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ABSTRACT As one of the most important elements in the intelligent transportation system (ITS), the road
traffic monitoring system (RTMS) needs to be functioned with a road recognition mechanism. Current works
on road recognition mainly target at the field of automatic driving and cannot be directly used in the RTMS.
In this paper, we propose a decision tree-based road recognition algorithm using roadside fixed light detection
and ranging (LiDAR) sensors in the RTMS. These LiDAR sensors have a low vertical resolution, which
implies that we cannot get a clear far boundary and obvious features of roads from the point cloud data.
Point cloud data obtained by the roadside LiDAR sensors are projected onto a plane rasterized to grids of
points. Using a decision tree, these grids are first classified into background grids and road grids. For reducing
misclassification, these grids are further reclassified using a mean filtering algorithm. Finally, a minimum
circumscribed rectangle algorithm is employed to obtain accurate road boundaries. The experiment results
show that compared to existing road recognition algorithms, the proposed approach has advantages of being
completely automatic, requiring shorter recognition time and having a wider detection range.

INDEX TERMS Road recognition, 3D LiDAR sensors, decision tree, mean filter algorithm, minimum

circumscribed rectangle algorithm.

I. INTRODUCTION

Nowadays, roads in almost every country are crowded with
vehicles so that we are flooded with news about traffic con-
gestion and even accidents almost every day. It is reported
that road traffic injury causes millions of deaths worldwide
every year [1]. To alleviate this situation, many researchers
are trying their best to develop an Intelligent Transporta-
tion System (ITS) [2], [3] which smartly takes advantage of
multiple leading-edge information and communication tech-
nologies to improve safety, efficiency, and sustainability of
transportation networks [4]. Road Traffic Monitoring System
(RTMS) is one of the most important elements within the ITS
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domain [5]. Through analyzing data collected by detectors
such as inductive loop sensors and video image processors
and then distributing information concerning vehicle flow
and road conditions to relevant stakeholders, RTMS aims at
optimizing vehicle traffic flow and improving the road safety.
To achieve this goal, RTMS needs to be functioned with a
road recognition mechanism which responds for localizing
and tracking road boundaries [6].

Currently, researchers have conducted extensive works
on road recognition, which are mainly based on vision
sensors and/or active light detection and ranging (LiDAR)
sensors [7]. For vision-based lane recognition algorithms,
the basic idea is to employ different types of cameras
such as visible light and night-vision cameras to capture
images of roads, which are then processed by different image
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processing methods to extract meaningful features such as
road color, texture, edges, and brightness to segment lanes.
The most commonly used image processing methods mainly
include Sobel operator, Hough transform, random sample
consensus (RANSAC), etc. For example, in paper [8], noisy
lane edge features are detected using the Sobel operator and
road images captured by cameras are divided into multiple
subregions along the vertical direction. In paper [9], lane
markings on the road are detected by dividing region of inter-
est (ROI) into two subregions and applying the Hough trans-
form in each subregion independently. In paper [10], a linear
lane model and RANSAC are jointly used for detecting lanes,
and a Kalman filter [11] is then used to refine the noisy output.
However, this category of road recognition algorithms suffer
from the drawback that it can be easily affected by changes
of external environment. Specifically, these algorithms show
much less robustness and much lower accuracy under poor
visibility conditions such as shadow, illumination changes,
and dramatically curved lanes where quality of the pictures
captured by cameras degrades a lot.

In contrast, LiDAR sensors are not susceptible to exter-
nal environment. Also, they have the capability to scan
the 360° three-dimensional (3D) surrounding objects [12]
with high resolution and precision. Thus, researchers are
currently shifting their focuses on developing LiDAR-based
road recognition techniques. For example, in paper [13],
the authors propose a lane marker detection method which
first projects point cloud data of 3D LiDAR sensors into a 2D
grid map and then segment lanes from ground by comparing
height differences between grids in a grid map. In paper [14],
the authors present a real-time ground segmentation approach
based on Gaussian process regression in a polar grid map
for an autonomous land vehicle equipped with a LiDAR
system. In paper [15], the authors develop a real-time inter-
section recognition and road boundary detection algorithm
using a 3D LiDAR sensor on unmanned ground vehicles.
Note that the above road recognition algorithms target at the
field of automatic driving and serve for Advanced Driving
Assistance System (ADAS) in ITS. LiDAR sensors used in
these algorithms are equipped on vehicles and are usually
64-channel or at least 32-channel for achieving a real-time
road recognition.

In this paper, we focus on road recognition in a RTMS
where LiDAR sensors are fixed at a roadside. LiDAR sen-
sors with more channels have higher accuracy but are corre-
spondingly much more expensive. In the RTMS, for reaching
a balance between government’s limited budget and large
demand for LiDAR sensors, we choose to deploy 16-channel
LiDAR sensors at the roadside. Compared with 64-channel or
32-channel LiDAR sensors, the vertical resolution of
16-channel LiDAR sensors is much lower. This results in
an unclear far boundary and a lack of obvious features
for road recognition. Thus, we claim that the LIDAR-based
road recognition algorithms already designed for/used in the
ADAS cannot be directly applied in the RTMS for road
recognition. For example, with 64-channel or 32-channel
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LiDAR sensors, we can use height information (i.e., average
and variance) to accurately discriminate road surface and
obstacles [6], [16], [17]. However, this cannot be done with
16-channel LiDAR sensors due to its low vertical resolution.

Currently, there are few researches on road recognition for
RTMS which use LiDAR sensors with low vertical resolution
fixed at roadside for traffic information collection. To the
best of our knowledge, paper [18] is the only related work
in this regard. In paper [18], the authors apply the DBSCAN
algorithm to cluster vehicle trajectories for lane detection.
Nevertheless, this method requires to calibrate the road area
manually. In this paper, to address this limitation, we propose
an automatic road recognition algorithm which consists of
the following steps: first, point cloud data collected by the
3D LiDAR sensors are projected into an XOY plane which
is then rasterized into grids of points; second, by analyzing
how vehicles influence the distribution of points in grids,
we extract five features, three of which are then selected to
train a decision tree that is employed to classify the grids
into background grids and road grids for the purpose of road
recognition; last, we apply a mean filtering algorithm to filter
the mistakenly classified grids and a minimum bounding
rectangle algorithm to obtain the boundary of the road space.
Contributions of this paper are summarized as follows:

« We propose an automatic road recognition approach for
the RTMS which uses roadside fixed LiDAR sensors
with low vertical resolution;

« The proposed approach applies subsequently a decision
tree and a mean filtering algorithm to obtain a complete
road region, which is further selected as the region of
interest using a minimum bounding rectangle algorithm;

« We conduct experiments to choose appropriate parame-
ters for the proposed approach;

« Compared with existing works, the proposed approach
has the advantages of being completely automatic,
requiring shorter recognition time, and having a wider
detection range.

The remainder of this paper is organized as follows.
In Section II, we explain how the proposed approach works.
In Section III, we report some experimental results. We con-
clude this paper in Section IV.

Il. THE PROPOSED APPROACH

In this section, we demonstrate the working strategy of the
proposed approach. For better understanding, we show the
working flow in Fig. 1. As shown in the figure, we first project
the point cloud data of 3D LiDAR sensors onto an XOY
plane which is a Cartesian coordinate system which has two
perpendicular lines (the x-axis and y-axis) in a plane. This
XOY plane is immediately further rasterized into grids of
points (shown in Section II-A). Afterwards, for the purpose
of road recognition, feature extraction and feature analy-
sis are conducted for selecting appropriate features which
are then used to train the decision tree (we will explain
feature extraction and feature analysis in Section II-B and
Section II-C, respectively; and demonstrate the training of the
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FIGURE 1. The working flow of the proposed approach.

decision tree in Section II-D). We first employ the decision
tree to classify the grids into road grids and background grids,
and then apply a mean filter algorithm to reclassify the grids
for reducing misclassification and obtaining a more complete
road space (shown in Section II-E). We finally utilize a min-
imum bounding rectangle algorithm to obtain accurate road
boundaries (explained in Section II-F).

A. SCENE PROJECTION AND RASTERIZATION

In real applications, the data collected by 3D LiDAR sensors
fixed at the roadside are stored in the form of 3D point
clouds. We show a frame of the 3D point cloud data in Fig. 2,
from which we can observe blue semi-circular curves. These
curves actually represent the points on a flat and even road
on which the LiDAR sensors are reflected. Disordered points
at the upper left corner and the bottom right corner of Fig. 2
represent trees and bushes at both sides of the road. Different
colors correspond to different reflection intensities, as indi-
cated by the legend located at the right side of Fig. 2. The
3D point clouds are so complicate that we cannot directly
use them to conduct feature extraction and analysis, which
is a prerequisite for road recognition. To make the data more
understandable, we project all point cloud data onto an XOY
plane. LiDAR sensors collect 3D point cloud data by rotat-
ing the reflection source which is driven by its own motor.
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FIGURE 2. A frame of 3D point cloud data collected by a LiDAR sensor.

When the motor works, a certain amount of jitter is unavoid-
able. Such jitter is amplified with the increase of the distance.
Besides, when wind goes up, trees and shrubs at the roadside
tremble significantly. The jittering of LiDAR sensors’ motor
and the trembling of trees and shrubs can cause errors. To be
more specific, 3D point cloud data in different frames for the
same location may contain different information. To remove
such kind of errors, we further rasterize the XOY plane into
grids of points.

B. FEATURE EXTRACTION

The main difference between road space and background
space lies in that there are vehicles and pedestrians moving
in the road, whereas there are not in the background space.
Thus, in this paper, we select the feature of the dynamic
movement of vehicles and pedestrians as the basis to do the
road recognition.

When vehicles pass through, the density of points in the
road changes significantly. This is because when vehicles
enter LiDAR sensors’ detection area, they reflect some light
from distant trees and roads to these LiDAR sensors, which
makes the points on the road space denser. This inspires us to
extract the following feature:

Feature 1: Variance of Point Density (VPD): On the XOY
plane where point cloud data is projected, the number of
points in a certain grid is called the point density (PD) of
the grid. Let n denote the number of frames during a certain
period of time. Let Xpp(7) denote the point density of a certain
grid at the i-th frame, wherei € {1, 2, ..., n}. Let upp denote
the average of point density. Then, we have

l n
= - Xpp(i).
mpD =~ > Xep(i)

i=1
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Let opp denote the VPD. Then, we have

1 < , 5
OPD = ;(XPDO) UPD)”.

Also, the distance and height of vehicles change the infor-
mation of the point cloud data greatly. Thus, we extract the
following two features:

Feature 2: Variance of Average of Point Distance (VAPD):
Let k£ denote the number of points in a certain grid. Let
Xpis(i, j) denote the distance from point j in a certain grid to
a LiDAR sensor at the i-th frame, where i € {1,2,...,n},
j € {1,2,...,k}. Let upp(i) denote the average of point
distance in a certain grid at the i-th frame. Then, we math-
ematically have

k
L1 .
(D) = 7 3 Xois(i.))
j=1
Let fipp denote the average of point distance in a certain
grid during a certain period time. Then, we mathematically
have

_ | ¢ ,
fpp = — Z wpp(i).
i=1

Let o4pp denote the VAPD. Then, we have

1 ¢ s
OAPD = - ; (upp(i) — APD)”.

Feature 3: Variance of Average of Point Height (VAPH):
Let Xy, (i, j) denote the height of point j in a certain grid at
the i-th frame, where i € {1,2,...,n},j € {1,2,...,k}. Let
wpg (i) denote the average of point heights in a certain grid at
the i-th frame. Then, we have

k
. .
e () = - _ZXH,U,J).
j=1
Let upy denote the average of point heights in a certain
grid during a certain period of time. Then, we have

_ 1 ,
fpr = - ; wpp (D).
Let o4py denote the VAPH. Then, we have

1 n ' B )
OAPH = - ;(HPHO) WpH)".

In the scene, the background is fixed and cannot move,
and this implies that they appear in the same grid in every
rasterized grid map (which means the rasterized XOY plane
for a certain frame of 3D point cloud data). In contrast,
the vehicles keep moving, which implies that the grids where
they appear in different grid maps keep varying. Based upon
the above information, we extract the following feature:

Feature 4: Average of Point Frequency (APF): Let Xpr(7)
denote the point frequency which indicates whether there
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are points in a certain grid at the i-th frame, where i €
{1,2, ..., n}. Specifically, if there are no points in the grid,
we let Xpp(i)= 0; otherwise, we let Xpr(i)= 1. Technically,
we have

0, Xpp())=0

Xpr (D)= { 1, Xpp(i) > 0"

Let upr denote the average of point frequency during a
certain period of time. Then, we have

l n
=~ > Xpr(0.
wPF = pr (i)

i=1

Since materials of vehicles are different from that of
roads, buildings and trees, LiDAR sensors’ reflection inten-
sity varies with the entering of vehicles. Thus we extract the
following feature:

Feature 5: Variance of Average of Point Intensity (VAPI):
Let X (i, j) denote the intensity of point j at the i-th frame,
where i € {1,2,...,n},j € {1,2,..., k}. Let ups(i) denote
the average of point density in a certain grid at the i-th frame.
Then, we have

k
1
per(@) = = > Xui ).

j=1

Let wpy (i) denote the average of point density in a certain grid
for a certain period of time. Then, we have

_ 1 ¢ .
fpr =~ Z wpr (D).
i=1
Let o4p; denote the VAPIL. Then, we mathematically have

| o
oapr = - Z(MPI(l) — fpr)”.

i=1

C. FEATURE ANALYSIS

In this section, we conduct feature analysis to screen out
less important features such that dimension disaster can be
avoided during the training process of the decision tree.

In order to screen out the unimportant features, we need
to conduct feature subset selection. Feature subset selec-
tion requires two parts: a search strategy to select candi-
date subsets, and an objective function to evaluate these
candidates [19]. There are several algorithms for the search
strategy such as exponential algorithm, sequential algorithm,
and randomized algorithm. The exponential algorithm eval-
uates a number of subsets that grows exponentially with
the dimensionality of the search space. The sequential algo-
rithm add or remove features sequentially, but has a tendency
to become trapped in local minima. The randomized algo-
rithm incorporates randomness into their search procedure
to escape local minima. There are three approaches for the
objective function in the feature subset selection, namely
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FIGURE 3. The flow chart of feature subset selection.

filter, wrapper, and embedded [20]. The filter approach evalu-
ates subsets by their information content, e.g., interclass dis-
tance, statistical dependence, or information-theoretic mea-
sures. The wrapper approach uses a classifier to evaluate
subsets by their predictive accuracy (on test data) by statisti-
cal re-sampling or cross-validation. The embedded approach
picks out the features that are important to the training of the
model in the process of confirmation model. The filter and
embedded methods are faster than the wrapper method, but
the wrapper method is more accurate than the other methods
because the wrapper approach uses the classifier itself to eval-
uate the subset [21]. Fig. 3 is the flow chart of the feature sub-
set selection in this paper. We apply the Sequential Forward
Selection (SFS) as the search strategy due to its simplicity
and high speed. Moreover, we use the wrapper approach as
the objective function due to its accuracy. The SFS is used
to search the optimal feature subset. The predictive accuracy
of the decision tree is the feedback of the objective function.
Until the feature subset with maximum accuracy is selected,
feature subset selection is finished.

Feature analysis is conducted as follows: first, we apply
subset search to choose a subset of features that yield the min-
imum classification error; then, we calculate the information
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gain of each feature to validate that the features are appropri-
ately selected.

1) SUBSET SEARCH

The Sequential Forward Selection (SFS) are applied as
the subset search procedure due to its simplicity and high
speed [22]. As one of the simplest greedy search algorithms,
SES starts from an empty set, and then sequentially adds
features selected by an objective function which evaluates the
performance of the feature subsets. Note that in this paper,
we use the decision tree to evaluate the candidate subset.

TABLE 1. Confusion matrix.

Actual class  Predicted class: Positive

Positive(P)
Negative(N)

Predicted class: Negative

TP (true positive)
FP (False positive)

FN (false negative)
TN (true negative)

The feature subset is used as the input feature of the
decision tree, and the accuracy of the decision tree is used to
evaluate the quality of the feature subset. In order to calculate
the accuracy, we build a sample set, which contains road
grids and background grids. Moreover, the number of the
road grids is similar to the number of background grids, and
this aims to balance the distribution of road and background
grids and to improve the performance of the classifier. Then,
we randomly select part of the grids as the training set and
the remaining grids are set as the test set. We use the features
and the training set to train the decision tree. Comparing the
test set labels and the predicted labels, we obtain the accuracy
of Table 2, Table 3, Table 4, Table 5, Table 6. The confusion
matrix shown in Table 1 explains the accuracy computation
of decision tree:

1) ‘positive’ means road grids and ‘negative’ means back-
ground grids;

2) actual class denotes the real class label;

3) predicted class denotes the result of classification by the
decision tree;

4) True positive (TP) is the number of the correct classified
road grids;

5) True negative (TN) is the number of correct classified
background grids;

6) False positive (FP) is the number of road grids misclas-
sified as background grids;

7) False negative (FN) is the number of background grids
misclassified as road grids;

8) P is the number of road grids in the test set;

9) N is the number of background grids in the test set.

Therefore, we have:

TP + TN
accuracy = ————. (1)
P+ N

For example, the sample set has 1266 elements, among
which there are 610 road grids and 656 background grids.
80% of the sample set is selected as the training set and 20%
of the sample set is the test set. We have P = 127, N = 126,
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TP = 127, TN = 121, FN = 0, and FP = 5. When we plug
these values into equation 1, we obtain accuracy = 98.02%.

The new extended feature set should produce a higher clas-
sification accuracy compared with any other feature set [22].
The detailed procedure of SFS subset search is presented as
follows:

In the first round, each feature is used as a candidate subset
to train the decision tree to classify the calibrated samples.
Accuracy rates are recorded in Table 2. When APF is chosen
as the candidate feature subset, the decision tree shows the
highest accuracy. Thus, in this round, we choose the subset
of APF as the best feature subset.

TABLE 2. Classification accuracy of single feature decision tree.

Single feature  Accuracy
VPD 94.47
VAPH 74.54
APF 96.84
VAPD 64.43
VAPI 78.66

In the second round, features other than APF are respec-
tively added to the subset of APF to train the decision tree.
After the test samples are classified with the trained decision
tree, we calculate the accuracy, which is shown in Table 3.
As can be seen, when the subset of APF and VPD is chosen,
the decision tree has the highest accuracy.

TABLE 3. Classification accuracy of double feature decision tree.

Double features  Accuracy
APF, VPD 97.23
APF, VAPH 96.84
APF, VAPD 96.84
APF, VAPI 96.84

TABLE 4. Classification accuracy of three feature decision tree.

Three features Accuracy

VPD, APF, VAPH 97.63
VPD, APE, VAPD 95.65
VPD, APF, VAPI 96.44

In the third round, we use three features to train the decision
tree. Two features of them are APF and VPD which are
selected in the last round, and the third feature is one feature
out of VAPH, VAPD, and VAPI, respectively. As can be seen
in Table 4, when the set of APF, VPD, and VAPH is selected,
the accuracy of the decision tree is the highest.

In the fourth round, we use four features to train the deci-
sion tree. The first three features are APF, VPD, and VAPH,
and the fourth feature is VAPD and VAPI, respectively.
We record the classification results in TABLE 5. As can be
seen in Table 5, the accuracy rate in both cases remains the
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TABLE 5. Classification accuracy of four feature decision tree.

Four features Accuracy

VPD, VAPH, APF, VAPD 97.63
VPD, VAPH, APF, VAPI 97.63

same with that when the subset features of VPD, APF and
VAPH are applied. Hence, we can conclude that the subset of
APF, VPD and VAPH is the subset that we are looking for.

2) SUBSET EVALUATION

Information entropy [23] is the most commonly used index
to measure the purity of a sample set. A smaller information
entropy implies a higher purity of the sample set. In this
section, we employ information gain to evaluate the features
to train the decision tree. A feature with greater information
gain should be selected with priority.

All the five features extracted in Section II-B are continu-
ous. For calculating the information gain of continuous fea-
tures, we need to first discretize them by using a dichotomy
algorithm which proceeds as follows: first, for a sample set,
the values of a specific feature are sorted in an ascending or a
descending order; then, the average value of every two adja-
cent feature values is calculated as the partition point which
obviously divides samples into two parts; last, the information
gain of the feature is determined as the largest information
gain achieved at all the partition points.

To illustrate how the dichotomy algorithm proceeds, we in
the following show how to calculate the information gain of
the feature of VPD. Assume that we have a set of samples
D, each of which has a VPD feature value opp. (1) First,
we sort the samples in the VPD values’ descending order.
(2) Afterwards, we get |D| — 1 partition points. Let T (i)
denote the i-th partition point. Let opp(i) denote the value
of opp ranked at the i-th order. Then, we have

opp(i) +opp(i+1)
2

where denotes the cardinality of a set. The partition
point 7'(i) divides the sample set into two subsets which are
respectively denoted by D (i) and D_ (i). Note that we here
use D (i) to denote the subset of samples with feature value
opp larger than T (i) and D_ (i) the subset of samples with
feature value opp not larger than 7'(i). (3) Let Hy (i) and
H_ (i) denote the information entropy in the sample subset
of D, (i) and D_ (i), respectively. Then, in line with the
definition of information entropy [24], we have

o= V=i<|D[-1,

“| |H

2
Hy (i) == pilog,pi,
k=1

and

2
H_ (i) =— Zpklogzpk,
k=1
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respectively. Take H_(i) as an example, where i equals to
1 or 2. p; represents the proportion of the road grids in the
sample set smaller than 7'(i). p, indicates the proportion of
the background grids in the sample set smaller than 7'(i). Let
Gain(D, opp) denote the information gain of the VPD. Then,
we have

Gain(D, UPD)

= max
1<i<io—1

D+ (@) - D= (@] )
{H@)‘[W*” O+ =p - <’)“‘
2)

We present the information gain for evaluating the five
features selected in Section II-B in Table 6. As can be seen,
the features of VAPD and VAPI has the smallest information
gain. This validates that the feature subset of APF, VPD, and
VAPH that are filtered in the last sub-section are appropriately
selected.

TABLE 6. Features’ information gain.

Feature  Information gain
VPD 0.4235

VAPH 0.4042
APF 0.5197

VAPD 0.3246
VAPI 0.2335

D. GRID CLASSIFICATION

With three features of APF, VPD, and VAPH, one can fig-
ure out many ways to do the road recognition by classi-
fying background grids and road grids. The simplest way
is to choose a certain threshold for each feature. However,
this approach is faced with the problem that an appropriate
threshold is not easy to be selected and an inappropriate
threshold usually implies poor accuracy of classification.
In contrast, machine learning techniques do not need to
deal with the threshold selection problem [25]. Compared
with other machine learning techniques, the decision tree
has advantages of low computational complexity, being easy
to interpret and requiring fewer data sets. Since Iterative
Dichotomiser 3 (ID3) builds the fastest decision tree, in this
paper, we apply it to generate the decision tree to classify the
background grids and road grids [26]. The central idea of the
ID3 algorithm is to measure the selection of features by infor-
mation gain. The decision tree selects the features with the
greatest information gain after splitting. The ID3 algorithm
has been widely used because of its simplicity and the good
capability of noise resistance.

The specific procedure goes as follows. First, the point
cloud data collected by a LiDAR sensor fixed at roadside
during a certain period are projected to an XOY plane, based
on which the features of PF, VPD, and VAPH are calculated.
Then, some grids are calibrated as the sample set, 80% of
which are set as the training set and the remaining samples are
set as the test set. After many times of training, the classifier
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with the highest accuracy is chosen as the final decision tree.
Note that during the training process, we apply the cross-
validation technique. Afterwards, we carry out a pruning
process to address the data over-fitting problem. This also
helps improve the classification accuracy of the decision tree.

TABLE 7. Accuracy of the decision tree.

Total # of road grids  # of background grids

Sample set 1266 610 656
Training set 1013 488 525
Test set 253 127 126
Classification results 253 132 121
Accuracy 98.02% 96.21% 96.03%

We record classification accuracy of the trained decision
tree in Table 7. As seen in the table, the sample set contains
1266 elements in total, among which there are 610 road grids
and 656 background grids. When we consider road grids
and background grids together, the classification accuracy is
98.02%. When we consider just road grids, the classifica-
tion accuracy is 96.21%. When we consider just background
grids, the classification accuracy is 96.03%.

FIGURE 4. Road recognition results by applying only the decision tree.

E. NOISE FILTERING

We show road recognition results by applying only deci-
sion tree in Fig. 4, where gray and white grids represent
background grids and road grids, respectively, and black
grids represent grids with no 3D point cloud data. As shown
in Fig. 4, most grids are correctly identified. However, some
road regions (especially those far from LiDAR sensors) dis-
continue. This is mainly due to occlusion of LiDAR sensors
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FIGURE 5. The result of ROI selection by white grids.

FIGURE 6. An example to illustrate the mean filter algorithm.

which makes points in these road grids too sparse such that
road grids are mistakenly classified as background grids.
These grids will bring difficulty for the selection of the
region of interest (ROI). For example, In Fig. 5, we use the
minimum circumscribed rectangle of the white grids to get
the ROI. But the result is not ideal. Because the original
white area is discontinuous. In order to get the continuous and
regular road area, we use the mean filtering to obtain smooth

VOLUME 7, 2019

FIGURE 7. Road recognition results after applying mean filtering
algorithm to reclassify grids which have first been classified by the
decision tree.

image edges and effectively filter out noise points. The mean
filtering can correct the misclassified grids. We focus on
addressing this issue in the following.

As aforementioned, the decision tree classifies grids on
the XOY plane into background grids and road grids. Let us
set values of background grids and road grids as 0 and 1,
respectively. Then, the scene can be regarded as an image
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FIGURE 8. Road recognition results after applying a minimum bounding rectangle algorithm.

which is made up of pixels and contains some noise which
needs to be removed. As a linear image filtering algorithm,
the mean filtering can obtain smooth image edges and effec-
tively filter out noise points. Furthermore, it has advantages
of being simple, intuitive, and easy for implementation. Thus,
we apply the mean filtering to reduce noise in the image of
grids on the XOY plane.

For each target grid, the mean filtering operates as follows:
First, a kernel at the center of which the target grid locates
is determined. Note that the kernel represents the shape and
size of the neighborhood to be sampled when calculating the
mean. In Fig. 6, the kernel is chosen as a 9-by-9 square, and
black grids and white grids represent background grids and
road grids, respectively. The center grid in red is the target
grid. Second, the value of center grid is replaced with the
mean value of its neighbors, including itself. Note that the
mean is between 0 and 1. For example, in Fig. 6, the value
of center grid should be update as 72/81 (note that the target
grid is first classified as background grids). Third, the value
of center grid is rounded such that one can judge whether
the grid is a road grid or a background grid. Since 72/81 is
rounded to 1, we can judge that in Fig. 6 the target grid should
be reclassified as a road grid.

It is rationale to apply the mean filtering algorithm here
because points nearby should have similar properties and
if one point differs from most of surrounding points, it is
probably misclassified. The mean filtering has the effect of
eliminating points which are unrepresentative of their sur-
roundings. In Fig. 7, we present the road recognition results
after applying the mean filtering algorithm to reclassify
grids which have been first classified by the decision tree.
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Note that black grids and white grids represent background
grids and road grids, respectively.

This road consists of two left lanes, two right lanes, and a
middle lane. The middle lane is a turning lane. Each lane can
be distinguished in Fig. 4. However, as the distance between
lanes in the same direction is so close that the threshold of
the median filtering is too small, the information of lane
distinction will be incomplete. Therefore, accurate single-
lane information cannot be obtained in Fig. 4. However, it can
be got through the median of the information of the two lanes
in the same direction. Obviously, compared with the results
in Fig. 4, road regions in 7 are much more continuous and
regular.

F. ROI SELECTION
Since roads are rectangular, in this section, we apply the
minimum bounding rectangle algorithm to select the region
of interest (ROI). The process is conducted using functions
in the OpenCV library. First, the grid map is transformed
into a binary gray image. Then, we use the findContours
function to obtain the image contour. Afterwards, we apply
the minAreaRect function to get the minimum circumscribed
rectangle. As shown in the left figure of Fig. 8, at this point,
the left and right lanes are distinctly distinguished and an
isolation belt locates in between. Note that green lines rep-
resent road boundaries. By mapping the rectangles to actual
scene, we can see that rectangular boundaries and actual
road boundaries are entirely consistent, as shown in the right
figure of Fig. 8.

Fig. 9 is the diagram of the experimental scene. The range
of the scene in this paper is [X3, X2] and [Y2, Y1]. The grid
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FIGURE 9. The diagram of the experimental scene.

size is G meters. This is a map consisting of m x n grids.
Y1 — 1

G
X, — X3

‘We convert the grid map into an image consisting of m x n
pixels. Then the pixel position of the p-th row and the r-th
column on the image, i.e., the corresponding actual position
of the space, is:

1.

m=[

x=X34+qgxG

(x,y)={y=yl_pr

By the rectangle obtained by the minimum circumscribed
rectangle, we can get the boundary pixels of left and right
lane. According to the calculating formula, we can get the
corresponding actual position coordinates. Because there is
an angle between the road and the horizontal angle, it is
necessary to calculate the angle 6 first. We calculate the road
slope angle:

Y6 — Y1
X6 — X7

6 = arctan
The left lane width is:

Wiefr = \/(X1 —x2)%*+ (1 —y)
The right lane width is:

Wright = \/ (x5 — x6)%> + (y5 — y6)*.

The width of a single-lane can be got by the median of the
width of a double-lane.

Because there is no the minimum circumscribed rectangle
in the turning lane, it is necessary to calculate its width
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by the coordinates of the other two lanes. Firstly, we turn
the coordinates system to horizontal angles. The formula of
coordinate rotation is as follows.

x"\ _ (cos® —sinf (x
y') 7 \sinf cos6 y)’

According to the formula, what can be obtained are
(1, Y (x5, ), (x5, ¥5), (xg, Ve)-
The turning lane width is:

Wturning = y/2 - y,5‘
The total lane width is:

’ ’
Wiane = Y1 — Yo-

Ill. EXPERIMENTAL RESULTS AND DISCUSSIONS

In the experiment, we place a Velodyne’s 16-channel LiDAR
sensor (called the VLP-16 LiDAR sensor) near a T inter-
section in the state of Nevada for the purpose of collecting
data, as shown in Fig. 10. The VLP-16 LiDAR sensor creates
360° 3D images by using 16 laser/detector pairs mounted in a
compact housing. It has an effective scanning radius of 100m,
a low power consumption (~ 8 W), a light weight (830 g),
a compact footprint (~ ® 103 mm x 72 mm), a dual return
capability and a reasonable price. These features make the
VLP-16 LiDAR sensor an ideal equipment to be deployed at
the roadside to serve for the RTMS. The scanning frequency
of VLP-16 LiDAR sensor is 10Hz, which means that one
frame lasts 0.1s. The Google satellite map of the intersection
is shown in the Fig. 10. As can be seen, this is a two-way five
lane main road with a total width of 19.85m. It consists of two
left lanes, two right lanes and a middle lane, with each being
3.65m. There are also a left sidewalk and a right sidewalk,
with each being 0.8m.

FIGURE 10. Data collection site [18].

A. CHOOSING AN APPROPRIATE GRID SIZE

Since the proposed method does the road recognition by clas-
sifying the grids on the rasterized XOY plane into background
grids and road grids, we can easily infer that the grid size is
critical in extracting an accurate road space. On the whole,
too large grids imply blurred road boundaries, and too small
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FIGURE 11. Experimental results for choosing an appropriate grid size.

grids come with misclassification and a huge amount of cal-
culation. An appropriate grid size should meet the following
requirements: (1) it guarantees that we can get a precise road
boundary; (2) it incurs a small amount of calculation; (3) the
grid classification accuracy should be high. From Fig. 11,
we can observe that no matter how many frames of 3D point
cloud data are used, the average accuracy is obviously lower
in the case where the grid length is set as 0.1m than in the
case where the grid length is set as 0.2m. In the experiment,
we observe that road boundaries get blurred when the grid
length is set larger than 0.2m. Thus, in this paper, the appro-
priate grid length should be 0.2m.

B. CHOOSING AN APPROPRIATE NUMBER OF FRAMES

The road has a speed limit of 40km/h. It takes 10s for a
car from appearing to vanishing in the detecting range of
the VLP-16 LiDAR sensor. Hence, the minimum length of
experiment time is 10s. As aforementioned, for the chosen
Velodyne’s 16-channel LiDAR sensor, one frame lasts for
0.1s. Thus, the minimum number of frames should be 100.
At the T intersection in the state of Nevada where we placed
the LiDAR sensor, we choose 460 time intervals for collecting
data. For each such time interval, we train the decision tree
with 100 frames, 200 frames, 300 frames, 400 frames and
500 frames of data, respectively. We show the classification
results in Fig. 12(a), where X-axis represents the number
of frames (which ranges from 100 to 500) and the Y-axis
represents the number of time intervals whose classification
accuracy exceeds 96%, 97%, and 98%, respectively. As can
be seen, for a given number of frames, the number of time
intervals during which the accuracy of grids classification
exceeds 96% is larger than the number of time intervals
during which the grid classification accuracy exceeds 97%.
The number of time intervals during which the grid classi-
fication accuracy exceeds 98% is the smallest. Furthermore,
more frames usually imply more time intervals during which
the grid classification accuracy exceeds a certain number.
However, from Fig. 12(b), we can observe that calculation
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FIGURE 12. Experimental results for choosing an appropriate number of
frames.

burden increases with the number of frames. When the exper-
iment time rises from 400 frames to 500 frames, the grid
classification accuracy stays almost the same, whereas the
computation time still keeps increasing. Thus, we set the
number of frames as 400.

C. CHOOSING AN APPROPRIATE KERNEL SIZE

FOR MEAN FILTERING

The size of kernel in the mean filtering algorithm impacts
the performance of the filter greatly. Specifically speaking,
a too large neighborhood produces blurred edges of the road,
whereas a too small neighborhood does not have a good
filtering effect. In Fig. 13, we aim at finding the appropriate
size of neighborhood. The grid size is set as 0.2m, and we set
the size of kernel as 11*11, 13*13, 15*15, 17*17 and 19*%19,
respectively. As can be seen, the road area gets more complete
when the size of kernel increases. However, when the size
of kernel is set as 17*17 or 19*19, some background grids
are mistakenly classified as lane grids. Furthermore, from
Table 8, we can see that road recognition results under kernel
size of 15*15 are more consistent with actual situation than
other kernel sizes. Thus, in the experiment, we set the size of
kernel of the mean filtering algorithm as 15*15.

TABLE 8. Road recognition results under different size of kernels of the
mean filtering algorithm.

Unit(m) Left Right Turning ~ Width of

lane lane lane the lane
Actual width 7.3 7.3 3.65 18.25
11*11 5.58 6.02 5.24 17.04
13*13 6.36 6.64 4.21 17.21
15*15 7.10 7.40 3.61 18.11
17*17 7.38 8.12 3.02 18.52
19*19 8.00 8.83 2.65 19.48

D. COMPARING WITH RELATED WORKS
As aforementioned, paper [18] is currently the only work
on road recognition for RTMS which use LiDAR sensors
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FIGURE 13. Experimental results for choosing an appropriate kernel size for the mean filtering algorithm.

TABLE 9. Comparison with the approach in paper [18].

comparison aspects approach in paper [18]  The proposed approach

Feature Selection Single feature Multiple features

Recognition method DBSCAN Decision Tree
Required # of frames 2000 frames 400 frames
Lane identification Manual Automatic
Range 45 m 80 m

with low vertical resolution fixed at roadside. In TABLE 8,
we compare our proposed approach with the approach in
paper [18]. As can be observed, our proposed approach has
the advantages of being totally automatic, requiring fewer
frames of 3D point cloud data, and having a larger detection
range.

IV. CONCLUSION

In this paper, we propose a decision tree based road recogni-
tion algorithm using roadside fixed 16-channel LiDAR sen-
sors with low vertical resolution. We first project 3D point
cloud data collected by LiDAR sensors onto the XOY plane,
which is then rasterized to grids of points. Experiment results
show that the size of grids should be set as 0.2m. By analyzing
how vehicles impacts the distribution of points on the XOY
plane, we extract the following five features: VPD, VAPD,
VAPH, APF, and VAPI. The results of feature analysis show
that VPD, VAPH, and APF are the most important features.
Thus, the above three features are then used to train the
ID3 decision tree which classifies the grids into road grids
and background grids for the purpose of road recognition.
Afterwards, for reducing the misclassification, we apply the
mean filtering algorithm to filter the noise points and get
a more complete road space. Experiment results show that
an appropriate size for the kernel of the filtering algorithm
should be 15*15. We finally employ the minimum bounding
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rectangle algorithm to obtain road boundaries. Experiment
results show that compared to existing works, the proposed
approach can perform road recognition more accurately and
faster.
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