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ABSTRACT Spatial and temporal constraints are very important for correlation filter (CF)-based trackers.
However, the existing methods usually fail to regularize the CF learning by the spatio-temporal information
because of the ineffective target representation. To address the issue, we propose a novel Orientation and
Scale adaptive tracker with Regularized Correlation Filters (OSRCF) for visual tracking. First, we directly
employ the target region to build a spatio-temporally regularized CF, which is solved efficiently by the
alternating direction method of multipliers (ADMM). Especially, the spatial regularization module can
alleviate boundary effects by suppressing the outside background, while the temporal one can handle rapid
appearance changes by smoothing the CF updating. Second, we obtain a non-axis-aligned bounding box for
the target region representation by orientation and scale adaptive strategy, which cooperates a straightforward
orientation estimation with a discriminative scale space correlation filter. We perform comprehensive
experiments on two recent visual tracking benchmark datasets: VOT2017 and OTB2015. The results show
that ourOSRCF tracker outperforms top-rankedmethodswith handcrafted features inVOT2017 and achieves
outstanding performance compared to some state-of-the-art methods in OTB2015.

INDEX TERMS Visual tracking, orientation and scale adaption, correlation filters.

I. INTRODUCTION
Visual tracking is a fundamental research topic in computer
vision due to its numerous applications in areas such as
robotics, surveillance, vehicle navigation and human com-
puter interactions. Although much work has been done over
the past decades see [1]–[4] to cite a few, it is still a chal-
lenging problem to design an all-situation-handled tracker
that can handle various critical situations, such as illumina-
tion changes, geometric deformations, partial occlusions, fast
motions and background clutters.

Existing tracking methods can be classified roughly
into two categories: generative methods [5]–[15] and
discriminative methods [16]–[26]. Generative methods learn
the representation of an object, often a set of basis vectors
from a subspace or a series of templates, to search for the
region which is the most similar to the tracked object. Dis-
criminative methods instead learn a classifier to distinguish
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the tracked object from environment by machine learning
techniques, such as Support Vector Machines (SVM), boost-
ing techniques and neural networks.

Recently, Discriminative Correlation Filter (DCF) based
methods have achieved great success in modern object track-
ing benchmarks [27], [28]. The standard DCF based trackers
can utilize all spatial shifts of training and testing samples by
exploiting the Fast Fourier Transform (FFT) at both learning
and detection stages, which brings ultrahigh speed. How-
ever, this leads to unwanted boundary effects because of the
periodic assumption of the samples. To solve the problem,
Galoogahi et al. [29] propose a zero-padding correlation fil-
ter which reduce the number of unrealistic examples. Then
Danneljan et al. [30] propose a spatially regularized cor-
relation filter by penalizing filter values outside the object
boundaries. However, these trackers suffer from the inac-
curate target region because the target shape is approxi-
mated by an axis-aligned rectangle. To solve the problem,
Lukezic et al. [31] exploit a color model to segment the target
from the background, which is then used to produce a spatial
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FIGURE 1. Comparisons of our approach with the top-ranked trackers in
challenging situations of rotations on the Motocross1 sequence.

constraint regularization for correlation filter. But the color
model is sensitive to illumination changes and easily drifts
away when too much background is contained in the bound-
ing box, which leads to false segmentation and tracking.

Another problem of the correlation filter is that the DCF is
not rotation-invariant since the filter template strongly relies
on spatial layout of the tracked object. However, most DCF
based trackers only focus on the problem of position and scale
estimation [32], [33], and ignore the rotation of the target.
This results from the common axis-aligned representation of
the target region and the slight changes of orientation in most
testing sequences. However, if there is a significant orien-
tation change, even the top-ranked trackers fail (see Fig.1).
In [34], a rotation adaptive correlation filter is proposed,
but it does not consider the boundary effects, which obtains
unsatisfactory results.

Motivated by the above observations, we propose a novel
Orientation and Scale adaptive tracker with Regularized Cor-
relation Filters. Our key idea is to obtain a non-axis-aligned
bounding box for the target region representation by an
effective orientation and scale adaptive estimation scheme,
which is then used to constrain the spatial regularization of
correlation filters. To alleviate a rapid model degradation by
large appearance changes and occlusion, we incorporate a
target-region-based temporal regularization [35] to the spatial
constraint correlation filters by penalizing the variations of
appearance model. Meanwhile, we solve the model with an
ADMM algorithm, which can empirically converge within
very few iterations. Evaluations on recent visual tracking
benchmark datasets show that our OSRCF tracker outper-
forms most state-of-the-art methods.

The contributions of this paper are as follows.
• A novel OSRCF model is developed by combining
target-region-based spatial and temporal regularizations,
thereby alleviating boundary effects and being robust for
rapid appearance changes.

• An ADMM algorithm is developed for solving
OSRCF efficiently.

• An orientation and scale adaptive tracker is proposed,
which not only produces non-axis-aligned target region

for spatio-temporal regularizations, but also improve the
performance of tracking rotated targets.

The rest of this paper is organized as follows. Section II
gives a brief overview of the related work. The proposed
method is described in section III. In section IV we provide
description and results of the performed experiments. Con-
clusions are finally presented in section V.

II. RELATED WORK
In this section, we provide a brief review on DCF based
trackers and then discuss the methods closely related to this
work.

A. DCF BASED TRACKERS
In the DCF based trackers, a target is tracked by correlating
a filter over a larger search window and the location with
the maximum value in the correlation response indicates the
location of the target. Bolme et al. [20] first adopted corre-
lation filters in tracking applications by minimizing the total
squared error between the actual and the desired correlation
output on a set of grayscale sample. By computing the corre-
lation in Fourier domain, their MOSSE filter operates at hun-
dreds of frames per second. Then Henriques et al. explored
the circulant structure, called CSK [21], to extend [20] to
kernel-based learning with dense sampling. Subsequently,
KCF [36] boosted the performance of CSK by extending
the input features from a single channel to multiple channels
(e.g., HOG). The above work constructs the standard formu-
lations of the DCF framework for visual tracking.

Later, a great deal of work has significantly improved the
DCF framework by, e.g., incorporation of powerful features
e.g. color names [37] and CNN features [38]–[40], scale
estimation [32], [33], rotation adaption [34], [41], long-term
memory [42], alleviating boundary effects [29]–[31], [43],
fusing multi-resolution feature maps [44], [45] and
ensembles [46]–[48].

B. REGULARIZATIONS
The DCF based trackers learn optimized filters by solving
a ridge regression on the set of all cyclic shifts versions
of the target. To avoid overfitting, a regularization term is
commonly added into the regression target. Standard DCF
based approaches use unified weights for every training pixel,
which is unreasonable because the pixel away from the target
center is unreliable. In [30], a Tikhonov regularization is
adopted to penalize the DCF coefficients depending on their
spatial locations. Then [35] boosts the performance of [30]
by adding a temporal regularization on the whole training
sample. In [31], the target region is extracted by a color
model and the outside pixels are ignored when learning.
Recently, [49] explores the nonlocal information to accu-
rately represent and segment the target, which is then used to
regularize a correlation filter. Compared with these trackers,
our approach has the followingmerits: (1) A non-axis-aligned
target region is used to provide a spatial constraint regulariza-
tion; (2) A temporal regularization based on the target region
is added instead of the whole sample region.
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C. ORIENTATION AND SCALE ESTIMATION
In the standard form, the DCF based trackers can only esti-
mate the horizontal and vertical location of the target in the
image. But in some applications such as robotics, it is also
crucial to estimate the additional target-centric information,
such as scale and orientation. To incorporate scale estimation
in a tracking framework, [32] proposed a straightforward
scale adaptive scheme to handle scale changes, where a
scaling pool is used to search the desired scale factor with
maximum response. In [33], a discriminative scale space filter
was proposed by learning a separate scale filter with the
samples of the target at a set of different scales. All these
trackers ignore the orientation estimation. To solve the prob-
lem, a rotation adaptive correlation filter tracker is proposed
in [34] and [41]. However, they did not consider the boundary
effects. And in this paper, we extend regularized DCF based
trackers with the capability of handling scale and orientation
changes.

III. THE OSRCF TRACKER
In this section, we firstly review the standard DCF formula-
tion, and then introduce the target-region-based spatial and
temporal regularization for the DCF proposed in this paper.
Meanwhile, an ADMM is developed to solve the model.
Finally, we present the orientation and scale adaptive scheme
used in our approach.

A. THE STANDARD DCF TRACKER
In the standard DCF formulation, the target appearance
is modeled by a multichannel filter. The aim is to learn
the filter from a single training image patch with the tar-
get located at the center. A D-dimensional feature map
x ∈ Rd is extracted from the image patch, which has
the spatial size M × N . At each location (m, n) ∈

{0, 1, · · · ,M − 1} × {0, 1, · · · ,N − 1}, a training sample
xm,n is generated by the circular shift of x with Gaussian func-
tion label ym,n. We denote feature layer d ∈ {1, 2, · · · ,D}
of x by xd . The desired filter f consists of oneM × N corre-
lation filter f d per feature layer xd , which can be solved by
minimizing the L2 error of the correlation response compared
to the label y,

min
f

1
2

D∑
d=1

∥∥∥ f d ? xd − y ∥∥∥2 + λ
2

D∑
d=1

∥∥∥ f d ∥∥∥2 (1)

where ? denotes circular correlation and λ is the weight of
the regularization term. Using Parseval’s formula, Eq.1 can be
transformed to a regression objective in the Fourier domain,

E (F) =
1
2

D∑
d=1

∥∥∥ Fd � Xd − Y ∥∥∥2 + λ
2

D∑
d=1

∥∥∥ Fd ∥∥∥2 (2)

Here F ,X ,Y are the Fourier transforms of f ,x,y and the oper-
ator � denotes Hadamard product. Eq.2 has a closed-form
solution by

Fd =
Y � Xd

Xd � Xd + λ
, d = {1, 2, · · · ,D} (3)

FIGURE 2. The masking matrix M is determined by the target region,
where the element is binary. The training sample is obtained by padding
the target bounding box. After feature extraction, M is resized to the
feature space scale and remains the same during the tracking period.

Here the bar X denotes the complex conjugation and all the
operations in Eq.3 are point-wise.

To learn the filter in a robust way, the numerator Ad and
denominator B of the filter is updated linearly according
to [20] as 

Ad = (1− η)Ad + ηY � Xd

B = (1− η)B+ η
D∑
d=1

Xd � Xd

Fd =
Ad

B+ λ
, d = 1, 2, · · · ,D

(4)

Here the scalar η is the learning rate parameter.
When a new frame t comes, a feature map xt is extracted

from the image patch centered around the predicted target
location as the same way as the training image patch. The
correlation response z between the filter f and feature map xt
is computed in the Fourier domain by

z = F−1
(

D∑
d=1

Fd � Xdt

)
(5)

Here F−1 denotes the inverse DFT and the maximum value
of z indicates the location of the target.

B. SPATIALLY AND TEMPORALLY REGULARIZED DCF
The standard DCF suffers from boundary effect and is sen-
sitive to rapid appearance changes. To deal with these prob-
lems, we incorporate target-region-based spatial and temporal
regularizations into the standard DCF. Given a target
region O, we define a masking matrix M ∈ {0, 1}M×N

by

M (m, n) =

{
1, (m, n) ∈ O
0, (m, n) /∈ O

(6)

The construction process is shown in Fig.2, And each
element of M indicates whether the pixel should be
active or inactive in learning, so it is very important to obtain
the accurate target region. Different from other methods using
a segmentation model, we propose an orientation and scale
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adaptive strategy to get the non-axis-aligned bounding box
for target region representation, which is detailed described
in Section III-C.

To ensure the coefficients of filter is zero outside of the
target region, we introduce a constraint f ≡M� f , resulting
a spatial regularization ‖M� f ‖2. Note thatM remains the
same once initialized because the training patch is regularized
to the same size. Based on the target region, a temporal
regularization term ‖M� f −M� ft−1‖2 is exploited to
smooth the CF learning, which leads to the following con-
strained optimization problem

min
f

1
2

D∑
d=1

∥∥∥ f d ? xd − y
∥∥∥2 + λ

2

D∑
d=1

∥∥∥M� f d ∥∥∥2

+
µ

2

D∑
d=1

∥∥∥M� f d −M� f dt−1
∥∥∥2

s.t. f ≡ M� f (7)

where λ and µ are the constraint penalty values. We define
an auxiliary variable gd = M � f d , and we have f dt−1 ≡
M� f dt−1, then Eq.7 can be formulated as

min
f

1
2

D∑
d=1

∥∥∥ f d ? xd − y ∥∥∥2 + λ
2

D∑
d=1

∥∥∥ gd ∥∥∥2

+
µ

2

D∑
d=1

∥∥∥ gd − f dt−1 ∥∥∥2
s.t. f d − gd ≡ 0 (8)

The above problem can be solved by the following aug-
mented Lagrangian

L(f , g, h) =
1
2

D∑
d=1

∥∥∥ f d ? xd − y ∥∥∥2 + λ
2

D∑
d=1

∥∥∥ gd ∥∥∥2
+
µ

2

D∑
d=1

∥∥∥ gd − f dt−1 ∥∥∥2 + D∑
d=1

(f d − gd )hd

+
γ

2

D∑
d=1

∥∥∥ f d − gd ∥∥∥2 (9)

where h is a Lagrangian multiplier and γ is the constraint
penalty value. Specially, coefficients in f residing outside
the target region are suppressed to zero by assigning higher
weights to γ . We introduce sd = hd

γ
, then Eq.9 can be

formulated as

L(f , g, h) =
1
2

D∑
d=1

∥∥∥ f d ? xd − y ∥∥∥2 + λ
2

D∑
d=1

∥∥∥gd∥∥∥2
+
µ

2

D∑
d=1

∥∥∥ gd − f dt−1 ∥∥∥2 + γ2
D∑
d=1

∥∥∥ f d − gd + sd ∥∥∥2
(10)

Using Parseval’s formula, Eq.10 can be transformed as

L(F,G, S)

=
1
2

D∑
d=1

∥∥∥ Fd � Xd − Y ∥∥∥2 + λ
2

D∑
d=1

∥∥∥ Gd ∥∥∥2
+
µ

2

D∑
d=1

∥∥∥ Gd − Fdt−1 ∥∥∥2 + γ2
D∑
d=1

∥∥∥ Fd − Gd + Sd ∥∥∥2
(11)

Then we adopt ADMM algorithm to solve the above prob-
lem by solving the following subproblems at each iteration,

F (i+1)
= min

F

1
2

D∑
d=1

∥∥∥Fd � Xd − Y∥∥∥2
+
γ

2

D∑
d=1

∥∥∥Fd − Gd + Sd∥∥∥2
G(i+1)

= min
G

λ

2

D∑
d=1

∥∥∥Gd∥∥∥2 + µ
2

D∑
d=1

∥∥∥Gd − Fdt−1∥∥∥2
+
γ

2

D∑
d=1

∥∥∥Fd − Gd + Sd∥∥∥2
S(i+1) = S(i) + F (i+1)

− G(i+1)

(12)

The minimizations in Eq.12 have a closed-form solution:

F =
Y � X + γG− H

X � X + γ
(13)

G = F (M� F−1 (
µFt−1 + γF + H

λ+ µ+ γ
)) (14)

and the Lagrange multiplier H and the constraint penalty γ
are updated as follows:

H (i+1)
= H (i)

+ γ (i) (F − G) (15)

γ (i+1)
= βγ (i) (16)

Since the operations in Eq.13 are fully element-wise,
the computation cost for F is O(DMN ). The solution for
Eq.14 requires a single inverse FFT and another FFT,
so the complexity of solving G is O(DMN logMN ). Hence,
the overall computational complexity of the algorithm is
O(DMN logMNNI ), where NI is the number of iterations.
Note that the algorithm can empirically converge within very
few iterations. The procedure of filter learning is summarized
in the Algorithm 1.

C. ORIENTATION AND SCALE ADAPTIVE SCHEME
The spatial and temporal constraint as described in
Section III-B depends on the masking matrix M, which is
obtained from the target region. To estimate it accurately,
we propose an orientation and scale adaptive scheme. The
orientation search is in a straightforward way. We define a
rotating pool R = {r1, r2, · · · , rk}, and use bilinear inter-
polation to get the rotated image patches from the original
image space. For each ri ∈ R, we extract an image patch of
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FIGURE 3. Model learning with the combination of the target-region-based spatial and temporal
regularization on the standard DCF.

Algorithm 1 Learning Spatially and Temporally Regularized
DCF
Input: Feature map X , desired correlation response Y ,

masking matrixM, previous filter Ft−1
Output: Optimized filter F
1: Computing the standard DCF F based on Eq.3
2: Initializing the filter G = F(M� F−1(F))
3: while not converged do
4: Update F via Eq.13
5: Update G via Eq.14
6: Update H via Eq.15
7: end while
8: return F ⇐ G

orientation ri+rt−1 centered around the target with fixed size.
Here, rt−1 denotes the target orientation in the frame (t − 1).
Then a feature map xi is extracted from each patch and the
final response is calculated by

zi = F−1 (
D∑
d=1

Fd � Xdi ), i = 1, 2, · · · , k (17)

where F is the learnt filter described in Section III-B and
the maximum of {z} indicates the desired orientation. As the
target translation is implied in the response map of proper

orientation, the final movement needs to be tuned to obtain
the real location of the target.

To estimate the scale of the target, we use a discriminative
scale space filter Fscale described in [33]. Specifically, to con-
struct the training samples, we extract feature maps xscale
using variable patch sizes centered around the target with
a proper orientation. By maximizing the scale correlation
scores

zscale = F−1 (Fscale � Xscale) (18)

we obtain the relative change in scale compared to the previ-
ous frame.

D. TRACKING WITH OSRCF TRACKER
Based on the target-region-based spatially and temporally
regularized filter and the orientation and scale adaptive
scheme, we propose a OSRCF tracker. The target state esti-
mation and model update steps of the tracking framework
proceed as follows.

1) TARGET STATE ESTIMATION
The target is first localized by the response of the learned reg-
ularized DCF Ft−1. Orientation is estimated by maximizing
the response of Ft−1 on variable patch rotations and a new
position pt is obtained by tuning the translation. Scale is esti-
mated by maximizing the response of Fscale. The procedure
is visualized in Fig.4.
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FIGURE 4. Visualization of the procedure used to estimate the target state. When a new frame comes, we estimate the translation, rotation
and scale of the tracking object to obtain a non-axis-aligned target region, which is then used to update the model.

2) MODEL UPDATE
The masking matrix M is created by Eq.6 when initializing
and the regularized filter Ft is computed with Algorithm 1.
We adopt an incremental strategy to update the filters with
learning rate η. A brief outline of our OSRCF approach is
given in Algorithm 2.

IV. EXPERIMENTS
In this section, we present a comprehensive experimental
evaluation of the proposed method. Section IV-A gives the
implementation details. In section IV-B, comparative experi-
ments on the recent benchmark VOT2017 [27] is conducted
and demonstrate state-of-the-art performance. Furthermore,
we compare our tracker with some deep-learning-based track-
ers in Section IV-C. Next, we conduct spatial and temporal
penalty factors experiments to analyze the effects each term
in Eq.9. We then carry out ablative studies in Section IV-E.
Section IV-F gives a qualitative comparison with related com-
peting method in the VOT2017 benchmark dataset. Finally,
we evaluate our tracker on OTB2015 [28] dataset.

A. IMPLEMENTATION DETAILS
Our tracker is implemented by native Matlab without
optimization. The experiments are conducted on an Intel
E5-1650v4 CPU (3.60 GHz) PC with 16 GB memory. Our
proposed OSRCF tracker runs at about 10 fps. We set the
initial position, orientation and size of the target based on a
bounding box centered on the object in the first frame. Note
that, the selected bounding box can be either a rectangle or a
polygon. The HOG and Color Names (CN) features are used
in our tracker. And for fair comparison, we firstly compare the

Algorithm 2 The OSRCF Tracking Algorithm
Input: Image It . Previous target position pt−1, orientation

rt−1 and scale st−1. Masking matrix M, Regularized
DCF Ft−1. Scale filter Fscale,t−1.

Output: Estimated target position pt , orientation rt and
scale st . Updated regularized DCF Ft . Updated scale
filter Fscale,t .
Target State Estimation

1: Extract feature maps xt from It at pt−1, rt−1 and st−1.
2: Compute the correlation response zt using Eq.5.
3: Set pt to the target position that maximizes zt .
4: for all ri ∈ R do
5: Extract feature maps xt,i from It at pt , ri + rt−1 and

st−1.
6: Compute the correlation response zt,i using Eq.17.
7: end for
8: Set rt and new pt to the target orientation and position

that maximizes {zt,i}.
9: Extract feature maps xscale,t from It at pt and rt .
10: Compute the correlation response zscale,t using Eq.18.
11: Set st to the target scale that maximizes zscale,t .

Model Update
12: Compute a new regularized DCF F .
13: Compute a new scale filter Fscale.
14: Update filter Ft = (1− η)Ft−1 + ηF .
15: Update filter Fscale,t = (1− ηs)Fscale,t−1 + ηsFscale.

proposed method with DCF based trackers only using hand-
crafted features. Then, we further compare our tracker with
some deep-learning-based methods.
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FIGURE 5. The performance of 10 trackers in accuracy and robustness.
The results show our OSRCF tracker outperforms other DCF based
trackers that do not apply deep convolutional features.

Here, we use VOT2017 dataset as our validation set for
tuning all hyper parameters. The spatial regularization param-
eter is set to λ = 0.01 and temporal regularization parameter
is set to µ = 4. The augmented Lagrangian optimization
parameters are set to γ (0)

= 5 and β = 3, the number of
iterations is NI = 2. The correlation filter adaptation rate
is set to η = 0.05. Rotation from a fixed pool of 4 angles
ranging from −30◦ to 30◦ is used to detect the orientation
change and the parameters for the scale filter are set to the
same as in [33]. Further, we use the same parameter values
and initialization for all the sequences.

B. THE VOT2017 BENCHMARK
The VOT2017 dataset [27] consists of 60 challenging
sequences and is unarguably the most difficult sequence set in
contrast to related benchmark. The VOT methodology resets
a tracker upon failure to fully use the dataset and the expected
average overlap (EAO) is used to measure the performance
which combines the raw values of per-frame accuracies and
failures in a principled manner.

Table 1 shows the comparison of our tracker with other
9 DCF based trackers with handcrafted features includ-
ing ECOhc [45], STRCF [35], CSRDCF [31], Staple [50],
SRDCF [30], DSST [33], SSKCF [51], KCF [36], and
mosseca_ca [52]. Our OSRCF tracker achieves the EAO
score of 0.2718. And compared with the CSRDCF and
ECOhc methods which are the top-two DCF based track-
ers using handcrafted features [27], the performance gain
is 6.1% and 14.0%, respectively. Fig.5 presents the detailed
performance of these trackers in terms of accuracy (overlap
with the ground truth) and robustness (failure rate) [53], [54].
Compared to the second best approach (CSRDCF), our
method obtains a significant gain in accuracy.

C. COMPARISON WITH DEEP-LEARNING-BASED
TRACKERS
We further compare our OSRCF with 8 deep-learning-
based trackers MCCT [55], CCOT [44], SiamDCF [56],

FIGURE 6. A comparison with 8 deep-learning-based trackers on
VOT2017 dataset.

FIGURE 7. Spatial and temporal penalty factors experiments on
VOT2017 dataset.

FIGURE 8. Ablation analysis on VOT2017 datasets and the EAO score is
denoted in the figure.

MCPF [57], CRT [58], DLST [59], RCPF [60], SiamFC [61]
on VOT2017. Fig.6 presents the EAO score of each tracker
and the best three are shown in red, blue and green fonts,
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TABLE 1. Comparison with state-of-the-art methods on the VOT2017 dataset. The results are presented by EAO and the best three results are shown in
red, blue and green fonts, respectively.

FIGURE 9. Comparisons of the proposed OSRCF tracker with the state-of-the-art trackers (ECOhc, CSRDCF, STRCF) in the unsupervised
experiment on 5 challenging sequences (from top to down are ants1, ants3, drone_flip, motocross1, motocross2, respectively).

respectively. One can see that OSRCF performs better than
six DCF based trackers with deep features (MCCT, CCOT,
MCPF, CRT, RCPF) and two CNN matching based trackers
(SiamDCF, SiamFC).

D. SPATIAL AND TEMPORAL PENALTY FACTORS
EXPERIMENTS
In Eq.7, the constraint condition f ≡ M � f makes the
coefficients in f residing outside the target region close to

VOLUME 7, 2019 53483



K. Tan, Z. Wei: Learning OSRCF

FIGURE 10. Success plots over all 100 sequences using one-pass
evaluation on the OTB-2015 dataset. The score for each tracker is shown
in the legend. Our OSRCF method performs favorably against the
state-of-the-art trackers.

zero, which is controlled by the spatial penalty factor γ in
Eq.9. And the λ controls the regularization on the coefficients
within the target region, which is commonly set to a small
value (0.01 in this paper). The temporal penalty factor µ
makes the coefficients in f within the target region change
more smoothly by assign higher value and vice versa. Fig.7
illustrates how the spatial and temporal penalty factors, γ and
µ, affect the tracking performance on VOT2017. We first set
µ = 4 analyze the effects of spatial penalty factor γ . One can
see that the best EAO score is achieved at γ = 5. Then we set
γ = 5 and further analyze the effects of temporal penalty µ.
From the graph, we can see that the values around 4 achieve

better performances. Finally, we set γ = 5 and µ = 4, which
achieves EAO score 0.2718 on VOT2017 dataset.

E. ABLATION ANALYSIS
We use experiments to justify the effectiveness of our orien-
tation adaptive scheme and spatial-constraint temporal regu-
larization in OSRCF. We use the VOT2017 datasets for the
ablation analysis.

We first evaluate the performance of the baseline method
which only contains spatial regularization. Then we add the
orientation adaption scheme and spatial-constraint temporal
regularization to the baseline model, respectively. The results
of EAO scores are reported in Fig.8. Compared with baseline
method, the orientation adaption scheme (baseline_oriention)
advances the performance by 11.4% in EAO score. On the
other side, a gain of 10.0% in EAO score is achieved by con-
sidering the spatial-constraint temporal regularization. The
overall OSRCF dramatically improves the performance by
an EAO score of 22.5% against the baseline, which demon-
strates the effectiveness of our orientation adaptive scheme
and spatial-constraint temporal regularization in practical
tracking.

F. QUALITATIVE COMPARISON
To demonstrate the effect of orientation adaptive scheme in
our tracking algorithm, we make a qualitative comparison

FIGURE 11. Overlap success plots over 11 tracking challenges of low resolution, background clutter, out-of-view, in-plane rotation, fast motion, motion
blur, deformation, occlusion, scale variation, out-of-plane rotation and illumination variation.
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with other top-four trackers (ECOhc, CSRDCF, STRCF) on
5 different sequences where there are significant orientation
variations. As shown in Fig. 9, our OSRCF tracker achieve
the best performance among all four trackers. Although the
ECOhc is capable of tracking rotated objects, such as in
the ants3, drone_flip and motocross2 sequence, it cannot
estimate the orientation variations in all sequences and suffers
from a significant rotation drift. In the motocross1 sequence,
all the compared trackers struggle due to difficult lighting
conditions and rotation motions, while our tracker robustly
handles these factors. In addition to robustly tracking the
target, our approach accurately estimates the orientation vari-
ations and is able to keep track of the target throughout the
sequence.

G. THE OTB2015 DATASET
We evaluate our approach on the OTB2015 dataset which
consists of 100 challenging videos. The OTB methodology
uses mean overlap precision (OP) and area-under-the-curve
(AUC) scores to evaluate the performance of trackers. The
OP score is calculated as the percentage of frames in a video
where the intersection-over-union (IOU) overlap with the
ground-truth exceeds a certain threshold (0.5 in this exper-
iment). The mean OP over all videos is plotted over the
range of IOU thresholds [0 1] to get the success plot (see
Fig.10(a)). The area under this plot gives the AUC score
(see Fig.10(b)). We refer to [28] for details. Our method is
compared with 8 recent DCF based trackers with handcrafted
features (STRCF [35], ECO-HC [45], SRDCF [30], CSRDCF
[31], Staple [50], samf [32], DSST [33], KCF [36]). The pro-
posed OSRCF algorithm achieves the AUC score of 62.2%
and OP of 76.5%. Overall, our algorithm achieves compara-
ble results. The AUC results of 11 challenging attributes are
detailedly illustrated in Fig.11.

V. CONCLUSIONS
We propose a target-region-based spatially and temporally
regularized correlation filter to reduce the boundary effect
and improve temporal robustness, which is solved by an
ADMM method efficiently. To obtain the non-axis-aligned
region of the tracked target, We introduce an orientation and
scale adaptive scheme. Evaluation on VOT2017 shows that
our OSRCF tracker achieves the top result among DCF based
trackers with handcrafted features.
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