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ABSTRACT In the industrial cyber-physical environment, the performance of clock synchronization with
loss of data packets should be analyzed quantitatively. The localized state estimator and controller are
designed to realize the speed of convergence for exponential stability of the clock synchronization for
the output feedback tubes-model predictive control (Tubes-MPC) of the state-space model. The upper and
lower bounds for the variance of synchronization error under the statistical significance were quantitatively
analyzed in incomplete measurement. The set of interference error in complete measurement was added into
the set of additional estimated errors introduced by packet loss. Clock synchronization of the output feedback
Tubes-MPC which has been constructed still has the performance of robust exponential convergence under
networked packet loss, and it can be extended to an absolute state-spacemodel with network-level in a unified
approach.

INDEX TERMS Model predictive control, clock synchronization, state-space model, packet loss,
synchronization accuracy, synchronization error.

I. INTRODUCTION
WHEN clock synchronization is completed in unreliable
WSN [1], [2], [4], a lot of data packets with time message
cannot successfully arrive in the specified observation period
in the process of two-ways message observation, which is
called incomplete measurement. The problem is that the
random measurement variance introduced by the incomplete
measurement will generate additional estimated error [4]–[6],
resulting in clock synchronization error and convergence
performance of network-level clock cannot be evaluated
quantitatively.

Early studies of the clock synchronization used clock syn-
chronization protocols in the Wireless Sensor Networks to
estimate clock parameters and adjust synchronization [7]–[9].
The problem of clock synchronization in WSN is analyzed
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by using the view of statistical signal processing in
[10], [12], [13]. The consensus algorithm compensates the
collected states of neighboring nodes to their own states
directly by adopting the maximum or minimum selection
strategy which is uniform [3], [4], [11]. However, this method
is easily affected by the size of network and the states of
nodes, and the convergence speed is slow, especially when
a large number of packet loss occur.

The engineering background of the paper is reflected
in whether the convergent performance of the clock syn-
chronization can be realized in controlled pattern. It can
analyze the convergence speed and convergence error
quantitatively, which is usually of important practical sig-
nificance for deterministic industrial applications (Industrial
Applications for hard real-time), IoT (Internet of Things),
and 5G. For example, the on-line monitoring and acquisi-
tion of synchronous data for large-scale rotary intelligent
equipment [18].
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Literatures [5], [14] have proposed a state-space model
of the relative clock of the clock synchronization in the
previous studies, and established the framework of clock syn-
chronization from the theory of Networked Control System.
Making a balance among synchronization error and conver-
gence speed in the application of clock synchronization in
the control strategy ofMPC (Model Predictive Control) based
on [5], [14], we hope that we cannot only stand on the level
of pure theoretical discussion to a certain degree (such as the
particularity of the clock synchronization described in [14]),
but also consider the difference of practical aspects between
MPC and the traditional model predictive control used in
industrial application. Algorithm of the clock synchroniza-
tion in the Cyber-Physical environment needs better conver-
gent stable error, accuracy which is quantized and adaptive to
the size of the network, controllable convergence speed, and
better robustness for packet loss.

The superiority of predictive control not only deals with
industrial constraint problem, but also brings together the
advantages of distributedmodel [23]. Inspired by the previous
work, [22], [24] have addressed the DMPC for a set of linear
local systems with decoupled dynamics and a coupled global
cost function.

In industrial networking (including wireless smart devices
embedded in wireless RF chips), the present paper hope to
further improve the performance of clock synchronization
enhancing DMPC when considering papers [27] on Robust
and stochastic MPC. The on-line synthesis approaches of
MPC have been investigated for NCS (Networked Control
Systems) where the packet loss and data quantization are
coexisting (see [25]) and network-induced delays (see [26]),
and is the one which guarantees the closed-loop stability, i.e.
the closed-loop system is stable whenever the optimization
problem is feasible.

In the Cyber-Physical environment of the industrial Inter-
net of Things [18], we havemade further improvement for the
industrial requirements of the large-scaled applications and
the performance of online Tubes-MPC algorithm [18], [27].
Literatures [16], [17] have introduced the nominal system
and adopted constraints of terminal region to realize steady-
state convergence with constraints Tubes model predictive
control. This control scheme has a simplified conditions of
the Gaussian noise suitably. It has comprehensively studied
the robustness and importance of random model predictive
control in [27], and then it has pointed out that the researches
of the model predictive control need to fully consider the
industrial demands. The main focus is on robust and random
model predictive control because MPC with these control
forms often needs to solve complex problems of optimized
control online. On the basis of solid theory, it is necessary
to pay more attention to studies of the applicability of MPC
in the specific industrial fields. Considering the constraints
of terminal region, the present paper attempts to combine
the KF-based MPC with the important Tubes-MPC to obtain
some valuable researches.

Reference [15] has got on a rigorous and basic research
on problems of control and estimation in the unreliable net-
works. B. Sinopoli and others have proved that there is a
boundary for receiving rate of data packets by adopting the
strategy of fully packet loss, so that the error covariance of the
Kalman filter is convergent, and the upper and lower bounds
of this important boundary value are given [6], [19]. In the
previous study [5], the relationship between rate of packet
loss and covariance matrix based on statistically significant
has been drawn, and a method for calculating the minimum
rate of packet loss under the requirement of meeting the
synchronization accuracy has been designed from the per-
spective of energy consumption, which has practical value in
the industrial applications.

The main contributions of the present paper are as
follows:

1) The present paper established a Tubes-MPC method of
clock synchronization for output feedback predictive control
based on the view of networked control and the previous
researches [5], [14];

2) The upper and lower bounds of variance under the
statistical significance for the error variance of clock synchro-
nization with packet loss is analyzed quantitatively, and it is
mapped to the constraint set of the additional estimated error
introduced by packet loss;

3) Based on the quantized relationship between the bounds
of the variance for packet loss and arrival rate, the set of
interference error in incomplete measurement is quantified,
and the predictive optimal model is robust for performance
of exponentially stable convergence of Tubes-MPC clock
synchronization under networked packet loss.

II. STATE-SPACE MODEL OF CLOCK SYNCHRONIZATION
A. CLOCK MODEL
Nodes of each sensor in WSN have their own clocks, and the
readings for clocks are represented by an integral model

ci(t) =
∫ t

0
βi(τ )dτ + θ0i (1)

where βi(τ ) is the time varying skew of node i, and θ0i is
the initial clock offset of node i. The clock model is built
into integral model because the clock crystal is not perfect
in reality and can be affected by the environmental factors,
so that the frequency for crystal oscillator of each node will
change. Considering that the change of frequency for crystal
oscillator has very little effect on clock synchronization in
WSN in a short period of time, the clock reading ci(t) of
sensor node i is represented by a linear model [14]:

ci(t) = βi(t)+ θi (2)

where βi is the clock skew of node i, θi is the clock offset of
node i, when βi = 1, θi = 0, ci(t) = t , the clock of node
i is called the standard clock at this time. Since the standard
time t cannot be obtained, the relative clock of node j which
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FIGURE 1. Exchange model of clock message between neighbor nodes at
reference time.

is relative to node i is established as follows:

cj(t) = βj[
ci(t)− θi

βi
]+ θj =

βj

βi
ci(t)+ [θj −

βj

βi
θi]

= βijci(t)+ θij (3)

where βij is the relative clock skew and θij is the relative clock
offset of node j which is relative to node i.

B. ESTABLISHMENT OF OBSERVATION MODEL BASED ON
TWO-WAYS MESSAGE EXCHANGE MECHANISM
In this paper, we use two-ways message exchange mecha-
nism to exchange the clock message of adjacent two-nodes.
As shown in Fig.1, it is assumed that the exchange of
message of the clock synchronization between node i and
node j takes place N rounds. During k-th round of mes-
sage exchange, the set of time stamp obtained by node i
is
{
T1,k ,T2,k ,T3,k ,T4,k

}N
k=1, the above exchange process of

timestamp message can be modeled as:{
T2,k = βij(T1,k + τ + Xk )+ θij
T3,k = βij(T4,k − τ − Yk )+ θij

(4)

Among them, the random delays of clock message in the
process of message exchange between node i and node j are
Xk and Yk ; τ is the fixed delay in the exchange process.
Here, we need to make following assumptions:
1) Considering that Xk and Yk are random variables. They

are independent and identically distributed. If we assume that
the random delay is an accumulation of numerous indepen-
dent random processes, thenXk and Yk will meet the Gaussian
distribution according to the Central Limit Theorem. Ref-
erence [8] has confirmed that the confidence for construct-
ing the random delay as a Gaussian distribution is 99.8%.
Therefore, we assume that random delays Xk and Yk obey the
Gaussian distribution with zero mean and variance σv2;

2) Suppose that fixed delay τ in equation (4) is symmetric,
mainly based on following three points:

1© We only consider the exchange of message between
neighbors with no situation of multi-hop transmission in the
present paper;

2© The size and transmission rate of packets of time mes-
sage exchanging between nodes are the same, so both nodes
have the same time of transmission and arrival;

3© Assuming that relative position of two nodes has not
changed during process of message exchange, so time of
transmission between two nodes are the same [14];
3) We can estimate βij by statistical signal processing in

the case where the fixed delay is known or unknown, and the
method of system identification can be used due to slow time-
varying characteristic of βij [5].We assume that βij is constant
and known in the period of current synchronization, but it can
be different in different cycles, that is, in the k-th round of
synchronization cycle, if we make βij = βijk , k = 1, 2, 3 . . .,
we can get βijk+1 6= βijk .

For above reasons, we choose x = [ τ θij ]T as the system
state, and the observation equation of node i which is relative
to node j can be obtained based on equation (4):

y(k) = Cx(k)+ vk (5)

where y(k) =
[
T2,k

/
βij
− T1,k ;T4,k − T3,k

/
βij

]
; and vk =

[Xk ;Yk ] is the Gaussian distribution with zero mean,
EvkvTk = R ∈ <2×2, C =

[
11
/
βij
; 1− 1/

βij

]
2×2

.

Defining that γk describes packet loss for the k-th round
of message exchange. γk = 1 when data is successfully
exchanged between nodes, otherwise γk = 0. γk is a random
event and is consistent with random process of the Bernoulli
distribution if all roundsąŕ processes of message exchange
are considered. At this time, there is p(γk = 1) = λ for the
Bernoulli variable γk in statistical sense [5], where λ repre-
sents the probability of packet arrival. The observation model
(5) is modified as follows:

y(k) = Cx(k)+ vk ′ (6)

where noise vk ′ becomes a variable about γk , vk ′ ∼
N (0, γkR + (1 − γk )σ̄ 2I , noise variance σ̄ tends to infinity
when the observed message is dropped.

The observation equation for state x = θij in scalar form
can be obtained by (4)

y(k) = Cx(k)+ vk (7)

where y(k) = T2k+T3k
βij
− T1,k − T4,k , C= 2

βij
, vk=Xk − Yk ,

vk ∼ N (0, 2σ 2
v ) and Evkv

T
k = R ∈ <.

Similarly, considering (6) in incomplete measurement, (7)
is modified as follows:

y(k) = Cx(k)+ vk ′ (8)

Same symbolic representation and consistent mathematical
model is used for vector observation model (6) and scalar
observation model (8), only the dimension is inconsistent, but
it does not affect the discussion in the present paper.

C. ESTABLISHMENT OF STATE-SPACE MODEL
In section II-B, we has obtained the state observation model
of clock synchronization. In this section we will establish
another core part of the state-space model, a model for state
updating.

As mentioned in observation model (6), state vector con-
sists of the fixed delay τ and relative clock offset θij and the
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two parameters of the vector are unknown. Assuming that
the current state is linear to state at the previous moment,
because of its slow change, the unknown state is built as
Gauss-Markov dynamic model [14]:

x(k) = Ax(k − 1)+ wk (9)

where A is a 2× 2 unit matrix; each of terms in wk obeys
the Gaussian distribution with zero mean and variance σw,
EwkwTk = Q ∈ <2×2.

In this paper, we attempt to establish a theoretical basis
based on the estimation and control for problems of clock
synchronization in unreliable WSN. This method is indepen-
dent of networked nodes distribution and method of com-
munication, it is a systematic method which can adapt to
networked changes. We can produce an optimal control input
u(k) to modify logic clock of node i quoting theory of modern
control. This change of state can be abstracted as:

x(k) = Ax(k − 1)+ Bu(k − 1)+ wk (10)

where A = 1, B is matrix of control weight, EwkwTk =
Q ∈ <2×2.
It is feasible to ignore fixed delay τ since the most closely

related amount of clock synchronization is the relative clock
offset from section II-B. When the state is selected as x = θij,
the state change in scalar form is:

x(k) = Ax(k − 1)+ Bu(k − 1)+ wk (11)

where A = 1; B is the first-order matrix of control weight.
At this point, we obtain the equations of state updating and

observation of clock synchronization, it can be described with
following unified description as follows:{

x(k) = Ax(k − 1)+ Bu(k − 1)+ wk
y(k) = Cx(k)+ vk ′

(12)

(12) defines two kinds of state-space model in different
states respectively. We can call the vector model of state
x = [ τ θij ]T as model 1, and the scalar model at state x = θij
as model 2. Due to the uncertainty of WSN, regardless of
which model is used, the key issue is the choice of methods
for state estimation and control strategies in incomplete mea-
surement.

III. ANALYSIS OF SYNCHRONIZATION ACCURACY FOR
KALMAN FILTER IN INCOMPLETE MEASUREMENT
If too much observations are dropped, the process of the
Kalman filter will be unstable. If the estimation of clock
parameter is inaccurate, the synchronization of logical clock
will not be achieved. Considering the loss of observed value,
we need to re-establish the estimated model of Kalman filter,
analyze the iterative process of error covariance, and discuss
the arrival rate λ and convergence of expectation for covari-
ance matrix.

According to state-space model (12) we can express
Kalman filter equation as:

x̂(k + 1|k) = Ax̂(k|k)+ Bu(k) (13)

P(k + 1|k) = AP(k|k)AT + Q (14)

P(k + 1|k + 1) = P(k + 1|k)− γk+1Kk+1CP(k + 1|k)

(15)

x̂(k + 1|k + 1) = x̂(k + 1|k)+ γk+1Kk+1[y(k + 1)

−Cx̂(k + 1|k)] (16)

K (k + 1) = P(k + 1|k)CT [CP(k + 1|k)CT
+ R]−1

(17)

From equations (13) to (17), correlation equations for Kalman
filter are not affected by the model we used. According to
(14), (15) and (17), we can get a recurrence equation of prior
error matrix

P(k+1|k)=AP(k|k−1)AT+Q

− γkAP(k|k−1)CT
[
CP(k|k − 1)CT

+R
]
−1CP(k|k−1)AT

(18)

We can make Pk = P(k|k − 1), then:

Pk+1=APkAT+Q−γkAPkCT
[
CPkCT

+R
]
−1CPkAT (19)

Pk becomes a random variable about γk which is an uncer-
tain quantity, so we mainly discuss the convergence proper-
ties of lim

k→∞
E[Pk ] in statistical significance.

E[Pk+1] = AE[Pk ]AT + Q

− λE[APkCT
(
CPkCT

+ R
)−1

CPkAT ]

(20)

Defining a modified algebraic Riccati equation as:

gλ (X)=AXAT+Q− λAXCT
(
CXCT

+R
)−1

CXAT (21)

To simplify the proof of following theorems, the auxiliary
function can be given as:

8(K ,X) = (1− λ)(AXAT + Q)+ λ
(
FXFT + V

)
(22)

where F = A + KC , V = Q + KRKT , and there is gλ(X ) =
8(KX ,X ) when KX = −AXCT

[
CXCT

+ R
]−1.

Reference [6] has discussed relative properties of modi-
fied algebraic Riccati (21), such as Lemma 1 which proves
convergence of (21). In this section, we will mainly prove
that matrix E[Pk ] of error covariance in statistical sense
(i.e., the expectation about Pk ) is bounded by using this
conclusion and calculate its boundary.
Lemma 1: The Convergence Properties of Riccati

Equation
Suppose there are matrix K̂ and positive semi-definite

matrix P̂, satisfying K̂ > 0 and P̂ > 8(K̂ , P̂), then there
is lim

k→∞
Pk = lim

k→∞
gkλ (P0) = P̄ for any initial value P0 > 0,

the convergence value P̄ is independent of initial value and P̄
is the only positive definite solution of Riccati (21).
Quantitative Analysis of Boundary for Expectation of

Error Covariance
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If
(
A,Q1/2

)
is controllable, (A,C) can be measured,

λ > λc, then there are 0 < Sk ≤ E[Pk ] ≤ Vk , lim
k→∞

Sk = S̄

and lim
k→∞

Vk = V̄ when ∀E[P0] ≥ 0, where S̄ is the solution

of S̄ = (1− λ)AS̄AT + Q, V̄ is the solution of V̄ = gλ(V̄ ),
and λc is the critical arrival rate, λc ∈ [0, 1].
Proof: If Vk = Pk , according to Lemma 1 we will

see that lim
k→∞

Vk = V̄ , V̄ = gλ(V̄ ). Considering sequence

Vk+1 = gλ(Vk ), V0 = E[P0] ≥ 0, if E[Pk ] ≤ Vk , then

E[Pk+1] = E[gλ(Pk )]
a
≤ gλ(E[Pk ]) ≤ Vk+1, where the

inequality a is established mainly by the Jensen inequality.
By induction, we can get that there are Vk ≥ E[Pk ] for ∀k .

If the observation matrix C is reversible, the exact value of
λc can be calculated from literature [5]. Matrix C in model 1
and model 2 is full rank in this paper, if λ > λc, then there
exists X̂ to meet X̂ ≥ gλ(X̂ ). For ∀k , there are Sk ≤ E[Pk ] ≤
Vk .
Set the initial value as E[P0] ≥ 0, then we can get 0 =

S0 ≤ E[P0], there is Sk+1 ≤ (1 − λ)AE[Pk ]AT + Q ≤
E[gλ(Pk )] = E[Pk+1].
For ∀k , there are Sk ≤ E[Pk ]. Since Sk is a monotonically

increasing sequence, Sk has a boundary with Sk ≤ Vk ≤ M ,
i.e. lim

k→∞
Sk = S̄.

Due to the randomness of γk , we will discuss the conver-
gence properties of expectation for Pk , and the boundary of
E[Pk ] reflects a measure of deviation between state estima-
tion x̂ and state x of disturbance system, which establishes
a relationship between arrival rate of packets and system
state. In this paper, we will use this kind of contact to design
controller and enhance the robustness of controller for packet
loss and reduce synchronization error.

IV. DESIGN OF TUBES MODEL PREDICTIVE CONTROLLER
A. ESTIMATED AND CONTROL ERRORS
When packet loss occurs, the upper bound of the covariance in
statistical sense obtained by section III reflects the maximum
measure of the average of deviation between the disturbance
system state and estimated system state:

ϕ(−
√
Vk ) ≤ xk (i)− x̂k (i) ≤ ϕ(

√
Vk ), xk (i) ∈ X ,

∀i ∈ NNc−1 (23)

where ϕ(·) is a column vector composed of data in the upper
left corner and the lower right corner of corresponding input
matrix obtained by function mapping.

In fact, (23) is not always established. Conditions may be
too conservative or unsatisfactory for system in each oper-
ation. Directly discuss the conditions for establishment of
such inequality, we cannot draw an accurate upper and lower
bounds of inequality in the case of packet loss. Although
condition (23) is not always satisfied in incomplete mea-
surement, the state is still in the state set X , and it will not
cause the situation that PNc (x̂(k)) will not have any solution.
In complete measurement, such upper and lower bounds
can be obtained by minimum invariant set S̃ [21], then in

incomplete measurement:

x̃k (i) ∈ S̃+ ⊇ S̃ (24)

We have obtained the relationship between different rates
of packet loss and the upper bound of the covariance from
Section III. For set S̃, if it is expanded to S̃+ with correspond-
ing rate of packet loss 1− λ, there exists:

S̃+ − S̃ = 1 (25)

1 =
[
ϕ
(
−

√

V̄
)
, ϕ
(√

V̄
)]

1−λ
−

[
ϕ
(
−

√

V̄
)
, ϕ
(√

V̄
)]
λ=1

,[
ϕ
(
−

√

V̄
)
, ϕ
(√

V̄
)]

1−λ
is the border of the corresponding

rate of packet loss 1− λ.
Therefore, it is important to firstly discuss the relative

invariant set and design of controller in complete measure-
ment, whichwill offer the design basis for design of controller
in the case of packet loss. The state-space model of the
disturbance system in complete measurement is:{

x(k) = Ax(k − 1)+ Bu(k − 1)+ wk
y(k) = Cx(k)+ vk

(26)

The control is constrained to us(k) ∈ U , us(k)
1
=

{uk (0), uk (1), . . . , uk (i), . . . , uk (Nc − 1)} is a set of control
sequence predicted at the current time, u(k) = uk (0). (25) is
constrained to following state and control set:

(x, u) ∈ X × U (27)

Process the noise wk and measurement noise vk are both
subject to the normal distribution. The process noise wk and
measurement noise vk can be constrained as follows with
probabilities pw and pv based on probability theory:

P{wk ∈ W } = pw,P{vk ∈ V } = pv (28)

where P{·} represents the function of probability distribution.
In actual process, the process noise wk and measurement
noise vk are constrained as follows with 99.97% probability
according to 3σ rule:

P{wk ∈ W3σ } = 99.97%,P{vk ∈ V3σ } = 99.97% (29)

where W3σ = [−3σw′, 3σw′], V3σ = [−3σv′, 3σv′], σw′ and
σv
′ are the variance of process noise and measured noise

respectively for corresponding model.
In order to ensure that the computational complexity can be

reduced under the premise of establishing relevant stability
constraints, we use the non-delayed Luenberger observer,
which is consistent with the unanimous expression of the
Kalman filter observer in this section. For the estimated
system:{

x̂(k)=Ax̂(k−1)+Bu(k−1)+L[y(k−1)−ŷ(k−1)]
ŷ(k)=Cx̂(k)

(30)

where x̂(k) is the observation state at the current k-moment
and L is the gain of observer.
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The estimated error x̃ = x − x̂ of disturbance system and
estimated system satisfies:

x̃(k) = AL x̃(k − 1)+ (wk − Lvk−1),A = A− LC (31)

where AL satisfies ρ(AL) < 1 and guarantees that equa-
tion (30) is stable.

In order to make the state of disturbance system and
associated control always satisfy the constraint (27), a third
dynamic nominal system is introduced. The nominal system
is about to remove the relevant noise in disturbance system:

x̄(k) = Ax̄(k − 1)+ Bū(k − 1) (32)

We can make φ̄(i; x̄(k), ū(k)) be the state of system (32) at the
i-th prediction step, the initial state is x̄(k). A set of control
sequence ūs(k)

1
= {ūk (0), . . . , ūk (Nc − 1)}, ū(k) = ūk (0) is

produced, which is corresponding to state sequence x̄s(k)
1
=

{x̄k (0), . . . , x̄k (Nc)}. This sequence is the center point of the
tube control that will be used in this paper.

In order to offset the disturbance, we add feedback part to
the model predictive controller, and obtain the controller of
disturbance system as follows:

u(k) = ū(k)+ K̄ e(k) (33)

where e(k) 1
= x̂(k)− x̄(k) is the corresponding control of

nominal system.
The difference equation between estimated system and

nominal system control error e(k) is:

e(k) = AK̄ e(k − 1)+ [LCx̃(k − 1)+ Lvk−1] (34)

where AK̄
1
= A+ BK̄ , which satisfies ρ(A+ BK̄ ) < 1.

The error between observed state and nominal state is e(k),
and the error between real state and observed state is x̃(k):

x(k) = x̄(k)+ e(k)+ x̃(k) (35)

Defining that when a set �̄ ⊂ Rn satisfies x̄ ∈ �̄ and �̄ ⊆ X̄ ,
then the set �̄ is the positive definite invariant set [21] of state
x̄ of system (32).
Lemma 2 (The Set of State Estimated Error [17]): There

is a positive definite invariant set S̃ for estimated error (31).
If the initial state of disturbance system and estimated system
satisfies x̃(0) = x(0)− x̂(0) ∈ S̃, then there are x̃(0) = x(0)−
x̂(0) ∈ S̃, that is x(k) ∈ x̂(k)⊕ S̃.
For the solution of set S̃ for estimated error, it cannot obtain

the exact calculation method in actual process, so it discusses
the iterative method to obtain approximate solution S̃ in [23].
Lemma 3 (The Set of Control Error [17]): There is a

positive definite set S̄ for the control error (34). If the initial
state of estimated system and the nominal system satisfies
e(0) = x̂(0) − x̄(0) ∈ S̄, then there are e(k) ∈ S̄, i.e.x̂(k) ∈
x̄(k)⊕ S̄, for ∀wk ∈ W, ∀vk ∈ V .
Lemma 4 (The Set of Interference Error [17]): Defining

the set of interference errors S = S̃ ⊕ S̄, if the initial error
is x̃(0) ∈ S̃ with e(0) ∈ S̄, then there are x(k) ∈ x̂(k) ⊕ S̃ ⊆
x̄(k)⊕ S.

Set S̃ quantifies the deviation between estimated system
and state of disturbance system caused by system noise
during each step of the control process. Set S̄ establishes
relationship of set constraint between estimated system and
nominal system.

(See literature [17] for proof of lemmas 2,3,4.)

B. DESIGN OF CONTROLLER
In traditional model predictive control, the problem of control
in disturbance system can be directly solved. The control
cannot fully overcome noise disturbance because of existence
of noise. Considering the abstract nominal system, there is no
noise for x̄(0)= x̂(0|0), and the requirements of control per-
formance for disturbance system can be predicted in advance
by acting the feedback control u(k) = ū(k)+ K̄ e(k) based on
nominal system on disturbance system. In order to ensure that
the control of nominal system ū(k) is available for disturbance
system, it is necessary to make some additional constraints on
the state and control.

Let x̄k (i) = x̄(k + i), the objective function of control
problem for nominal system PNc [x̄(k)] is:

VNc (x̄s(k), ūs(k))
1
=

Nc−1∑
i=0

`(x̄k (i), ūk (i))+ Vf (x̄k (Nc)) (36)

The state x̄ and control ū of nominal system are constrained
to the following reduction set:

(x̄, ū) ∈ X̄ × Ū , X̄ 1
= X − S, Ū 1

= U − K̄ S̄ (37)

Defining terminal status x̄k (Nc) of the system should meet the
following conditions:

x̄k (Nc) ∈ Xf (38)

where Xf satisfies the stability conditions.
According to equations (37) and (38), when state x̄(k) of

nominal system is given, such a set of control sequence ūs(k)
will be calculated:

ũNc (x̄(k)) = {ūs(k)|ūk (i) ∈ Ū , x̄k (i) ∈ X̄ , ∀i ∈ NN−1,

φ̄(Nc; x̄(k), ū(k)) ∈ Xf } (39)

The definition region X̄Nc of function VNc (x̄s(k), ūs(k)) can
be defined as:

X̄Nc = {x̄|ũNc (x̄(k)) 6= ∅}

At this point, we have obtained all conditions and expressions
for solving the optimal control problem of nominal system.
The optimal control solution PNc [x̂(k)] for estimated system
is expressed as follows:

VN∗c (x̂(k))
1
= min

x̄,ū
{VNc (x̄s(k), ūs(k))|ū(k)

× ∈ ũNc (x̄(k)), x̂(k) ∈ x̄(k)⊕ S̄}
(40)

(x̄∗(x̂(k)), ū∗(x̂(k))) = argmin
x̄,ū
{VNc (x̄s(k), ūs(k))

× ū(k)∈ ũNc (x̄(k)), x̂(k) ∈ x̄(k)⊕S̄}
(41)
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Solving the optimal control problem PNc [x̂(k)], it will
produce a set of optimal control sequence:

ū∗s (x̂(k))
1
= {ū∗(x̂(k), 0), · · · , ū∗(x̂(k),Nc − 1)}

where ū∗(k) 1= ū∗(x̂(k), 0) is the control of nominal system.
It obtains a set of sequence of optimal state at the same time:

x̄∗s (x̂(k))
1
= {x̄∗(x̂(k), 0), · · · , x̄∗(x̂(k),Nc)}

x̄∗(k) 1= x̄∗(x̂(k), 0) = x̄∗(x̂(k)) is the optimized nominal sys-
tem state. From (25), we know that S̃+ = S̃⊕1 in incomplete
measurement is used to replace S̃ of the constraints in (37) and
(38), and the set S of interference error is calculated into the
set of additional estimated errors introduced by packet loss,
then we can get the set S+.

C. PROOF OF STABILITY WITHOUT PACKET LOSS
Firstly, according to definition of robust exponential stability,
if the initial control error and the estimated error satisfy
e(0) ∈ S̄ and x̃(0) ∈ S̃ respectively, and the objective
function VNc (·) satisfies properties in Lemma 7, then the
control strategy u∗(k) = ū∗(k) + K̄ (x̂(k) − x̄∗(k)) is applied
to disturbance system and estimated system, and the control
strategy ū∗(k) is applied to nominal system while solving
the optimal control problem PNc [x̂(k)]. The nominal system
will exponentially converge to the target Z , and the estimated
system and disturbance system will exponentially converge
to sets S̄ ⊕ Z and S ⊕ Z respectively. (See appendix A for
lemmas 5,6,7.)
Proof: according to definitions of VNc (·) and V ∗Nc (·),

if x̄i(k) = x̄∗i (x̂i(k)), there are VNc (x̄
∗
i (x̂i(k))) = V ∗Nc (x̂i(k)).

Then according to Lemma 7, V ∗Nc (x̂(k)) satisfies:

V ∗Nc (x̂(k))

= V 0
Nc (x̄

∗(x̂(k))) ≥ c1|x̄∗(x̂(k))− Z |2, ∀x̂(k) ∈ XNc
V ∗Nc (x̂(k))

= V 0
Nc (x̄

∗(x̂(k))) ≤ c2|x̄∗(x̂(k))− Z |2, ∀x̂(k) ∈ Xf ⊕ S̄

V ∗Nc (x̂(k + 1))− V ∗Nc (x̂(k))

≤ −c1|x̄∗(x̂(k))− Z |2, ∀x̂(k) ∈ XNc

According to the above relationship, we can know that:

V ∗Nc (x̂(k + 1)) ≤ (c2 − c1)|x̄∗(x̂(k))− Z |2 ≤ (c2
/
c1 − 1)

V ∗Nc (x̂(k))

Making c = c2
/
c1−1 and |x̄∗i (x̂i(k))−Z |

2
≤ 1/

c1V
∗
Nc (x̂i(k)),

then:

|x̄∗(x̂(k))− Z |2 ≤ 1//c1V ∗Nc (x̂(k)) ≤ 1
c1cV

∗
Nc (x̂(k − 1))

≤ · · · ≤ 1/c1c
kV ∗Nc (x̂(0)) ≤

c2/c1c
k
|x̄∗(x̂(0))− Z |2

(42)

So far, we have got |x̄∗(x̂(k)) − Z | ≤ c̃δk |x̄∗(x̂(0)) − Z |,
where c̃ =

√
c2
/
c1, δ =

√
c, c = c2

/
c1− 1 ∈ (0, 1). Accord-

ing to definition of exponential convergence, the nominal

system exponentially converges to the balance point Z . Then,
according to lemmas 2, 3 and 4, there are x̂(k) ∈ x̄(k)⊕ S̄ =
Z ⊕ S̄ and x(k) ∈ x̄(k)⊕ S̃⊕ S̄ = Z ⊕S for estimated system
and disturbance system respectively.

Kalman filter has a convergent performance which is close
to CRLB (Cramer-Rao Lower Bound, CRLB) and a smaller
estimated error than the Luenberger observer. For set S̃ ′ of
state estimated error which uses the gain of Kalman filter,
S̃ ′ ⊆ S̃ is satisfied. Thus, the state x̂(k|k) obtained by Kalman
filter also satisfies the set constraints calculated from the
static gain , which ensures the feasibility of optimal con-
trol problem PNc [x̂ (k|k)]. The algorithm steps are shown
in Table 1.

TABLE 1. Algorithm of Tubes model predictive control.

D. PROOF OF STABILITY WITH PACKET LOSS
From lemmas 2,3 and 4, in the case of packet loss, there are
positive sets S̃+, S̄ and S+ 1

= S̃+ ⊕ S̄ satisfy x̃(0) = x(0) −
x̂(0) ∈ S̃+, x̂(k) ∈ x̄(k)⊕S̄ and x(k) ∈ x̂(k)⊕S̃+ ⊆ x̄(k)⊕S+

respectively.
In the case of considering packet loss, if the initial control

error and the estimated error satisfy e(0) ∈ S̄ and x̃(0) ∈
S̃+ respectively, due to the fact that the nominal system
exponentially converges to the target Z is proved (as shown
in IV-C), according to the inferences of lemmas 2, 3 and 4,
there are x̂(k) ∈ x̄(k) ⊕ S̄ = Z ⊕ S̄ and x(k) ∈ x̄(k) ⊕
S̃+ ⊕ S̄ = Z ⊕ S+ for estimated system and disturbance
system respectively. So the estimated system and disturbance
system will exponentially converge to sets Z ⊕ S̄ and Z ⊕ S+

respectively. (See appendix A for inferences of lemmas and
their proof.)
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V. SIMULATION AND PERFORMANCE EVALUATION
The nodesa̧ŕ clock is directly compensated by estimated
value according to protocol for classic clock synchroniza-
tion in TPSN for protocol compensation mentioned in this
section [7].

For model 2 with the scalar form, we consider clock
synchronization with high precision. Set the initial value of
the state at x(0)= 0.012 and the estimated initial value at
x̂(0)= 0.02. The control weight isB= 1, the initial covariance
is P(0) = E[(x(0) − x̂(0))(x(0)− x̂(0))T ]. The covariance
of the process noise wk and measurement noise vk are Q =
10−5 and R = 1.8 ∗ 10−3 respectively. The target of clock
synchronization is Z = 0. It represents the relative clock
offset among nodes is zero, that is, the clock between nodes is
synchronous. The observation matrix isC = 1. For algorithm
of model predictive control, we choose Q`= 1, R`= 0.5. The
prediction region Nc= 1, the state is constrained to X 1

=

{x ∈ R1|x ∈ [−0.1, 0.1]}, and the control is constrained to
U 1
= {u ∈ R||u| ≤ 0.012}. The gain of control K̄ and the

terminal penalty matrix are K̄ = 1, P = 1.

FIGURE 2. Upper and lower bounds of covariance asymptotic
convergence under different packet arrival rates.

A. ANALYSIS OF SYNCHRONIZATION ACCURACY
UNDER DIFFERENT ARRIVAL RATES
(1) Fig.2 is shown for this section. Formodel 2, the eigenvalue
of A is 1. It can be seen that Kalman filter is still stable
even if all observation values are dropped from [5], but the
accuracy of clock synchronization is low due to the fully loss
of observation values. Therefore, in this section, we analysis
the boundary of the expectation of the error covariance by
using Matlab.

Fig.2 shows the relationship between arrival rate λ of
packets and TrV̄ and TrS̄. When λ = 0.01, TrV̄ and TrS̄
converge to 105. As the arrival rate λ of packets increases
gradually, the trace of upper bound V̄ and lower bound S̄
are gradually reduced. The upper bound TrV̄ decreases by
one order of magnitude when the arrival rate of packets λ
gradually changes from 0.01 to 1, while the lower bound TrS̄
drops by nearly two orders of magnitude, indicating that the
more clock information the node to be synchronized receives,

the higher the accuracy of clock synchronization is. In this
paper, we use the upper bound Vk as constraint condition
of output feedback model to predict control. On the basis
of obtaining the boundary, we further use Fig.9 platform for
verification.

B. COMPARISON OF SYNCHRONIZATION ERROR AND
CONVERGENCE SPEED UNDER DIFFERENT APPROACHES
(1) Fig.3 is shown for this section. The error of clock syn-
chronization is generally measured by the error of clock
parameter, which is a very significant and important indi-
cator of clock synchronization performance. The error of
clock synchronization for the k-th cycle of synchronization
is defined as:

E(k) =
1
M

[ξi(k)− zi]

where M is the number of experiments; ξi represents the
i-th state quantity in state x, and zi represents the i-th target
quantity in target Z .

FIGURE 3. Comparison of E(k) under different algorithms.

Fig.3 reflects the comparison of synchronization error
among protocol compensation, single-step optimal control
and the algorithm based on output feedback model predictive
control when we use model 2 in complete measurement. The
parameters of the single-step optimal control in experiments
are set as B = 1, D= 4. It carries out 80 times two-ways
message exchange in each round of clock synchronization,
and a total of M = 10 times experiments are performed.

Comparing protocol methods of two-ways message
exchange in [12], [13] (refer tomethod of protocol compensa-
tion for TPSN two-ways message exchange in [10]), it can be
seen that synchronization error of the protocol compensation
fluctuated around 6 × 10−3 from Fig.3, the algorithm of
protocol compensation has larger error of synchronization
than the output feedback model predictive control and single-
step optimal control. The RMPC also converges in subse-
quent 5 steps and has a lower steady-state error of clock
synchronization. It can be seen from Fig.3 that the Tubes-
MPC reaches steady state at step 10 and then it continues
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fluctuating near 0. Since the nominal system has no noise
effect, the Tubes-MPC nominal system converges to 0 in
step 9, and then keeps the value at 0, which is consistent with
the result of quantitative analysis of exponential convergence.

Therefore, Tubes-MPC achieves faster convergence and
has steady-state error of lower synchronization in this paper.

FIGURE 4. Effectiveness of Tubes-MPC exponential convergence for
vector system.

(2) Fig.4 is shown for this section. In order to reflect
the effectiveness of Tubes-MPC exponential convergence for
vector system, Fig.4 uses Model 1 to run Tubes-MPC. The
initial covariance is still calculated by using the method
described above, C = [11; 1− 1]2×2, the weight of con-
trol B=I2×2, the gain of control K̄ = −[10; 01]2×2, for
other parameters, they should multiply by I2×2 to expand in
accordance with the parameters in model 2.

In Fig.4, although the initial and estimated value of distur-
bance system state have large deviation, it exponentially con-
verges to vicinity of the target value after step 9. Fig.4 shows
that the state will not accurately reach the target value, it keeps
fluctuating at a certain range. On the one hand, this phe-
nomenon is due to the impact of noise, on the other hand,
it mainly considers the dependence of Tubes-MPC for initial
value of the state in Fig.4. According to the analysis of
exponential convergence, it will be reasonable as long as the
state converges to the set S. We only changed the initial state
to [3; 2], then the same simulation result as Fig.4 can be
obtained. Therefore, the clock state has no dependency on the
initial value of the state under the control of Tubes-MPC.

(3) Fig.5 is shown for this section. In order to reflect that
the state of system can be exponentially stable in set S more
intuitively, when the initial point is x(0) = [3; 2] as shown
in Fig.5, the state of disturbance system is converged into
S without showing the transition states before step 6. Set
S quantifies the fluctuation range after the steady state of
controlled disturbance system. we changed the initial point
to [−3;−8] and got the same simulation result as Fig.5.

FIGURE 5. State of disturbance system exponentially converged to set S.

FIGURE 6. Comparison of convergent mean for synchronization error
under different arrival rates.

C. ROBUST EXPONENTIAL CONVERGENCE UNDER
DIFFERENT PACKET ARRIVAL RATES
(1) Fig.6 is shown for this section. We use the theory of
incomplete measurement in section II to design a controller
with certain robustness for packet loss in this paper, and
quantify the control error. In order to reflect the effectiveness
of control algorithm under different arrival rate of packets,
we define the convergent mean of clock synchronization error
as [3], [14]:

θ̄λ =
1
M

M∑
i=1

θ̄i

where θ̄i = 1
N−l+1

N∑
k=l

θk , N represents the number of

exchange for clock message during a round of synchroniza-
tion, and l indicates that θk reaches the range δ of con-
vergence in step l and fluctuates within it. We assume that
δ = ±4 ∗ 10−4.
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In order to simulate the situation of packet loss, the step
size of arrival rate λ is set as 0.01. The sequence list of packet
loss is generated randomly according to the arrival rate before
experiments. Then code in binary system. This method sim-
plifies the process of packet loss. The nodes carry out normal
message exchange according to the complete measurement.
When the corresponding sequence of packet loss is 0, then
the packet will not be dealt with [2].

FIGURE 7. Comparison of convergent mean for synchronization error
when λ = 0.6.

(2) Fig.7 is shown for this section. In each experiment
about θ̄λ, in order to show the stability of control in this paper,
the data of θ̄λ=0.6 in Fig.6 will be expanded to obtain the
convergent mean θ̄i when arrival rate of packets is λ = 0.6,
as shown in Fig.7. We can see that the fluctuation of θ̄i for
protocol compensation is more severe and the fluctuation of
θ̄i for single-step optimal control is second from Fig.7, while
the fluctuation of θ̄i for the control algorithm of this paper is
relatively small. Tubes-MPC can better adapt to the situation
of packet loss.

(3) Fig.8 is shown for this section. In IV-D of this paper,
we have proved that when there is packet loss and the arrival
rate λ satisfies λc < λ ≤ 1, the state of system with
the output feedback model predictive control will converge
exponentially to the positive invariant set centered at the
target point Z.

In order to express the synchronization performance of
the three algorithms in a random process θ̄i more clearly at
the acceptance rate λ of packets, the synchronization pro-
cess of two points λ=0.1 and λ=0.6 in Fig.6 is expanded.
Fig.8 depicts the comparison of clock synchronization error
E(k) for protocol compensation, single-step optimal con-
trol, and output feedback model predictive control when
arrival rate of packets are λ=0.1 and λ=0.6 respectively.
When λ=0.1, the output feedback model predictive control
declines rapidly in the first 7 steps and reaches −2 × 10−3

as shown in Fig.8 (a), then it reaches steady state in the
following 36th step. However, at this point, the synchro-
nization errors of single-step optimal control and protocol

FIGURE 8. Comparison of synchronization error E(k) with two different
arrival rates.

compensation have not yet reached the steady-state. Finally,
the synchronization errors of protocol compensation, single-
step optimal control and output feedback model predictive
control are respectively stable at 1.2 × 10−3, 5.14 × 10−4

and −5.79 × 10−5, which shows that the synchronization
error of output feedback model predictive control is rela-
tively low and it also has perfect synchronization performance
at λ=0.1.
From Fig.8(b), the synchronization error of the output

feedback model predictive control is still lower than the
single-step optimal control, which is consistent with previous
the conclusion in Fig.6.

In addition, it can be known from Fig.8(a) or Fig.8(b) that
the synchronization error E(k) fluctuates within a very small
range around 0 when the steady state is reachedč which is in
accordance with the proof in IV-D that the state of system
converges exponentially.

In summary, the algorithm proposed in this paper has better
adaptability to packet loss.
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FIGURE 9. Sensor node, grabber and platform of experiments.

VI. EXPERIMENTAL TESTS AND ANALYSIS
The node configures STM32F103RB low-power micropro-
cessors and Chipcon radio frequency chip CC2430/2431
(in Fig.9). It supports wireless standard of 2.4 GHz ISM band
and IEEE802.15.4/ZigBee, the highest transfer rate of data is
250kbps. TimerA configures to use a 32MHz crystal oscilla-
tor divided by 4 as a clock source with as resolution. When
the node reads the hardware clock, the CC2430/2431 will
generate a time interrupt called Start Frame Delimiter (SFD)
when the node sends or accepts the first byte of data packet.

The experimental platform consists of three nodes and
one host computer. The nodes are grabber, reference node
and node to be synchronized respectively. The grabber is
equipped with a USB interface to connect directly to the
host computer, all of the message and node status of the
process during two-ways message exchange are grabbed
by it. The grabber transmits the message and node status
to the host computer and analyzes them by using Mat-
lab. The data packets are mainly intercepted by using tools
for visual grouping capture. We adjust the logic clock of
nodes after synchronization algorithm is finished. This logic
clock is maintained by the underlying service function of
nodes.

In order to verify the long-term synchronization effect
of algorithm on an actual network, it performs clock syn-
chronization every 6 hours and implements the two-ways
clock message exchange of clock synchronization 80 times at
each turn in the synchronization environment of networked
platform in Fig.8, and each interval of exchange time is 1s.
Themicroprocessor can execute 2.77×105 instruction during
this period (by a command is equal to three machine cycles to
calculate), to ensure that it can finish the algorithm of clock
synchronization. The grabber uploads packets every 5s. The
distribution for convergent mean of synchronization error of
network in 20 days is shown in Fig.10, and the statistical
results are shown in Table 2. The smaller the standard devi-
ation, the smaller the fluctuation of convergent mean for the
synchronization error of the clock. We can define the normal
error as:

D(θ̄i) =

√
1/
M

M∑
i=1

[θ̄i − E(θ̄i)][θ̄t − E(θ̄i)]

It can be seen quantitatively that the standard deviation
of the convergence gain for the synchronization error of
the clock of the Tube-MPC is smaller than the protocol
compensation and single-step optimal control from Table 2,

FIGURE 10. Distribution of 20 days convergent mean synchronization
error under the experiment platform.

TABLE 2. Comparison of statistical results for the convergent mean of the
synchronization error in the three algorithms.

and the range of fluctuation is mainly concentrated in the
area [0, 0.002]. The experiment has two practical aspects,
on the one hand, it reflects the effect of the long-term clock
synchronization, which has a lower clock fluctuation and a
lower synchronization error and ensures the stability of the
platform operation. On the other hand, the better synchroniza-
tion maintainability in this paper can reduce the use of syn-
chronous networked packet exchange and reduce networked
traffic load.

VII. CONCLUSION
According to the observation model in incomplete measure-
ment, the applicability of the control of the clock synchro-
nization error for output feedback Tubes-MPC is verified by
simulation experiments and the performance of exponentially
stable convergence is obtained.

For themulti-node IIOT(Industrial Internet of Things) [18],
the analyzing framework based on the output feedback model
predictive control which is local and non-cooperative can be
extended to the state-space model of the absolute clock by
using a unified approach under the analysis of the packet loss
in incomplete measurement. The controllable exponential
convergence of clock synchronization for unreliable wireless
network can be realized.
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APPENDIX A
EXPONENTIAL CONVERGENCE UNDER
UNRELIABLE BOUNDARY
The inference of Lemma 2: The Set of State Estimated Error
with Packet Loss

There is a positive definite set S̃+ for estimated error (39).
If the initial state of disturbance system and estimated system
satisfies x̃(0) = x(0)− x̂(0) ∈ S̃+.
Proof: Lemma 2 is based on the case of full measurement,

but it can be seen from the above discussion, when consider-
ing packet loss, there are:

x̃k (i) ∈ S̃+ ⊇ S̃

As can be seen from Section III, the expectation of error
covariance E[Pk ] satisfies:

0 < S̄ = lim
k→∞

Sk ≤ E[Pk ] ≤ lim
k→∞

Vk = V̄

where S̄ and V̄ can be calculated and they are the solution
of equations S̄ = (1 − λ)AS̄AT + Q and V̄ = gλ(V̄ )
respectively. The boundary of E[Pk ] reflects a measurement
of the deviation between the state of estimated system x̂ and
the state of disturbance system x. Define node Si satisfies
xi ∈ X , and the set X contains the global logical virtual clock
Z. When a packet loss occurs, according to the assumptions,
there are:

ϕ(−
√
Vk ) ≤ xk (i)− x̂k (i) ≤ ϕ(

√
Vk ), xk (i)∈X ,∀i ∈ NNc−1

where ϕ(·) is the column vector composed of data corre-
sponding to the upper left corner and the lower right corner
of the input matrix obtained by function mapping. It can
be known from the definition of positive invariant set that[
ϕ
(
−

√

V̄
)
, ϕ
(√

V̄
)]

1−λ
is a positive definite set of x̃k (i) =

xk (i)− x̂k (i) with the corresponding rate of packet loss 1−λ.
For the functional relationship of different rate of packet loss
and upper bound of covariance, the set S̃ is expanded to S̃+

with the corresponding rate of packet loss 1 − λ, that is[
ϕ
(
−

√

V̄
)
, ϕ
(√

V̄
)]

1−λ
, and there are:

S̃+ − S̃ = 1

Then S̃+ is the positive invariant set of the estimated error
with packet loss. According to Lemma 2, the inference of
Lemma 2 with packet loss can be obtained.
The inference of Lemma 3: The Set of Control Error with

Packet Loss
In the case of considering packet loss, for the control error

(42), if the initial state of estimated system and the nominal
system satisfies e(0) = x̂(0) − x̄(0) ∈ S̄č then there are still
e(k) ∈ S̄, i.e. x̂(k) ∈ x̄(k)⊕ S̄ for ∀wk ∈ W and ∀vk ∈ V .
Proof: In the case of considering packet loss, the state

update equation and observation equation of clock synchro-
nization are as follows:{

x(k) = Ax(k − 1)+ Bu(k − 1)+ wk
y(k) = γk [Cx(k)+ vk ]

The expression of the Luenberger observer is:{
x̂(k) = Ax̂(k − 1)+ Bu(k − 1)+ L[y(k − 1)− ŷ(k − 1)]
ŷ(k) = γkCx̂(k)

where x̂(k) is the observation state at the current k time, L
is the observer gain. The differential equation of the control
error e(k) for estimated system and nominal system is:

e(k) = x̂(k)− x(k)
= AK̄ e(k − 1)+γk−1[LCx̃(k − 1)+Lvk−1]

where AK̄
1
= A+BK̄ , δ̄(k−1) 1= γk−1[LCx̃(k−1)+Lvk−1],

ρ(AK̄ ) < 1. Iterating over the above equations, there are:

e(k) = Ak
K̄
e(0)+

k−1∑
j=0

Aj
K̄
δ̄k−1−j

where e(0) = x̂(0) − x(0). When e(0) = 0, e(k) ∈ S =
k−1∑
j=0

Aj
K
1=1⊕ A

K
1⊕ · · · ⊕ Aj

K
1, 1 = γk−1[LCS̃ ⊕ LV ],

then e(k) ∈ S can be proved. Therefore, whether or not the
packet loss occurs, a robust positive invariant set S̄ of control
error can be calculated in a finite time, and S̄ is a compact set.
The inference of Lemma 4: The Set of Interference Error

with Packet Loss
In the case of considering packet loss, there are S+ 1

= S̃+⊕
S̄. If the initial error is x̃(0) ∈ S̃+ and e(0) ∈ S̄, there are
x(k) ∈ x̂(k) ⊕ S̃+ ⊆ x̄(k) ⊕ S+ with control u(k) = ū(k) +
K̄ e(k).
Proof: According to the inference of Lemma 2, the infer-

ence of Lemma 3 and the operation rule of Minkowski set, it
is clearly that the inference of Lemma 4 is established.
Lemma 5: If conditions (37)(38) holds, and x̄(k) ∈ X̄Nc ,

then for the objective function there are [16]:

V 0
NC (x̄(k + 1)) ≤ V 0

NC (x̄(k))− `(x̄(k), ū(k))

Lemma 6: Assuming that condition (38) is true, and for
different objective functionsV 0

j (x̄(k)), j is an arbitrary integer.
Given the same initial state x̄(k), then as j increases, the objec-
tive function is [20]:

(1) V 0
j+1(̄x(k))≤V

0
j (x̄(k)),∀x̄∈ X̄Nc ,∀j∈{0, 1,· · ·,Nc−1};

(2) V 0
Nc(̄x(k))≤Vf (x̄(k)),∀x̄∈Xf

Lemma 7: If the stage function `(·) and the terminal cost
function Vf (·) respectively satisfy:

`(x̄(k), ū(k)) ≥ c1|x̄(k)− Z |2,∀x̄(k) ∈ X̄Nc ,∀ū(k) ∈ Ū

Vf (x̄(k)) ≤ c2|x̄(k)− Z |2,∀x̄(k) ∈ Xf

where c1 and c2 are a set of constants which satisfy c2 > c1 >
0.Then for V 0

Nc (x̄(k)), there are the following properties [16]:
(1) V 0

Nc (x̄(k)) ≥ c1|x̄(k)− Z |
2,∀x̄(k) ∈ X̄Nc

(2) Vf (x̄(k)) ≤ c2|x̄(k)− Z |2,∀x̄(k) ∈ Xf
(3) V 0

Nc(f (x̄(k),ū(k)))≤V
0
Nc (x̄(k))−c1|x̄(k)−Z |

2,∀x̄(k)∈ X̄Nc
Proof: (1) According to the definition of the optimal

problem for nominal system and the condition `(x̄(k),
ū(k))≥c1|x̄(k)− Z |2, V 0

Nc (x̄(k))≥c1|x̄(k)− Z |
2, ∀x̄(k)∈ X̄Nc

can be obtained.
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(2) According to (2) in Lemma 6, there are V 0
Nc (x̄(k)) ≤

Vf (x̄(k)) when V
0
Nc (x̄(k)) ≤ Vf (x̄(k)). Combining condition

Vf (x̄(k)) ≤ c2|x̄(k)− Z |2, V 0
Nc (x̄(k)) ≤ c2|x̄(k)− Z |2 can be

obtained.
(3) According to lemma 5, there are V 0

NC (x̄(k + 1)) ≤
V 0
NC (x̄(k))− `(x̄(k), u(k)), that is:

V 0
NC (x̄(k+1))−V

0
NC (x̄(k))≤−`(x̄(k), ū(k))≤−c1|x̄(k)−Z |

2

So far, we have proved V 0
NC(̄x(k + 1)) ≤ V 0

NC(̄x(k)) −
c1|x̄(k)−Z |2.
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