
Received March 11, 2019, accepted April 12, 2019, date of publication April 23, 2019, date of current version April 30, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2911601

Harvesting Indoor Positioning Accuracy
by Exploring Multiple Features From
Received Signal Strength Vector
MUHAMMAD USMAN ALI 1, SOOJUNG HUR1, SANGJOON PARK2, AND YONGWAN PARK1
1Department of Information and Communication Engineering, Yeungnam University, Gyeongsan 38541, South Korea
2Electronics and Telecommunications Research Institute, Daejeon 34129, South Korea

Corresponding author: Yongwan Park (ywpark@yu.ac.kr)

This work was supported in part by the (Ministry of Science, ICT) (MSIT) Korea, under the Information Technology Research Center
(ITRC) Support Program (IITP-2018-2016-0-00313) supervised by the Institute for Information and Communication Technology
Promotion (IITP), in part by the Basic Science Research Program, through the National Research Foundation of Korea (NRF) founded by
the Ministry of Science, ICT and Future Planning under Grant 2017R1E1A1A01074345, and in part by the ICT R&D Program of
MSIP/IITP. [2017-0-00543, Development of Precise Positioning Technology for the Enhancement of Pedestrian’s Position/Spatial
Cognition and Sports Competition Analysis.]

ABSTRACT The development of an indoor location information system using ubiquitous resources available
in the environment is a challenging problem in the field of Geo-Location technologies, these days. Therefore,
instead of relying on a single resource, the fusion of location information from multiple resources into an
indoor positioning system (IPS) becomes important. The IPS in which information from multiple sources
such as Wi-Fi, geomagnetism, and motion sensors is fused to harvest the next level of accuracy is commonly
known as hybrid IPS. The initial estimate of the position with high accuracy is very critical for the hybrid
IPS. Wi-Fi fingerprinting is one of the potential candidates for providing the initial position in such systems,
whereas due to the multipath, absorption, and fading characteristics of the indoor environment, the accuracy
of the Wi-Fi fingerprinting techniques is limited. Many algorithms and techniques have been proposed to
improve the accuracy ofWi-Fi-based IPSs. However, most of the solution requires high computing resources
and specialized hardware. This article proposes an empirical approach inwhich the important features present
in the received signal strength vector (RSSV) of theWi-Fi device are selected to exploit the similaritymeasure
and index order of theAccess Points (APs). The experimental results show that these featuresmake it possible
to avoid long distances outliers and to improve the positioning accuracy of theWi-Fi fingerprinting technique
without the use of specialized hardware.

INDEX TERMS Indoor positioning, IPS, particle swarm optimization, PSO, received signal strength, RSSI,
Wi-Fi fingerprinting.

I. INTRODUCTION
The indoor location information of a mobile node using only
ubiquitous resources available in an environment is one of
the popular topics nowadays in the field of location-based
technologies. Global Navigation Satellite Systems (GNSS),
such as the Global Positioning System (GPS), are limited
only for outdoor location-based services (OLBS) because
satellite signals are heavily attenuated in indoor environ-
ments because of multipath propagation, absorption, fading
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effects, etc. become unreliable for the purpose of positioning.
As a result, many indoor positioning systems (IPS) solu-
tions have been proposed to enable ILBS (Indoor Location
Based Services) services in public and corporate environ-
ments (e.g. hospitals, airports, shopping centers). ILBSs
help in resource management, including optimal deploy-
ment, tracking, and monitoring of resources. IPS solu-
tions are classified as infrastructure-based and infrastructure-
free technologies. Infrastructure-based solutions mainly
include radio frequency identifier (RFID), RF sensor, Blue-
tooth, and UltraWideBand (UWB) techniques as resources,
while infrastructure-free solutions are typically based on
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Wi-Fi, magnetic field, motion sensors (inertial measure-
ment units (IMU)), and camera vision techniques [1].
Infrastructure-free solutions are preferred because of their
low cost and ready-to-use point of view over infrastructure-
based solutions that require expensive pre-installation and
configuration of specialized hardware in the deployment
environment. In recent trends in IPS research, instead of rely-
ing only on a single resource, hybrid systems are proposed in
which data frommultiple sensors are fused (e.g., Wi-Fi, mag-
netometer, IMU) [2], [3]. In multiple sensor-based solutions,
Wi-Fi-based location information is normally used at a global
level, geomagnetism-based positioning at a local level and
motion sensor-based pedestrian dead reckoning (PDR) helps
to further improve accuracy. [4], [5]. As a global position
resolver, Wi-Fi positioning also plays an important role as
initial position provider [6]. The accurate initial position is
very essential for both geomagnetism and motion sensor
positioning techniques.

Wi-Fi-based techniques are generally divided into
calibration-based and calibration-free techniques [7].
An indoor environment is hybrid, due to the coexistence of
the line of sight (LOS) and the non-line-of-sight (NLOS)
cases. This complexity in an indoor environment restricts the
use of calibration-free techniques such as trilateration or tri-
angulation. Therefore, IPS solutions using time of arrival
(TOA) and time difference of arrival (TDOA) [8] techniques
exhibit multipath propagation errors. In addition, time syn-
chronization of the receiver/sender side and the measurement
accuracy of the short-range flight time make them more chal-
lenging, while the angle of arrival (AOA) technique requires
complex hardware for the calculation of angle. Position
estimation using the value of the received signal strength
indicator (RSSI) is a solution that avoids the aforementioned
time synchronization problems. The Wi-Fi fingerprinting
is a calibration-based technique that uses the RSSI values
received at a particular location. Wi-Fi fingerprinting does
not require map information and location of APs deployed
in the target environment [9]. In contrast, a calibration-
free path loss model technique using map and APs location
information was proposed in [10] to avoid the laborious task
of site survey required for Wi-Fi fingerprinting calibration
database. Similarly, several other variants of fingerprinting
techniques have been proposed so far, but the major challenge
remains the constant accuracy in estimating the position using
an unreliable measurement of the RSSI index [11], [12].
PhaseFi is based on deep learning and claims to be able
to provide accurate location estimation using phase and
amplitude information from sub-carriers’ channel state infor-
mation (CSI) [13]. This improvement in accuracy is due to
the use of less attenuated factors in the CSI of the subcarriers
compared to RSSI in propagation in indoor environments.
In constructing the fingerprint database (DB) of phase and
amplitude information CSI, access at the physical layer level
to the receiving device is required. Similarly, in [14] author
presents a CSI slicing technique that looks for a factor to
maximize the match of power delay profiles collected from

many CSIs obtained from multiple bands. CSI Splicer evalu-
ate the derived power delay profile by estimating the distance
between the sender and the receiver and corrects the ranging
error for high resolution positioning purpose. Currently, some
sophisticated communication devices can only provide infor-
mation from multiple subchannels using the MIMO-OFDM
transmission technology, which is currently only practical
through third-party hardware. ArrayTrack [15] provides an
estimate of AoA-based location using an antenna grid with
commodity APs. By increasing the number of antennas,
multiple Array Track APs overhear the transmission and
calculate AoA information from the information transmitted
by the client. Moreover, thanks to the AoA technique used
in ArrayTrack, it is perfectly suited to low density AP envi-
ronments. Recently, the addition of Fine Time Measurement
(FMT) is a very important development of IPS techniques,
with FTM support included in the 801.11AC update. FMT
is another direction that claims to provide positioning accu-
racy inside the cm level range. In [16], the author carried
out a complete analysis of the FMT technology and exam-
ined its evaluation with an Open Platform which provides
the time of flight measurement and the range calibration
facility.

At first, the proposed algorithms were tested in an office
site that is regarded as an ideal environment, the accuracy
was less than 2 meters and the positioning accuracy achieved
only withWi-Fi seems sufficient for a particular requirement.
However, while allowing positioning on public sites, the real
challenge of indoor positioning is when the average accu-
racy is very low and positioning with a single resource does
not provide sufficient accuracy. Therefore, in public places,
several resources are needed to work together to provide a
certain level of precision in estimating the position. Another
challenge is to improve the accuracy of fingerprinting without
the use of special hardware resources or using only mobile
devices that use simple transmitters which does not provide
easy access to the physical layer. In this study, some of
the features of RSSI that exploit the similarity measure and
index order of APs in RSSV are examined to improve the
accuracy of the fingerprinting technique without using spe-
cialized hardware. The proposed solution combines several
calculated parameters from the RSSI list received at a par-
ticular location by a receiving node and searches for the best
match between multiple candidate locations with a minimum
distance error. To avoid confusion, the measure of RSSI level
similarity between RSSV online APs and RSSV of DB is
represented by RMSE (root mean squared error), while the
term Euclidean distance is used to represent the geometric
distance.

The rest of this article is structured as follows. In Section II,
the problem statement is formulated and related techniques
are discussed in Section III. Section IV provides details on
our proposed system. The operating details of the finger-
print matching algorithm used in our system are discussed
in Section V. Section VI covers the experimental setup and
the results are presented in Section VII.
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II. PROBLEM STATEMENT
An IPS solution based on single resource information can
provide location accuracy up to a certain level, while a hybrid
solution using information fusion from multiple resources
can achieve greater location accuracy. This higher degree of
location accuracy is achieved by compensating the limitation
of one technique with the strength of another technique. For
example, the PDR exhibits low error in position estimation
for short distance traveled by the user. However, this error
increases over time due to the accumulation of drift in the
estimation of the heading angle at each step. This drift is due
to the noise present in the technology of the sensors of the
microelectromechanical systems (MEMS) [17]. Conversely,
in Wi-Fi fingerprinting, the short-range error ratio traveled
by the target is high compared to the long distance due to
the absence of drift element in this technique. In addition,
the uncertainty of resource availability in real-time scenar-
ios is a significant problem that requires the use of Wi-Fi
fingerprinting techniques, PDR, and geomagnetism used in
parallel or alternatively in a hybrid IPS system to mitigate
such unusual situations in the position estimate. [4]. Further-
more, accurate starting position information is very impor-
tant for PDR and geomagnetism techniques to control drift
error in PDRs and to minimize the geomagnetism search
space [18]. Therefore, Wi-Fi based positioning plays a key
role in most hybrid IPS systems as a technique to provide a
starting position for other techniques. However, because of
the noise inherent in radio cards, Wi-Fi positioning can lead
to long-distance errors, which can lead an IPS hybrid system
to an unstable convergence state. In addition, the accuracy
of the Wi-Fi positioning as the initial position provider will
guarantee a bounded maximum error and the accuracy prob-
ability of the hybrid IPS. As discussed in previous section
Wi-Fi-based solutions that provide a high level of accuracy
by exploiting the CSI from the physical layer. However,
access to CSI information is currently only available on
Wi-Fi devices that support the MIMO-OFDMWi-Fi technol-
ogy. Therefore, the problem is how to improve the accuracy
and reduce the maximum error of Wi-Fi fingerprinting tech-
niques using conventional mobile devices instead of using
expensive specialized hardware.

III. RELATED WORK
Wi-Fi fingerprinting normally operate in two phases: an
offline phase for the generation of a fingerprint database
in which RSSI vectors (RSSV) received at particular refer-
ence points are stored in the database with accurate location
information through an environmental survey. While in the
online phase, the location estimate is made when the target
node sends a real-time list of the MAC addresses and the
corresponding RSSI values in pairs of visible APs received
at an unknown position in the Wi-Fi network environment.
The system searches for the fingerprint of the best matching
candidate in the database and declares the corresponding
reference point of the best-identified candidate as the target
location. In classical fingerprinting techniques, the matching

is performed by calculating the root mean squared error
(RMSE) (or root mean square deviation (RMSD)) between
RSSI level of matched APs in current scan and all candidate
reference points in the fingerprinting DB and then the best
(1-NN) or the k best matches (k-NN) are used to calculate
the position of target node [19]. The enhanced weighted
K-nearest neighbor (EWKNN) algorithm improves accuracy
over the simple k-NN approach by selecting the number of
neighbors taken into account at run time and giving high
weight to candidate positions with fewer RSSI correspon-
dence errors. [20].Whereas in rank-based approach, the order
of APs in the RSSV is considered invariant with respect
to bias and scaling; the algorithm finds the candidate ref-
erence point by comparing the ranks assigned to the APs
in a received RSSV with the ranks of APs in a scan vector
stored in the DB with minimum difference [21]. A very
important study presented in [22] discusses more the 50 dif-
ferent similarity function and their performance with respect
to accuracy. In addition, the need to define a threshold for
the elimination of weak RSSI APs is also studied. The author
has considered a single site database with multiple floors and
also provides the best similarity configuration for k-NN based
fingerprinting.

IV. PROPOSED SOLUTION
The proposed algorithm is essentially based on the following
principle: instead of relying solely on the RSS similarity
measure, the system takes into account the other features
available in the RSSV format and their weight in efficiency
to identify the candidate positions with a high accuracy and
robustness. The measure of similarity of the RSSI level with
respect to the number of matched APs and their order with
respect to the RSSI level in the RSSV are important measures
for identifying candidate positions with respect to spatial
confinement. Similarly, there are several features available
in the RSSV that can be exploited to bring high accuracy
in finding the best candidate from the fingerprint database.
The parameter selection in the proposed solution has many
dimensions, the Selection of K value and calculation of
kRMSE parameters are selected to control the effects of
the Wi-Fi environment [19], another parameter named as
centroid distance is used to exploit the spatial distribution
of candidate reference point around the ground truth [20],
whereas to control the diversity effect of different mobile
devices, the entropy parameter is adopted from ranked based
approach [21]. Furthermore, these features are combined to
compensate for the weakness of one with the strength of
others. In addition, a heuristic optimization approach is used
to calculate the efficiency of each parameter for a particular
measurement of accuracy. Therefore, the proposed finger-
print matching algorithm is more efficient and robust than the
algorithms described in the previous section. The algorithm
proposed in its fingerprint matching process with the con-
ventional RSSI similarity measure also calculates the order
difference of the APs in RSSV with respect to the signal
strength at a particular reference point, in order to find the best
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FIGURE 1. Ratio and mean value of good APs vs. Total APs at reference
points of both sites.

match among multiple candidate fingerprint locations with
minimize error distance.

A. K SELECTION
The first parameter in harvesting the accuracy is K, it is an
offline parameter and calculated for each site only once. K
in the proposed algorithm is the number of APs compared
at each candidate position in the fingerprinting database to
retrieve position information. In EWKNN the author has
proposed the variable value of k, which is selected by setting
a threshold to the RSSI comparison difference, where the
threshold selection is manual and it is possible that all RSSI
comparison are greater than the threshold while leaving K
equal zero. In the proposed algorithm, the selection of K
is with respect to Wi-Fi infrastructure present in the envi-
ronment and is directly proportional to Good APs in the
environment. According to Good AP’s definition in [23],
the APs with consistence presence at particular reference
points are given high importance as compare to other which
disappear in consecutive scans. For example, if the fingerprint
database is constructed using N scans per RP, the APs present
in N/2 scans on N are considered as Good AP. Referring to
Eq. (1) and Eq. (2) helps us in K selection.

KRPi = (GRPi/TRPi ) (1)
K = KRSSV ∗ (Mean(KRP1 ,KRP2 , . . .KRPN )+ C) (2)

where GRPi and TRPi are Good AP count and Total AP count
to each cell of the fingerprinting DB, respectively. KRSSV is
the total AP count in a particular RSSV. The Fig. 1 shows the
selection of K for selected test sites; for each site 40 random
reference points are examined to calculate theGRPi mean and
to estimate the C margin for both sites. The variable C is the
standard deviation of the Good APs mean values to give an
upper limit to the selection of K. This selection process of K
ensures that priority must be given to APs whose frequency
of occurrence and order is high in the RSSV signal received
at a particular location.

B. MAX MATCH COUNT (MMC)
Empirically, it is observed that RP candidates close to the
ground truth and their neighboring RPs have a high number

FIGURE 2. Likelihood of RP closest to ground truth with respect to
normalized AP match count (a) IT Building (b). Incheon Airport.

TABLE 1. Statistics of K calculation using a standard deviation margin
value of C = 0 and C = 0.1 at both sites(IT building and incheon airport).

of AP matches, which is obvious. To verify this observation,
the index values of the candidate RPs in a list sorted according
to RMSE for 100 position requests on each site are observed.
In the Fig. 2, the X-axis shows the number of normalized AP
matches, while the Y-axis indicates the frequency of the RP
closest to the ground truth for both sites. Here, the number of
normalized APmatches means that, at each request, the mini-
mum and themaximumnumber ofmatches are taken and then
these values are normalized between 0 and 1. It is clear from
the histogram that the existence of ground truth RP is high
in candidate RPs having high match count. Furthermore, it is
quite possible that the occurrence of an outlier with a strong
correlation with a weak RSSI in paired APs is quite possible.
Whereas the headcount of RPs closer to the ground truth
having similar AP match count is large as compared to the
outlier (mostly single in the count). Therefore, the maximum
AP match count (MMC) with respect to neighbor count is an
important measure that is used to avoid the outlier that have
high AP match count but lower in the neighbor count. To sort
candidates for the position, the RMSE of each RP is divided
by its MMC value. In addition, the candidate at the top of
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FIGURE 3. Location accuracy performance graph of RMSE and KRMSE at
IT building and ICN airport sites.

the sorted list is deleted if the number of neighbors is one.
This helps us to control the large distance error induced by
the outliers.

C. KRMSE RATIO
The RMSE is one of the most powerful parameters and plays
a key role in fingerprinting similarity check process. The
RMSE is calculated by taking the square root of the sum
of squared difference of the RSSI levels of the matching
APs between the online user scan vector and an RP from

the fingerprint DB (i.e., RMSE =

√∑n
j=1(Pj−Qj)

2

n ). This
parameter helps to sort potential candidates closer to the
ground-truth location based on the minimum RMSE value.
Experimentation shows that in indoor radio environments,
some areas result in the selection of outliers with low RMSE
values due to a high correlation between some APs with
low RSSI values. Therefore, an additional division with the
number of APs compared (i.e. MMC) is added in order to
prioritize the candidate locations with a higher number of AP
matches. The Fig. 3 shows the performance graph of the sim-
ple RMSE value and the kRMSE value with respect to their
error distance measurement. It is clear from the graph that the
kRMSE ratio provides better control of long-distance errors
than simple RMSE. The Fig. 4 shows the spatial visualization
of the sorted candidates with respect to the kRMSE value. It is
clear from the visualization that candidates with the smallest
kRMSE value are closer to the ground-truth.

kRMSEi =
1

MMC

√∑n
j=1

(
Pj − Qj

)2
n

(3)

where P and Q refer to two vectors, one of the online scan
and the other of the database, respectively.

D. CENTROID DISTANCE
The distance from the center of gravity is also an important
parameter for filtering the estimated positions closest to the

FIGURE 4. Spatial location of reference Points sort by kMRSE value
(a) 3D view, (b) Top view.

ground [24]. The location of the centroid is the average
location of the most ordered N RPs relative to the minimum
kRMSE value. The position of the centroid in the proposed
algorithm is calculated by taking an average of the coordinate
values (X, Y) of each selected candidate position, i.e. the best
candidates N (i.e.8 ≤ N ≤ K ) are selected to compute the
centroid as follows.

Pcen =
P(RP1)+ P(RP2)+ . . .+ P(RPN )

N
(4)

where P(RPj) = (Xj,Yj) denotes the position of jth RP
and j = 1,2. . .N. Pcen = (Xcen,Ycen) denotes the calculated
position of the centroid from selected N RPs. In a grid an RP
is surrounded by 8 neighboring RPs at first hop, therefore,
at least top 8 candidates are selected to find the centroid
position by taking the mean of their spatial location during
a particular position request. The Euclidean distance of a
candidate RP from calculated centroid is called its Centroid
Distance. Centroid is expected to be the closest point to the
ground truth. This distance from centroid is used to priorities
RPs that are closer to the centroid. The Fig. 5 (a,b) shows the
distribution of indices of candidates in a list sorted by kRMSE
value from least to maximum. For example, more than 80%
of candidates with a distance less than 1 meter from ground
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FIGURE 5. Distribution of candidates according to their distance from the
centroid location in a list sorted at least to the maximum kMRSE. (a) IT
Building (b) Incheon Airport.

truth are present in the first 20 indices of the IT building site
(Fig. 5a), while nearly 80% of candidates with a distance less
than 3 meters are present in top 50 indices of the ICN Airport
site (Fig. 5b).

E. ENTROPY ERROR
Now, in this step, another important parameter called entropy
error is calculated. The entropy error is a measure to estimate
the similarities between the RSSV received online and each
candidate location RSSV in the database. Referring to the
Eq. (5), the proposed algorithm calculate1Vji for each corre-
sponding AP in both RSSVs, first by sorting the two RSSVs
relative to the RSSI level, then measuring the difference of
AP index in both lists. In addition, the order difference of an
AP with a stronger RSSI is minimized by multiplying it by
the RSSI level (RSSIVji) divided by -100. A similar procedure
has been followed as a rank calculation in [21]. Our entropy
parameter differs from the rank approach in two ways: first,
the proposed algorithm use a simple difference formula and,
second, it assign a higher weight to APs with strong RSSI
values, as shown in Eq. (5) and Eq. (6). Simple difference
formula makes it possible to use fewer computation resources
and the assignment of higher weight to APs with strong RSSI
bring uniqueness to RPs with respect to APs closer to the

FIGURE 6. Empirical CDF of distance error calculate by using entropy
parameter and ranked based algorithm.

location of RP. Fig. 6 shows the position accuracy perfor-
mance of the proposed entropy parameter in comparison with
the ranked based approach at both sites. Therefore entropy
helps in limiting the strong candidates around the ground
truth by calculating the order difference of each AP with
respect to its signal strength in online RSSV and a fingerprint
from DB.

1Vji =

∣∣∣∣(IVji − ICji) ∗ RSSIVji−100

∣∣∣∣ (5)

Entropy =

∑k
1Vji

k2
where k ≤ K (6)

where IVji and ICji) are indices of matched APs in online
RSSV and candidate RSSV from DB, respectively.

F. FACT CALCULATION
The FACT calculation is a measure used in the candidate
selection process for the final position. The candidate with
the minimum FACT value in the candidate list is selected as
the final position of the mobile node or user. Two different
approaches for FACT calculation are proposed as follows.

1) WEIGHTED APPROACH
The FACT calculation in weighted approach begins with the
normalization of the parameter values of the selected candi-
date, as indicated in the Eqs. (7), (8), (9). Then the FACT is
calculated as a product of kRMSE with the sum of Entropy
and Dcntr , as shown in Eq. (10). The sum of the centroid
distance and the entropy error is used to weight the priorities
of candidates with minimal entropy error and the distance
from the center of gravity.

k̂RMSE =
kRMSE − min(kRMSE)

min(kRMSE)+ max(kRMSE)
(7)

Êntropy =
Entropy− min(Entropy)

min(Entropy)+ max(Entropy)
(8)
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D̂cntr =
Dcntr − min(Dcntr )

min(Dcntr )+ max(Dcntr )
(9)

FACT = k̂RMSE ∗ (Êntropy+ D̂cntr ) (10)

2) PSO APPROACH
In PSO approach, the Particle Swarm Optimization (PSO)
technique is employed to measure the efficiency of each
parameter (i.e., k̂RMSE, Êntropy, and D̂cntr ) in FACT calcula-
tion [25]. PSO helps in finding the value of each constant (i.e.,
α, β, and γ ) shown in Eq. (11). The value of each constant is
optimized with the minimum distance error cost function in
the PSO process.

FACT = α × k̂RMSE + β × Êntropy+ γ × D̂cntr (11)

The PSO algorithm runs for each distance error cost func-
tion i.e. 3rd quartile(75%), Average, Std. Dev., and Max error
given in Eqs. (15), (16), (17),and (18), respectively, with the
following configuration.
• 100 particles per Iteration.
• 50 Iterations per test case.
Velocity Update: Each particle’s velocity is updated using

Eq. (12):

vi(t + 1) = wvi(t)+ c1r1 [xi(t)xi(t)]+ c2r2 [g(t)xi(t)] (12)

where i is the particle index, w is the inertial coefficient c1,
c2 are acceleration coefficients (0 ≤ c1, c2 ≤ 2), r1, r2
are random values (0 ≤ r1, r2 ≤ 1) regenerated on every
velocity update,
vi(t) is the particle’s velocity at time t. xi(t) is the particle’s

position at time t. xi(t) is the particle’s individual best solution
as of time t. g(t) is the swarm’s best solution as of time t.

Position Update: Each particle’s position is updated using
Eq. (13):

xi(t + 1) = xi(t)+ vi(t + 1) (13)

The dynamic model used in PSO algorithm to measure the
ratio of each parameter for particular measure of accuracy is
composed of following functions.

FACT = X1 × k̂RMSE + X2 × Êntropy+ X3 × D̂cntr
(14)

cost3rdQ = Quartile3{D1,D2,D3, . . . ,Dn} (15)

costaverage =

∑n
i=1 Di
n

(16)

coststd = std{D1,D2,D3, . . . ,Dn} (17)

costmaxerr = max{D1,D2,D3, . . . ,Dn} (18)

whereDi is the Euclidian distance between estimated position
and ground truth. The search space of X1 (α), X2 (β), and
X1 (γ ) is 0 to 1. Each cost function calculates corresponding
error value for a set of 120 and 270 position requests for IT
Building and Incheon Airport per Iteration, respectively.

Table 2 shows the estimated effectiveness of each parame-
ter for both IT Building and Incheon Airport for selected cost

TABLE 2. Estimated α, β, γ values using PSO with different cost function
of accuracy.

functions of accuracy. Entropy parameter shows no impor-
tance in case of IT Building case whereas it shows significant
importance in case of Incheon Airport. For Max error and 3rd
quartile importance is shifted to parameterDcntr as γ receives
the high value which is obvious.

V. ALGORITHM AND WORKING DETAILS
The proposed algorithm works in two phases, similar to the
classical fingerprinting algorithm: an offline phase of the
survey of the environment to build a fingerprinting DB of
the Wi-Fi network, and an online phase in which the position
estimation is performed in real time using a mobile device.
Before starting the online phase, the estimation of K is made
at the end of the offline phase using information stored for
each RP in the fingerprinting DB of each site. Algorithm 1
shows the details of the 2nd phase of the fingerprinting
algorithm. The algorithm starts with an RSSI list received
by a mobile node at an unknown position, i.e., RSSV =
(mac1, rssi1,mac2, rssi2, . . . .mack , rssik ), using the value K
calculated in the first phase and N, the number of candidates
needed to find the centroid as input parameters. The output
of the algorithm is the position of the selected candidate RP.
After sorting the RSSV and number of APs less than expected
value K at Line 5, a function retrieves all expected candidate
RPs from the database with respect to the list of APs in
the RSSV.

Then the algorithm traverses all the cells recursively to
find the best candidate with a precise position. By travers-
ing each candidate cell, the algorithm first sorts the list of
APs of each cell relative to the RSSI of the correspond-
ing RP point. Then, it goes further through the list of APs
in the selected candidate cells and collects the sum of the
RSSI differences, the order difference of the APs relative to
the order of the sorted list, and counts the number of APs
compared. The loops terminate when comparing the number
K of APs with the strongest RSSIs in the received vector.
All the parameters described above are then calculated one
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Algorithm 1 Proposed Algorithm
Input: RSSV, kValue, N
Output: Position

Initialisation :
1: SortByRSSI(RSSV)
2: if RSSV.length < kValue then
3: kValue = RSSV.length
4: end if
5: fpCellList = GetCandidateCellsFromFingerprintDB(RSSV);
LOOP Process:{Loop through all candidate reference positions/cells in fpCellList}

6: for each fpCell in fpCellList do
7: SortByRSSI(fpCell.APInfoList)
8: j = 0
9: sum = 0
10: for each APInfo in fpCell.APInfoList do
11: if RSSV.contains(APInfo) then
12: index = get index of APInfo in RSSV
13: rssvalue = get RSSI of APInfo in RSSV
14: AddIndexandRSSIInfomationToList(IndexRSSIList, j, rssvalue)
15: sum = sum + (abs(APInfo.RSSI - rssvalue))2

16: j = j + 1
17: end if
18: if j > kValue then
19: break Loop
20: end if
21: end for
22: candidate.position = fpCell.position
23: candidate.krmse = sqrt(sum/j)/j;
24: candidate.entropy = CalculateEntropyofCurrentCandidate(IndexRSSIList)
25: AddToList(candidateList, candidate)
26: end for
27: SortBykRMSE(candidateList)
28: SelectFirstHalfCandidates(candidateList)
29: centroid = GetCentroid(candidateList, N)
30: SortByDistanceToCentroid(candidateList)
31: SelectTopKCandidates(candidateList)
32: candidate = SelectCandiateWithMinFACT(CandidateList)
33: Position = candidate.position
34: return Position

by one and the candidates are added to the list of candidates
expected at the end of the iterations. Then, the half of the
candidates with high errors after sorting the list using kRMSE
are removed on lines 26 to 27 and the centroid from the
N (10 to 15) best candidates is calculated. Finally, a candi-
date with the least FACT value will be selected as a valid
candidate.

VI. EXPERIMENTAL SETUP
Two different sites as real-time testbeds for experimentation
have been selected: an office environment in an IT Building
(Fig. 7a) of area 92 × 32 m2 with a ceiling height of 3
meters and a small area at the Incheon Airport Passenger
Lounge with an area of 300× 100 m2 (Fig. 7b) and a ceiling
height of approximately 10 meters. For experimentation, two

Samsung Galaxy S8 and LG G6 mobile phones are used
for the survey of environments in order to build the fin-
gerprinting DB before an online phase of the positioning;
also the same devices as the target devices are utilized. The
fingerprinting server consisted of an Intel machine equipped
with Core i7 processor and 16 GB RAM running Windows
Server Edition with Postgres SQL DB server. The collection
of fingerprints is carried out in a grid of 1 meter and 3 meters
respectively in IT-building and Incheon airport. Whereas,
4 scan per RP are collected to build the fingerprinting
database.

VII. RESULTS AND DISCUSSION
In order to examine the differences in performance between
the output positioning results of the underlying test
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FIGURE 7. Floor plan of real test sites selected for evaluation of proposed
algorithm based on Wi-Fi fingerprinting (a) IT Building (b). Incheon
Airport.

FIGURE 8. The ‘‘*’’s are representing Ground truth points, the ‘‘o’’es are
estimated locations, and blue lines represents the distance error in
estimation. (a) IT Building (b). Incheon Airport.

environments, the dynamics of the two environments is exam-
ined and it has been determined that many factors are respon-
sible for the degradation of the accuracy of the estimation
of location in overcrowded environments (public sites). The
Fig. 9 shows the cross-section of the RSSI propagation
change in real time on a single path with respect to the
distance to the APs with the highest level RSSI, one to IT

TABLE 3. Statistics of location accuracy of k-nearest neighbor (KNN),
ranked based (ranked), enhanced weighted KNN (EWKNN), and proposed
algorothm with weighted approach (mClips) and particle swam
optimization (mClips + POS) algorithm in meters with respect to
quantities: average, Std. Dev., 3rd quartile, and maximum positioning
error at all test sites.

Building and the other at Incheon Airport (Terminal 1). The
Fig. 9 a and 9 b show the view from the side while 9 c
and 9 d represent the top view of the modification of the
RSSI level along a path for APs to the IT and ICN Air-
port buildings, respectively. The differences in RSSI level
changes between the two sites are due to the following
reasons: firstly, the APs were mounted at high altitude at
Incheon airport, while those of the IT building were raised
to around 10 feet above the ground. Secondly, Incheon Air-
port is a high roof atrium building, while the IT build-
ing is an office space with corridors. In addition, Incheon
Airport has more pedestrian traffic than the IT building.
Figs. 9a and 9b show that in the IT Building, the change is
the RSSI with respect to distance is quite clear and mono-
tonic as compared to that in Incheon airport. This RSSI level
change behavior results in high accuracy in the IT building
(i.e. the office environment) compared to Incheon Airport
(i.e. a public place) for the estimation of the position. The
Fig. 8 shows the result of the positioning test performed on
both sites, parts (a) and (b) show the ground truth in the form
of red marks ‘‘*’’, the corresponding estimated position being
indicated under form of green marks ‘‘o’’, and the blue line
represents the distance error in the estimate of the position at
the IT Building and Incheon Airport sites, respectively. For
the IT building, the estimated positions are shifted one meter
horizontally in the figure to avoid overlap.
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FIGURE 9. Cross section of radio map of APs along a straight path to visualize change in received signal strength against distance (a),(b) Side
view and (c)(d) top view of IT building and incheon airport(Terminal 1), respectively.

The experimental results of Fig.10 show that our algorithm
outperformed the other techniques in both environments,
IT Building part(a) and ICN Airport part(b) and achieved an
accuracy of 1.86meters and 10.06meters in the 3rd quartile in
office and public environment, respectively. Here, the choice
of the third quartile measure is due to several indoor location
competition experiences organized by the International Con-
ference on International Conference on Indoor Positioning
and Indoor Navigation [26] where it is used to rank IPS
approaches [27]. Furthermore, statistics in Table 3 summa-
rizes the location accuracy of kNN approach from RADAR
system (KNN) [19], Rank based approach (Ranked) [21],
Enhanced Weighted KNN approach (EWKNN) [20], and
Proposed Algorithm with the weighted approach (mClips)
and Particle Swarm Optimization (mClips+ POS) algorithm
in meters with respect to quantities: Average, Std. Dev., 3rd
quartile, and Maximum Positioning Error at all test sites.
Moreover, it is clear from the results that the proposed
approach minimizes the maximum error in the office and in

public places, which is a very important factor for the hybrid
IPS to minimize the search space of the geomagnetism and
drift errors over long distances in PDR techniques. To verify
results the location estimation has performed at two more
sites i.e. CSDepartment of area 60×32m2 and Terminal 2 site
of area 200 × 60 m2 as an office and a public environment,
respectively. The collection of fingerprints is carried out on
a grid of 1 meter in the department CS while on a grid
of 2 meters in the terminal 2, by carrying out 4 scans per
RP. The mobile devices used on the new sites are Samsung
Galaxy 9, LG G7. The results show that the proposed algo-
rithm achieves high precision and limits the maximum error
at the two new sites, as shown in Fig. 10 part(c) CS Depart-
ment and part(d) Incheon Airport Terminal 2. To estimate the
cost of accuracy, the processing time of all algorithms, for
a single position request without DB connection and access
delay time is calculated. Table 4 indicates the time required
to estimate a signal position request by different algorithms
against a database size of fingerprint records at each site.
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FIGURE 10. Distance error CDF of k-nearest neighbor (KNN), ranked based (Ranked), enhanced weighted KNN (EWKNN), and
proposed algorithm with the weighted approach (mClips) and particle swarm optimization (mClips + POS) approaches is
calculated for all sites, IT building.(a), Incheon Airport (Terminal 1)(b), CS Department(c) and Incheon Airport (Terminal 2) (d).

TABLE 4. Statistics of computation time in millisecond(ms) required for
estimation of single position request by k-nearest neighbor (KNN),
ranked based (ranked), enhanced weighted KNN (EWKNN), and proposed
(mClips) algorothms with respect to database size of all test sites.

The cost of processing time relative to the precision of our
algorithm is almost minimal, since the normal delay in two
consecutive scans of a mobile device is usually 1 to 3 seconds.
However, the algorithm requires an automated estimate of the
K value for each site before starting to estimate the online
position.

VIII. CONCLUSION
In this study, an empirical approach to improve the
accuracy of Wi-Fi fingerprinting without the use of

infrastructure or special devices is investigated, in order to
serve as a starting point estimation technique for hybrid IPS
systems. An empirical approach to harvest parameters in the
RSSI vector was discussed. In addition, an algorithm with
several improvements has been proposed; The new algo-
rithm has significantly improved the positioning accuracy of
Wi-Fi fingerprinting for office environments and especially
for crowded public areas. The results show that the pro-
posed approach has achieved significant accuracy in real-time
environments. Possible directions for future work include
adding parameters for trajectory tracking and verifying that
a hybrid approach to the proposed technique can effectively
improve the tracking performance of indoor positioning sys-
tems. Integrating deep learning with these selected parame-
ters is another direction to explore.
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