dictionary, current prevailing dictionary learning approaches
can be mainly divided into three groups: synthesis dictio-
nary learning(SDL), analysis dictionary learning(ADL), and
analysis-synthesis dictionary pair learning(ASDL).

SDL has been well studied, and most existing dictionary
learning methods belong to this category. Among these meth-
ods, the learned synthesis dictionary can be class-shared,
where the dictionary is shared with all classes [1], [4], [11],
or class-specific [6], [12], where each dictionary atom has
a single class label. To separate common patterns from the
overall dictionary and improve the classification performance
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of sparse representation, some hybrid dictionary learning
methods, which contains a shared sub-dictionary and a set of
class-specific sub-dictionary, have been proposed [8], [13].
Although good performance has been reported, the inherent
high time-consumption of SDL is unavoidable.

Recently, ADL has attracted considerable attention. Com-
pared to the synthesis dictionary, the analysis dictionary
representation has some unique merits, e.g., generalization
to feature transformation and image convolution. The rep-
resentative ASL approach is analysis K-SVD [14]. In [14],
Rubinstein et al. proposed to learn an analysis dictionary and
adopted an algorithm similar to the K-SVD algorithm [1]
to solve the analysis dictionary. Analysis K-SVD has good
performance on image processing but is incompetent for
classification. Later, Shekhar et al. [15] adopted ADL for a
recognition task, and demonstrated that ADL was robust and
efficient and performed competitively with SDL. By inte-
grating the local topological structures and discriminative
sparse labels into the ADL, Guo et al. [16] proposed dis-
criminative ADL (DADL). Tang et al. [17] incorporated the
class structural information in ADL and proposed structured
ADL (SADL).

To learn the data representation in a faster and more com-
prehensive way, ASDL, which inherits the advantages of both
SDL and ASL, has been proposed. In [10], Rubinstein et al.
proposed an ASDL model for image denoising, in which a
pair of class-shared synthesis dictionary and analysis dictio-
nary was learned from an image patch set. Unlike ASDL,
Gu et al. [18] tired to learn a class-specific dictionary pair and
proposed projective dictionary pair learning (PDPL) model.
By requiring both the synthesis class-specific dictionary and
analysis class-specific dictionary to represent the correspond-
ing class well but to represent the other classes poorly, PDPL
achieved good performance in image classification. Later,
Gu et al. [19] introduced analysis sparse representation and
synthesis sparse representation into convolutional sparse rep-
resentation learning and proposed joint convolutional anal-
ysis and synthesis (JCAS) sparse representation models for
different image processing tasks. By embedding Fisher-
like discrimination information into the analysis representa-
tion, the analysis dictionary and the synthesis representation,
Yang et al. [20] proposed a model of Fisher discrimination
dictionary pair learning (FDDPL). Since ASDL ignores the
introduction of discriminative information into the dictionary
learning process, its application for classification tasks is lim-
ited. By incorporating a discriminative term into the objective
function, Yang et al. [21] proposed a discriminative analysis-
SDL (DASDL) model to enhance the discriminative ability
of ASDL. Although improved performance has been reported
in existing ASDL approaches, the discriminative information
embedded in the data (e.g., structural information between
data points) are not fully exploited, and methods of learning
a more discriminative analysis-synthesis pair dictionary are
still being considered.

In practice, it is rational to assume that the representations
of signals in a new feature space should be similar if the

signals come from the same class. Some works have revealed
that the geometric and discriminating structures of signals are
essential to image classification tasks. To preserve local geo-
metric structures embedded in the original data space, numer-
ous manifold learning methods have been proposed, such
as locally linear embedding (LLE) [23], locality preserving
projection (LPP) [24] and Laplacian Eigenmaps (LE) [25].
Liu et al. [26] proposed a locality-sensitive dictionary learn-
ing algorithm with global consistency and smoothness con-
straints. Li et al. [27] proposed a locality-constrained and
label embedding dictionary learning (LCLE-DL) algorithm
for image classification, where a graph Laplacian matrix of
the learned dictionary and a label embedding term were con-
structed to preserve the locality information and label infor-
mation. Jiang et al. [28] proposed a joint dictionary learning
algorithm for face sketch synthesis by utilizing the locality
and manifold geometry of a data space. Zheng et al. [29]
considered the local manifold structures of data and proposed
a graph-regularized sparse coding method.

FIGURE 1. Illustration of our methods. The synthesis dictionary is trained
to represent the images well, and the structure information is
transformed from the original image space to a more discriminative
space using an analysis dictionary.

Motivated by the aforementioned works, in this paper,
we propose a novel model of GDASDL for image classifica-
tion. In the proposed model, the structure information is mod-
eled by a nearest neighbor graph and then transformed from
the original image space to a new space, as shown in Fig.1.
Label information is also incorporated to encourage the opti-
mal representation to be close to the block-diagonal. Ben-
efiting from regularization, the within-class representation
scatter is small, and the between-class representation scatter
is large, resulting in good performance even when using
a simple linear classifier. To evaluate the proposed model,
a series of experiments on three image datasets and one face
dataset are conducted. The experimental results demonstrate
that the proposed GDASDL achieves very promising perfor-
mance in image classification task.

The remainder of this paper is organized as follows.
Section 2 provides a brief review of related works. Section 3
presents the proposed GDASDL model. Section 4 describes
the optimization of GDASDL. Section 5 discusses experi-
ments on image classification, and Section 6 concludes the
paper.
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II. RELATED WORKS
In this section, we will briefly review prior studies on SDL,
ADL, and ASDL.

A. SDL
Given an original signal, SDL methods focus on the mini-
mization of

min
D,z
‖x− Dz‖2F + λ‖z‖1 + f (D)+ h(z) (1)

where f (D) and h(z) are functions on D and z, respectively.
For example, label consistent constraint [4], Fisher discrimi-
nation term [6], locality-constrained term [27]. The functions
are designed according to the tasks.

B. ADL
The conventional ADL problem aims to obtain an analysis
dictionary via

min
�,z
|z−�x‖2F + λ‖z‖1 + h(z)

s.t. � ∈ 8 (2)

where 8 is a set of constraints on � to make the solution
non-trivial.

To improve the model’s performance for image classifi-
cation, Guo et al. [16] constructed a code consistent term
‖Z − H‖2F and a local topology preserving loss function∑n

i=1
∑n

j=1{Wi,j‖zi− zj‖22}, where H is a target code andW
is a weighting matrix. Instead of incorporating the local struc-
ture information, Tang et al. [17] embedded a classification
error ‖L−WH‖2F into (2), where L is a label matrix.

C. ANALYSIS-SYNTHESIS DICTIONARY LEARNING
Recently, Rebinstein and Elad [10] proposed an ASDL algo-
rithm by learning a pair of an analysis dictionary and a
synthesis dictionary via

min
�,D,λ

|X− DSλ(�X)‖2F

s.t. |ωi‖2 = 1 ∀i (3)

where X = [x1, . . . , xn] ∈ Rm×n is an observation data
matrix, D = [d1, . . . ,dk ]Rm×k is a synthesis dictionary,
� = [ωT1 ; . . . ;ω

T
k ] ∈ Rk×m is an analysis dictionary, λ =

[λ1, . . . , λk ] is a threshold vector and λi is the threshold for
the i-th row of �. Sλ(·) is a function operating on matrices
with m rows and defined as follows

Sλ([�X]i,j) =

{
[�X]i,j, if |[�X]i,j| ≥ λi
0, otherwise

where [A]i,j denotes the element in the ith row and jth column
of matrix A. The l2 norm of ωi is required to avoid a trivial
solution.

An approach similar to K-SVD and analysis K-SVD is
adopted to optimize problem (3). Specifically, only one pair
of atoms is updated at each step by keeping all other pairs
fixed. For the optimization of each pair of dictionary atoms,
a rank-one approximation approach is used.

Since no discriminative information is considered, ASDL
is not qualified for classification. To address this limitation,
Yang et al. [21] proposed learning a discriminative analysis-
synthesis dictionary by incorporating a discriminative term.
The objective function of DASDL can be formulated as

min
�,D,P,λ

|X− DSλ(�X)‖2F + α‖Y− PSλ(�X)‖2F

s.t. |di‖2 = 1 ∀i; ‖P‖2F ≤ σ (4)

where P ∈ RC×k and Y = [y1, . . . , yn] ∈ RC×n are a linear
projection matrix and a label matrix, respectively. The second
term in (4) is a classification error term which aims to project
the i-th class coefficients to only the i-th dimension of the
label space. Problem (4) is effectively solved by a similar
algorithm to problem (3).

III. GRAPH-REGULARIZED DISCRIMINATIVE
ANALYSIS-SYNTHESIS DICTIONARY
PAIR LEARNING
In this section, a novel ASDLmodel with graph regularization
and discrimination constraint is proposed. The coefficients
calculated by the new model can capture the local geometric
structures among the data and consider label information.
Thus, the proposed model can effectively determine the rep-
resentations by relying on a small analysis dictionary.

A. GRAPH-REGULARIZED TERM FOR COEFFICIENTS
Since a nonlinear space can always be locally approximated
by several linear subspaces, it is valid to assume that there
is a linear relationship between a signal and its neighbors.
Based on this assumption, the local geometry of the signals
can be characterized by the linear coefficients that reconstruct
each signal from its neighbors. Let X = [x1, . . . , xn] be the
data set,; we first construct a weighted undirected graph G =
(V ,E;A), where V = {vi}ni=1, E = {ei,j}, and A ∈ Rn×n

are the vertex set, edge set and weight matrix, respectively.
In V , each node vi corresponds to a data point xi. Edge ei,j
represents the association between nodes vi and vj. A is a
symmetric weight matrix, and the value of Ai,j is formulated
as follows

Ai,j =

{
1, if xi ∈ KNN (xj) or xj ∈ KNN (xi)
0, otherwise

where KNN (xj) denotes the set of K nearest neighbors of xj.
Assume that, if two signals are close in the original space,

then their coefficients are also close to each other in a new
space. Then, the graph-regularized term can be formulated as

min
Z

n∑
i=1

n∑
j=1

‖zi − zj‖22Ai,j (5)

where zi and zj are the coefficients of xi and xj, respectively,
under the learned dictionary. This strategy has been widely
used in many applications [27], [28]. The graph-regularized
term can preserve the local affinity between signals and has
a positive impact on the classification performance.
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B. DISCRIMINATION CONSTRAINT
TERM FOR COEFFICIENTS
For image classification task, label information is significant.
To utilize the label information effectively, we construct a
block-diagonal matrix Q ∈ Rk×n shown as follows

Q =


1 1 . . . 0 0
1 1 . . . 0 0
...

...
...

...
...

0 0 . . . 1 1
0 0 . . . 1 1


where Qi,j = 1, if di and xj belong to the same class; other-
wise, Qi,j = 0. Instead of encouraging the representations
to be close to Q, we propose transforming the representa-
tions to be the most discriminative representations in feature
space Rk . Then, the discrimination constraint term can be
written as

min
P
‖Q− PZ‖2F (6)

where P is a linear transformation. The discrimination con-
straint term enforces the signals from the same class to have
similar representations and those from different classes to
have dissimilar representations. Since this term improves the
consistency of the representations within a class and enhances
the divergence among different classes, good performance
can be achieved using a simple linear classifier.

C. GDASDL MODEL
By jointly taking the graph regularization and the discrimi-
nation constraint into consideration, the proposed GDASDL
model can be formulated as

min
�,D,P,λ

|X− DZ‖2F + α‖Q− PZ‖2F

+β

n∑
i=1

n∑
j=1

‖zi − zj‖22Ai,j

s.t. Z = Sλ(�X); ‖di‖2 = 1 ∀i; ‖P‖2F ≤ σ (7)

where α and β are scalar parameters. In problem (7), the first
term is a reconstruction error term, which ensures that the
learned dictionary pair (D,�) can represent the data well. The
last two terms represent the discrimination constraint term
and the graph-regularized term, which are used to improve
the classification ability of the proposed model.

IV. OPTIMIZATION
To efficiently solve problem (7), we first reformulate
problem (7) as

min
�,D,P,λ

|

(
X
√
αQ

)
−

(
D
√
αP

)
Sλ(�X)‖2F

+β

n∑
i=1

n∑
j=1

‖Sλ(�xi)− Sλ(�xj)‖22Ai,j

s.t. |di‖2 = 1 ∀i; ‖P‖2F ≤ σ (8)

Let X̂ =
( X√
αQ

)
and D̂ =

( D√
αP

)
. The regularization penalty

term ‖P‖2F ≤ σ can be dropped since D̂ is normalized
column-wise on subsequent passes. In [21], Yang et al. veri-
fied that the accuracy of DASDL with a predefined threshold
has a performance similar to that with a learning threshold.
For the convenience of solving problem (8), we simply set
λ1 = λ2 = · · · = λk = c, where c is a constant. Then,
problem (8) can be reformulated as

min
�,D̂
|X̂− D̂Sλ(�X)‖2F

+β

n∑
i=1

n∑
j=1

‖Sλ(�xi)− Sλ(�xj)‖22Ai,j

s.t. |d̂i‖2 = 1 ∀i (9)

To efficiently solve problem (9), we adopt a strategy that
updates the dictionary pair atom by atom. Specifically, at the
mth step, all but the mth pair of atoms are kept fixed. Then,
we can isolate the dependence on the mth atom pair, and
rewrite problem (9) as

min
ωm,d̂m

‖Ê− d̂mSλm (ω
T
mX)‖

2
F

+β

n∑
i=1

n∑
j=1

‖Sλm (ω
T
mxi)− Sλm (ω

T
mxj)‖

2
2Ai,j + C

s.t. |d̂m‖2 = 1 (10)

where Ê = X̂ −
∑

l 6=m d̂lSλl (ω
T
l X), and C is a constant.

Although problem (10) is not joint convex to (ωm, d̂m), it is
convex with respect to both ωm and d̂m when the other is
fixed. Therefore, we adopt an alternative optimization algo-
rithm to solve problem (10).
Let Sλm (·) partition X in two sets, i.e., XJ

∈ Rm×n1

and XJ̄
∈ Rm×n2 , with current ωm, where n = n1 + n2,

Sλm (ω
T
mX

J ) = ωTmX
J , and Sλm (ω

T
mX

J̄ ) = 0. Ê is similarly
split into submatrices ÊJ and ÊJ̄ . Then, we approximate
problem (10) as

min
ωm,d̂m

‖ÊJ − d̂mωTmX
J
‖
2
F + β(2

n1∑
i=1

‖ωTmx
J
i ‖

2
2

n2∑
j=1

AJ̄
i,j

+

n1∑
i=1

n1∑
j=1

‖ωTmx
J
i − ω

T
mx

J
j ‖

2
2A

J
i,j)

s.t.‖d̂m‖2 = 1 (11)

Let 0(ωm, d̂m) = argmin
ωm,d̂m

‖ÊJ − d̂mωTmX
J
‖
2
F +

β(2
∑n1

i=1 ‖ω
T
mx

J
i ‖

2
2
∑n2

j=1 A
J̄
i,j +

∑n1
i=1

∑n1
j=1 ‖ω

T
mx

J
i ) −

ωTmx
J
j ‖

2
2A

J
i,j), then the partial derivatives with respect to

0(ωm, d̂m) are calculated by

∂0

∂d̂m
= ÊJXJTωTm(ωmX

JXJT )−1 (12)

∂0

∂ωm
= ((d̂Tmd̂m + βLm + 2β3)XJT )−1ÊJ

T
d̂m (13)
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where Lm = SJ − AJ
i,j, S

J is a diagonal matrix and the
ith diagonal entry SJi,i =

∑
j A

T
i,j.3 is a diagonal matrix with

3i,i =
∑

j A
J̄
i,j.

The whole algorithm for solving GDASDL is summarized
in Alg.1. In our experiments, D̂ = [D̂1, . . . , D̂c] is initialized
class by class via K-SVD [1] from X̂, and � is initialized as
(D̂T D̂)−1D̂T X̂X̂T . Fig. 2 shows a convergence curve of the
solving algorithm on the CIFAR-10 dataset. We can see that
the value of the loss function (7) decreases gradually with
the increase of iteration number, and Alg. 1 converges to a
satisfactory local optimal solution after several iterations.

Algorithm 1 Solving the GDASDL model algorithm
Input: Training data X, discriminative information Q,

the number of nearest neighbors K , parameters α, β
and λ

1: Initialization: Compute weight matrixA, dictionary pair
D̂ and �

2: while not converged do
3: for m = 1, 2, . . . , k do
4: update d̂m via (12)
5: update ωm via (13)
6: d̂m := d̂m/‖d̂m‖2
7: ωm := ωm · ‖d̂m‖2
8: D̂(:,m) := d̂m
9: �(m, :) := ωTm
10: end for
11: end while
Output: dictionary pair D̂ and �

FIGURE 2. Convergence of the solving algorithm for image classification
on the CIFAR-10 database.

When the training process is finished, we can learn D̂
and�. Since the synthesis dictionaryD and projection matrix
P are jointly normalized in the learning process, we should
renormalize D and P, because we require that ‖di‖ = 1.
Normalization can be performed via

dm = d̂m(1 : k)./‖d̂m(1 : k)‖2
pm = d̂m(k + 1 : end)./‖d̂m(1 : k)‖2 (14)

In classification, we adopt a simple linear classifier Ŵ =
YtrZTtr (ZtrZ

T
tr + ςI)

−1, where Ztr and Ytr are the coefficient

matrix and label matrix of training data, respectively. ς is the
weight of the regularization term (empirically set as 1e−4)
and I is an identity matrix.
Given a test sample xt , the representations can be effec-

tively calculated by zt = Sλ(�xt ). Then, the label for test
sample xt is given by l = argmaxl(yl = Ŵzt ), where yl is
the class label vector of xt .

V. EXPERIMENTAL RESULTS
We perform experiments on image classification, face recog-
nition and gender classification to evaluate the proposed
GDASDL model. We compare GDASDL with several of
the latest dictionary learning algorithms, such as label-
consistent K-SVD (LC-KSVD) [4], Fisher discrimination
dictionary learning (FDDL) [6], PDPL [18], structured ADL
(SADL) [17], analysis-SDL with a support vector machine
(SVM) as a classifier (ASDL-SVM) [10], and DASDL [21].
In all competing methods, LC-KSVD and FDDL belong to
SDL, SADL is an ADL method, and the other three methods
belong to ASDL. In experiments, the number of synthesis
dictionary atoms for all competing methods is set as 20,
102 and 257 on the CIFAR-10 [30], Caltech-101 [31] and
Caltech-256 [32] datasets, respectively. The dictionary size
is set to 100 for face recognition and gender classification.
To obtain reliable results, we repeat each experiment 5 times
with different random selection of the training and testing
images, and present the mean accuracy on each dataset.

FIGURE 3. Samples from the CIFAR-10 dataset.

A. IMAGE CLASSIFICATION
CIFAR-10: The CIFAR-10 dataset contains a total of 60,000
32 × 32 color images in 10 classes (i.e., airplance, automo-
bile, bird, cat, deer, dog, frog, horse, ship and truck), with
6,000 images per class. Some examples are listed in Fig.3.
There are 50,000 training images and 10,000 testing images.
The training images are divided into five training batches,
each with 10,000 images. Since the training batches con-
tain the images in random order, some training batches may
contain more images from one class than another. Different
from the training batches, the test batch contains exactly
1,000 randomly selected images for each class. In each exper-
iment, we randomly choose 10,000 images in all five training
batches for training, with 1,000 samples per class, and the test
batch for testing.

Caltech-101: The Caltech-101 dataset contains 9,144
images from 102 classes (i.e., 101 object classes and a
‘‘background’’ class). The samples from each category have
significant shape variability, and the number of images in
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FIGURE 4. Samples from the Caltech-101 dataset.

FIGURE 5. Samples from the Caltech-256 dataset.

TABLE 1. Image classification accuracy (%) and training/testing time (s)
on the CIFAR-10, Caltech-101, and Caltech-256 datasets.

each category varies from 31 to 800. Fig. 4 provides some
examples from the Caltech-101 dataset. Following the pop-
ular experimental settings, we randomly select 3,060 images
for training, with 30 images per category, and the remainder
6,084 images for testing.

Caltech-256: The Caltech-256 dataset contains more than
30,000 images of 256 classes, and each class contains 80 to
827 images. Compared to the Caltech-101 dataset, it is more
challenging due to the large categories and variations in
object shape and size. In each experiment, 30 images per class
are randomly selected for training and the rest for testing.
Some examples are shown in Fig.5.

The feature descriptor of each image used in the CIFAR-10
and Caltech-101 databases is extracted by LSAE [33]. For
the Caltech-256 dataset, the feature descriptors are extracted
as [34], where the scale-invariant feature transform (SIFT)
descriptors [35] from 16 × 16 patches are densely extracted
with a step-size of 6 pixels, followed by learning a codebook
with 1,024 atoms using the standard k-means clustering.
Then, based on the SIFT features and codebook, the spatial
pyramid matching (SPM) feature [36] for each image is
extracted with three grids of size 1 × 1, 2 × 2 and 4 × 4.
Since the dimension of feature vectors is large, the image
features on the three datasets are reduced to 500 dimensions
by PCA. Parameters α, β and λ are set as 100, 10, and 0.001,
respectively. K is set as 5. The classification accuracy is
reported in Table 1.

FIGURE 6. Confusion matrix on the CIFAR-10 dataset.

FIGURE 7. Classification accuracy of each category in the
Caltech-101 dataset.

From Table 1, we can see that the proposed GDASDL
achieves better performance than all other methods. The
advantages of using the proposed method, compared to
LC-KSVD, on the three datasets are highlighted. For ADL,
the accuracy of GDASDL is 5.8%, 2.5% and 0.9% higher
than that of SADL on the three datasets. Since GDASDL
considers both graph-structure information and discrimina-
tive information in dictionary pair learning, it outperforms
DASDL by 4.7%, 0.6% and 0.4% on the three datasets. The
confusion matrix for GDASDL in the CIFAR-10 dataset is
shown in Fig.6. We can observe that the accuracies of cat and
bird are lower than those of others since the object is small
and the background is relatively complex. Fig.7 shows the
classification accuracy of each category in the Caltech-101
dataset. It can be seen that there are 15 categories with 100%
accuracy.

The time-consumption of each method on the CIFAR-10
database, including training time and testing times, is shown
in Table 1. Note that the time is obtained under the
MATLAB 2014a programming environment and a CPU
server of 16 CPUs with 1.3 GHz and 16GB RAM. It can
be seen that GDASDL is more efficient than FDDL and
ASDL-SVMwhen training but less efficient than other meth-
ods. This is mainly due to numerous amounts of matrix
inversion computation in the proposed Alg.1. For testing,
GDASDL is very effective. Although GDASDL is slower
than LC-SVD and PDPL, the classification accuracy of
GDASDL is more than 32.5% higher than that of LC-KSVD
and PDPL on the CIFAR-10 dataset.

B. FACE RECOGNITION
The AR face database [37] contains more than 4,000 face
images of 126 people. The images include different
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FIGURE 8. (a) Some samples of the AR database. (b) Visualization of
PSλ(�X) for 100 samples on the AR database.

TABLE 2. Face recognition accuracy (%) on the AR database.

illuminations, different expressions and different dis-
guise(sunglasses and scarves), as shown in Fig.8(a). Each
person has 26 image images in two sessions. Following
the popular experimental settings, a subset of the dataset
consisting of 2,600 images from 50 females and 50 males
are used. For each person, 20 images are randomly selected
for training, and the other 6 images are used for testing.
The 540-d features provided by [4] are used as the image
features. Parameters α, β and λ are set as 100, 10, and 0.005,
respectively.

Table 2 lists the recognition accuracy of all competing
methods. From Table 2, it can be seen that GDASDL achieves
the highest accuracy of all methods. Compared to SDL
and ASL approaches (i.e. LC-KSVD, FDDL and SADL),
the accuracy of GDASDL is at least 3.4% higher. Compared
to other ASDL approaches (i.e., PDPL, ASDL-SVM and
DASDL), the accuracy is improved by over 2.2%.

C. GENDER CLASSIFICATION
In this experiment, we select a nonoccluded subset of the
AR database consisting of 50 males and 50 females, with
14 images per person, to conduct experiments of gender
classification. We train on the images of first 25 males and
25 females, and test on the images of the remaining 25 males
and 25 females. The image is resized from 165 × 120 to
60 × 43, and rearranged into a feature vector. Then, PCA is
adopted to reduce the dimensionality of the feature vector
to 100. Parameters α, β and λ are set as 10, 1, and 0.0005,
respectively.

The classification performances are summarized in Table 3.
The proposed GDASDL is better than all other methods,
with at least 0.8% improvement. Specifically, the accuracy of
GDASDL is 2.7% higher than that of LC-KSVD, FDDL and
PDPL. Compared to DASDL and ASDL-SVM, GDASDL
jointly incorporates graph-structure information and discrim-
inative information into dictionary pair learning, which could
enhance the discriminative ability of the representations.
We also visualized PSλ(�X) for 100 samples, as shown
in Fig. 8(b). It can be seen that the transformed representation
coefficients has a class-specific block-diagonal structure.

TABLE 3. Gender classification accuracy (%) on the AR database.

FIGURE 9. Classification accuracy of GDASDL with different parameters in
the CIFAR-10 dataset. (a) α, (b) β, (c) K .

D. DISCUSSION OF PARAMETERS
In this subsection, we verify the effects of parameters
(i.e., α, β and K ) on the performance of the proposed
GDASDL on the CIFAR-10 dataset. In the experiments,
we change only one parameter at a time while fixing the oth-
ers. The classification accuracy of GDASDL with different
parameter values is shown in Fig. 9.

From Fig. 9(a), it can be seen that the proposed GDASDL
achieves increasing classification accuracy as the value of α
increase from 1 to 100. When the value of α is larger than
100 (i.e., 200), the performance of GDASDL worsens. From
Fig. 9(b), we can see that the best performance is achieved
when parameter β = 10. For parameter K , a higher the value
ofK does not indicate higher accuracy. FromFig. 9(c), we can
see that, when K = 15, the classification accuracy is highest;
however, the time consumption is also biggest. Considering
the time consumption of the proposed model, we set K = 5
in all experiments.

E. DISCUSSION ON GDASDL WITH
DEEP LEARNING METHODS
Deep learning has been widely studied in the past ten years
and achieved excellent performance in various computer
vision tasks [38]–[40]. Lu et al. [41] proposed a light field
imaging approach for solving underwater imaging prob-
lems using deep convolutional neural networks with depth
estimation. Cen and Wang [42] proposed a deep dictio-
nary representation-based classification scheme for occluded
faces. Tariyal et al. [43] analyzed the relevance between
dictionary learning and deep learning, and proposed deep
dictionary learning.

The proposed method will feasibly perform better in image
classification using deep features, because the deep features
have stronger representative and discriminative ability than
the hand-crafted features. In fact, the features of image can
be extracted through deep learning, followed by dictionary
pair learning via (7). In this work, we mainly focus on the
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design of the structure constraint and discriminative dictio-
nary learning. We will exploit a framework that combine the
GDASDL model with deep features in the future.

VI. CONCLUSION
This paper has presented a novel GDASDL model based
on the local geometric structures and label information of
the data for image classification. The locality is used as
a graph-regularization term to restrain the representations.
Meanwhile, label information is also used as a discrimination
constraint to enhance the discriminative ability of the learned
dictionary pair. By embedding the two terms into the objec-
tive function, the proposed model can achieve superior per-
formance using a simple linear classifier. We also presented
an iterative algorithm for solving the proposed model. The
experimental results demonstrate that the proposed GDASDL
model yields good classification results on four well-known
public datasets, and outperforms the six state-of-the-art dic-
tionary learning methods, i.e., LC-KSVD, FDDL, PDPL,
SADL, ASDL and DASDL.

In the future, we will design a more efficient algorithm for
solving GDASDL and apply this method for other problems,
such as speech processing and biometrics. We also plan to
extend ASDL to multilayer dictionary pair learning by com-
bining dictionary learning and deep learning to capture high-
level image features on small sample data set.
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