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ABSTRACT In a smart factory, thousands of industrial Internet of Things (IIoT) devices or sensors are
installed in production machines to collect big data on machine conditions and transmit it to a cyber-physical
system in the cloud center of the factory. Then, the system employs a variety of condition-based main-
tenance (CBM) methods to predict the time point when machines start to be operated abnormally and to
maintain them or replace their components in advance so as to avoid manufacturing enormous detective
products. CBM suffers from problems of concept drifts (i.e., the distribution of fault patterns may change
over time) and imbalance data (i.e., the data with faults accounts for a minority of all data). Ensemble learning
that integrates the diversity of multiple classifiers provides a high-performance solution to address these
problems. In practice, most companies may not have a sufficient budget to establish a sound infrastructure
to support real-time online classifiers, but may have off-the-shelf offline classifiers in their existing systems.
However, most previous works on ensemble learning only focused on supporting online classifiers. Con-
sequently, this work proposes an ensemble learning algorithm that supports offline classifiers to cope with
three-stage CBM with concept drifts and imbalance data, in which Stages 1 (training an ensemble classifier)
and 3 (creating a new ensemble) employ an improved Dynamic AdaBoost.NC classifier and the SMOTE
method to address imbalance data; and Stage 2 (detecting concept drifts in imbalance data) employs an
improved LFR (Linear Four Rates) method. The experimental results on datasets with different degrees of
imbalance show that the proposed method can successfully detect all concept drifts, and has a high accuracy
rate in detecting minority-class data, which is over 94%.

INDEX TERMS Ensemble learning, imbalance data, concept drift, data adaption, smart manufacturing,
Industry 4.0.

I. INTRODUCTION

The industrial Internet of Things (IloT) has been driv-
ing development and advances of smart manufacturing and
Industry 4.0 [1], from conventional manufacturing to smart
manufacturing. More and more IIoT technologies and facili-
ties are incorporated into manufacturing factories. Generally,
a large number of IIoT devices or sensors are attached to
machines in the factory. Enormous machine conditions are
collected continuously and in time, and are uploaded to the
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cloud center of the factory, in which production managers can
adopt cyber-physical systems to control all operations of each
machine ideally in real time.

In practice, machine components get aging over time.
If they were not replaced in time, enormous defective or
low-quality products would be manufactured, and machines
would perform abnormally or be damaged. Therefore,
condition-based maintenance (CBM) is to analyze condi-
tions of machine components collected by IIoT devices or
sensors to predict the time point when they start to per-
form abnormally and to replace them in advance. Since cus-
tomers have continuously requested a higher product quality,
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manufacturing factories need to take more attention on
improving the product quality by CBM. However, develop-
ment of CBM in real factories has been increasingly chal-
lenging because it requires to consider concept drifts and
imbalance data.

Distribution of fault patterns in the collected data forms
a concept. However, when machine components get aging or
are maintained/replaced, the concept of fault patterns changes
to be with different features, so that the CBM method without
adaption to this new concept performs worse. On the other
hand, with rapid advances in manufacturing technologies,
machines become much precise and make rare faults. Hence,
the amount of fault data points (called the minority class) is
rare as compared to that of normal data points (called the
majority class). Such an imbalance data distribution makes
it difficult to differentiate faults from normal data.

To concurrently address the classification problems with
concept drifts and imbalance data, most previous works
focused on online ensemble learning (e.g., [2]-[4]), which
integrates diversity of multiple online classifiers to address
these problems. However, online learning is much suitable
for real-time systems, which require support of advanced
infrastructures that cost a lot. Additionally, most online clas-
sifiers are simple models or can only train a small amount
of data, so that a large amount of data is not considered
in a total. In practice, companies have off-the-shelf offline
classifiers according to existing infrastructures of their facto-
ries. It would be convenient for them to design an ensemble
learning method based on offline classifiers.

To the best of our understanding, no previous works
proposed any ensemble learning method based on offline
classifiers to address concept drifts and imbalance data
concurrently. Therefore, this work proposes an ensemble
learning method called dynamic AdaBoost.NC with multi-
ple subclassifiers for imbalance and drifts (DAMSID) for
coping with CBM with concept drifts and imbalance data.
The work in [2] proposed a three-stage online ensemble
learning framework based on diversity for dealing with drifts
(called DDD) to address concept drifts: ensemble learn-
ing, concept drift detection, and drift adaptation. Following
the three-stage DDD framework, the proposed DAMSID
improves the ensemble learning methods used at Stages 1 and
3 with an offline ensemble learning method called Dynamic
AdaBoost.NC [5] and SMOTE (Synthetic Minority Oversam-
pling TEchnique) and improves the drift detection method
at Stage 2 with the LFR (Linear Four Rates) method [6] to
address concept drifts in imbalance data. By simulation on the
datasets with four degrees of imbalance data, performance of
the proposed DAMSID is evaluated.

The contributions of this work are as follows: The proposed
DAMSID provides an ensemble learning method based on
offline classifiers to address the CBM with concept drifts and
imbalance data, in which the main components (Dynamic
AdaBoost.NC and LFR) are improved and adjusted to solve
the problem. Because most companies have off-the-self
offline classifiers based on existing infrastructures, they can
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employ the proposed method with no need to invest in more
facilities. In addition, the forecast decision of the proposed
ensemble learning method is based on a weighted voting of
multiple offline subclassifiers, and it is easy to extend the
proposed method with a variety of offline classifiers.

The rest of this work is organized as follows. Section II
gives the related works. Section III gives the details on
the proposed three-stage ensemble learning method, and
Section IV gives implementation of the proposed method and
experimental analysis. Section IV concludes this work with
future work.

Il. RELATED WORK

This work first gives the literature review on CBM, and
then introduces the ensemble learning methods for the CBM.
Next, this work reviews the ensemble learning methods for
addressing concept drifts and imbalance data, respectively.
Finally, an ensemble learning method for coping with them
together is reviewed.

A. CBM

The major factors that affect variation of machines are from
a lot of complicated machine control components, which are
in charge of controlling quantity of physical property (e.g.,
pressure and temperature) or quantity of chemicals (e.g.,
those added to production processes) during manufacturing
products. In practice, control components are aging as their
usage time increases. If they are not maintained or replaced
in time, the machines manufactures enormous defective prod-
ucts, and more seriously, they are broken. Therefore, CBM
is to predict the time point when the control components
attached to machines start to perform abnormally, and to
replace them in advance.

Generally, production managers are based on their domain
knowledge and previous experiences to judge the time point
when a control component starts to perform abnormally, but
the judgement may not always be precise. If the judged
time is earlier (i.e., the component still performs well but is
replaced earlier), the cost of control components increases.
If the judged time is too late (i.e., the component should be
replaced but not in actual), the machine could be malfunc-
tioned. Conventionally, CBM methods have been developed
based on statistics theory, e.g., regression analysis [7], time
series [8], and data mining [9]. These methods were based
on historical observations to search for a trend or pattern of
the concerned problem, and then predicted the future event
according to this trend or pattern. However, to achieve a high
accuracy level, these methods required a large number of
effective observations, and supposed them to follow a certain
probability distribution (e.g., normal distribution and Poisson
distribution). That is, only when the above two conditions
were met, these methods performed well.

On machine learning methods for CBM, Jardine et al. [10]
reviewed a lot of methods based on artificial neural net-
works for CBM. Caesarendra et al. [11] proposed a CBM
approach that integrates relevance vector machine (RVM) and
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logistic regression (LR) to predict the machine aging time.
Patel and Giri [12] applied the random forest (RF) classifier to
detect multiclass mechanical faults in bearing of an induction
motor. Lin et al. [13] proposed a novel hybrid grey forecasting
and harmony search approach, in which grey forecasting was
shown to perform well for small data samples. Wan et al. [14]
proposed a big data solution for active preventive mainte-
nance in manufacturing environments.

B. ENSEMBLE LEARNING
Ensemble learning is a supervised machine learning
method [15]. The idea of ensemble learning is to consider
a ‘“committee” consisting of a number of “experts” (i.e.,
machine learning models), and to determine a final result
according to a certain voting scheme of all the experts. Differ-
ent from conventional forecasting methods that adopted only
a single model to forecast, ensemble learning incorporates the
forecast results from multiple models into a single forecast
result. Some works have showed that ensemble learning often
performs better than any single forecasting model [16].
Ensemble learning was originated from [17], which
adopted multiple classifiers to divide the feature space.
Hansen and Salamon [18] proposed an ensemble learning
algorithm similar to artificial neural networks, and showed
that it can increase performance of conventional classification
methods in addressing classification problems. Schapire [19]
proposed an ensemble learning algorithm based on boosting,
and showed that it can effectively reduce the forecast error
rate in solving binary classification problems, so that ensem-
ble learning receives a lot of attention. Ensemble learning is
suitable for the problems in which the data is of a huge scale
and is hard to be computed, or in which the data samples
are too few or are hard to be obtained. The latter case can
be addressed by bootstrapping [20]. In addition, for the clas-
sification problems for imbalance data, the amount of data
samples in the minority class is increased by oversampling
methods, e.g., SMOTE [21]. On the other hand, the amount of
data samples in the majority class is decreased by undersam-
pling methods, but undersampling methods have a drawback
of losing partial information of the minority class [22].

C. ENSEMBLE LEARNING FOR CONCEPT DRIFTS

At a certain time point, consider a data instance in which
each data point has a feature vector X and a class label y
in the feature space. The joint distribution of these feature
vectors and class labels is denoted by p(X, y), which is called
a concept. A concept drift is the process in which the original
joint distribution changes to a new joint distribution [2].

In practice, the environment of the time point when to
replace machine components changes dynamically over time,
e.g., the environment changes when machine components are
replaced or get aging. These local changes would change the
whole machine environment, so that the concept changes.

On the ensemble learning algorithms that address con-
cept drifts, Minku and Yao [2] proposed an ensemble learn-
ing algorithm based on diversity for dealing with drifts
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called DDD. When a concept drift is detected, the DDD trains
two new classifiers based on the datasets with high and low
diversities, respectively, and incorporates them with the two
original classifiers with high and low diversities, respectively,
to adapt to concept drifts. Kolter and Maloof [23] proposed
a weighted voting scheme in ensemble learning, but their
proposed method only solved online concept drift problems.
Wang et al. [24] incorporated the concept of ensemble learn-
ing with multiple classifiers to address concept drifts, and
their results showed that the proposed ensemble learning
method performs better than the method using only one clas-
sifier in addressing concept drifts. Antwi et al. [25] proposed
an algorithm which adopts the cosine similarity to com-
pare whether two datasets belong to two different concepts.
Wang et al. [26] proposed a method which detects faults
through evaluating forecast error rates. Wang and Abra-
ham [6] proposed a method called LFR to calculate changes
of TP, TN, FP, and FN ratios in the confusion matrix to
detect faults. Lin et al. [27] proposed a multi-classifier DDD
based on the MapReduce framework, which adopts multiple
classifiers and a dynamic adjustment scheme to construct an
ensemble learning model for adaption to concept drifts.

D. ENSEMBLE LEARNING FOR IMBALANCE DATA

With continuous advances in manufacturing technologies,
machine components become increasingly precise. Hence,
the amount of fault or abnormal data of machine compo-
nents (i.e., minority class) is relatively much less than that
of normal data (i.e., majority class) in long-run observation.
Such an imbalance data problem has existed in a lot of real-
world cases, e.g., credit card frauds, disease diagnosis, risk
management, and fault detection in manufacturing produc-
tions. Most cases consider categorizing data into multiple
classes. In a binary classification problem, data is divided
into majority and minority classes, e.g., the probability that a
machine manufactures a detective product could be less than
0.001%; the patients with a certain disease accounts for only
0.1% of healthy people. From these instances, the data from
the minority class is generally important than that from the
majority class.

Recently, imbalance data problems have received much
attention, e.g., Ho er al. [28] and Rokach [29] emphasized that
the methods based on only a single classifier cannot obtain
precise results in addressing the data with multiple classes
and much noise, and hence, they adopted ensemble learning
methods with multiple classifiers to address imbalance data;
Brown et al. [30] integrated multiple learning methods to
increase the overall performance.

Recently, ensemble learning algorithms based on AdaBoost
(Adaptive Boosting) have attracted a lot of attention. Fre-
und and Schapire [16] proposed an ensemble learning
method based on AdaBoost to reduce the forecast error.
Wang et al. [31] incorporated the AdaBoost method with neg-
ative correlation learning to establish a novel AdaBoost.NC
forecast model, which performs better than pervious methods
in addressing classification problems. Wang and Yao [5]
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FIGURE 1. lllustration of imbalance data.

established a Dynamic AdaBoost.NC forecast model, which
adds a method of automatically adjusting the training param-
eters to the AdaBoost.NC method, to effectively reduce the
training time and increase the overall performance. The latter
two methods proposed in [31], [5] improved the AdaBoost
method to address data imbalance problems.

E. ENSEMBLE LEARNING FOR CONCEPT DRIFTS AND
IMBALANCE DATA

To address both concept drifts and imbalance data,
Ditzler and Polikar [32] proposed a novel method called
Learn++.SMOTE, in which the Learn+-+.NSE method
addresses concept drifts, and the SMOTE method addresses
data imbalance.

Ill. PROPOSED ENSEMBLE LEARNING METHOD

This section first gives the framework of the proposed
DAMSID method, consisting with three stages: ensemble
learning, concept drift detection, and concept drift adaption.
Then, the DAMSID algorithm is detailed.

A. DAMSID FRAMEWORK

The DAMSID framework is based on the DDD [2] con-
sisting of three stages: ensemble learning, drift detection,
and drift adaption. In the DAMSID, Stage 1 adopts the
Dynamic AdaBoost.NC ensemble learning method incorpo-
rated with the SMOTE method to address imbalance data;
Stage 2 adopts the LFR to detect drifts; and Stage 3 adopts the
Dynamic AdaBoost.NC ensemble learning method to create
a new model to adapt to the detected concept drift. The three
stages in the DAMSID are detailed as follows:

1) STAGE 1: ENSEMBLE LEARNING BASED ON SMOTE AND
DYNAMIC ADABOOST.NC

In imbalance data, the amounts of data points between dif-
ferent classes have remarkable differences. For example,
Fig. 1 shows two classes of imbalance data, in which the
amount of blue data points (majority class) is much more than
that of red data points (minority class).

The proposed ensemble learning framework is illustrated
in Fig. 2, which is based on the Dynamic AdaBoost.NC
method that trains a sequence of weak classifiers and weight
updates. At the beginning, the initial training dataset is either
the initial dataset or the dataset collected after a concept drift.
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OOO Original training dataset: Either the initial dataset or
o O. PY the dataset collected after a concept drift

1st weak

offline
subclassifier

Testing it on the original
training dataset

00 Update weight Oo [o)
of each data point

Sampling based on weights

2nd weak
offline
subclassifier

T weak Constitute a Stage 2: Concept
offline L strong =) drift detection based
subclassifier classifier on the LFR

FIGURE 2. Flowchart of the proposed ensemble learning framework
consisting of SMOTE and Dynamic AdaBoost.NC.

If the initial training dataset is the initial dataset, each data
point in the training dataset is assigned to an equal weight
initially, and then a smaller dataset is randomly selected
from the training dataset; otherwise (i.e., the initial training
dataset is the dataset collected after a concept drift), a smaller
dataset consists of the data points with larger weights. Then,
the SMOTE method is adopted to oversample the data points
in the minority class (i.e., the red data points in Fig. 2).
Then, the new dataset is adopted to train the 1st weak offline
subclassifier. Then, we test whether this weak offline sub-
classifier performs accurately on the original training dataset,
and use this forest result to update weight of each data point.
Repeat the same procedure until 7 weak offline subclassifiers
are trained. Finally, the T weak offline subclassifiers consti-
tute a strong classifier whose output is a weighted sum of
outputs of the T weak classifiers.

In what follows, the SMOTE method and the Dynamic
AdaBoost.NC method are detailed, respectively.

In the application of detecting faults of machine compo-
nents in manufacturing, the minority class is more important
than the majority class, and it would be perfect if all the data
points in the minority class are detected correctly. Before
training the ensemble model, the SMOTE method (see Fig. 3)
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FIGURE 3. lllustration of the SMOTE method, in which F; and F, are two
features of each data point.

is employed to oversample the data points in the minority
class.
Key steps of the SMOTE method is as follows:

Step 1: Randomly select a data point X; from the minority
class.
Step 2: Calculate the distance between X; and each of the
other data points in the minority class. Select k£ data
points in the minority class that are the closest to X;.
Step 3: Randomly select one of these k data points, say Y;.
Step 4: Generate an artificial data point x]®" at a random
location on the line segment between X; and Y;.
Given a dataset, the Dynamic AdaBoost.NC employs a
“sequential learning” method to sequentially train a number
of subclassifiers, in which each data point has a “weight” to
represent the degree of the attention taken to the later learning
and a ““penalty” to record the degree of forecast mistakes.
Detailed steps of the proposed Dynamic AdaBoost.NC are as
follows:

1. Given a dataset {(x1,y1),..., (Xi, Yi)s-oos ms Ym)}
consisting of m data points, in which the ith data point
has a feature vector x; and a class label y;, we ini-
tialize its weight D1(x;) = 1/m, penalty p1(x;) = 1,
and penalty strength X to be a given parameter (set to
91n [5]). That is, the initial weight, penalty, and A value
of each data point are equal.

2. Employ this dataset to sequentially train 7 sub-
classifiers as follows. Consider the iteration number
t=12,...,T.

a) Based on the weight distribution D; to train
a weak subclassifier f;: X — R, in which
R = {1, —1} (which represents positive and neg-
ative outcomes, respectively).

b) Calculate the penalty p,(x;) of each data point x;
as follows:

pi(xi) =1 — |amb;(x;)] ()
where amb;(x;) is calculated as follows:
1 t
amb () = -3 (Ho—f) ()

where Hy is the original strong classifier.
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c) Calculate the weight «; of subclassifier f; as
follows:

>y ) De D (P (i)Y
o = — log -
20 D itk DG (e (i)

where h;(x;) = 1 if the forecast result of x; is
correct; otherwise, it is —1.

d) If Acc(fy) = Acc(fi—1), then A = A+ 1; otherwise,
A = A — —1. That is, we check whether the
accuracy at this iteration is better than that at
the previous iteration. If yes, A increases by 1;
otherwise, it decreases by 1. The Acc (f;) value
is evaluated as follows:

1 —\/((O—PF)2+(1 — PD)2)/2 “4)

The above formula is explained as follows. First,
calculate PF (Probability of False Alarm) and PD
(Probability of Detection), and then test whether
(PF, PD) is close to (0, 1) in terms of Euclidean
distance. If yes, it means that the accuracy is
higher. To the extreme, PF = 0 and PD = 1 imply
the perfect accuracy [33].

e) Update weight D;(x;) of each data point x;. Then,
calculate new weight D, 1(x;) of each data point
x; as follows:

(ps (xi))* Dy (x;) exp(—a f; (x;)yi)

Diy1(x)= 7 ©)
t

where Z; is a normalization factor so that the total
sum of all D;1(x;) is equal to 1.

After T subclassifiers f, f2, ..., fr are obtained, construct
a strong classifier H whose final forecast result is cal-
culated according to the following ensemble of T weak
subclassifiers:

He) = sign(Y"_ afi() ©)

2) STAGE 2: CONCEPT DRIFT DETECTION
BASED ON THE LFR
After a strong classifier is trained at Stage 1, each testing
data point is tested by this strong classifier, and the forecast
result is obtained. This work supposes that the real label
of each testing data point has been known. Hence, Stage
2 checks whether the forecast label and the real label are
matched, to further detect whether a concept drift occurs.
Stage 2 is based on the LFR, which has been shown to have
outperformance in addressing imbalance data problems [6].
The LFR considers the four rates in the confusion matrix:
TP (true positive) and FP (false positives) record the num-
bers of all positives that obtain positive and negative test
outcomes, respectively; and TN (true negative) and FN (false
negative) record the numbers of all negatives that obtain
negative and positive test outcomes, respectively. Based on
the four numbers, the four rates are calculated as follows:
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FIGURE 4. Flowchart of concept drift detection based on the LFR.

Py =TP/(TP + FN); Py, = TN/(TN + FP); Py, = TP/(FP
+ TP); P,py = TN/(TN + FN).

In theory, if there were no false test outcomes, each of
the four rates would be 1. That is, if the data is stable and
no concept drift occurs, each probability approaches to 1;
otherwise, it starts to be less than 1. The flowchart of the LFR
is given in Fig. 4.

The details of Fig 4 are explained as follows. After a data
point is tested by the ensemble model trained at Stage 1,
we have the test outcomes and the real label. Hence, if we
let % denote any of {pr, tnr, ppv, npv}, the four rates P, and
the modified rate R, are calculated. Then, the warning bound
and the drift bound are calculated. Details of calculating the
four rates P,, the four modified rate R,, warning bound, and
the drift bound are referred to [6]. If R, exceeds the warning
bound, then a flag called the ‘warning level’ is enabled. Then,
check if ‘warning level’ is enabled. If true, store the data
point. That is, once we enter the ‘warning level’, the data
points after this level are stored for training a new classifier.
Then, check if R, exceeds the drift bound. If true, go to Stage
3; otherwise, check if it is too long at the ‘warning level’.
If true, the ‘warning level’ is disabled

3) STAGE 3: DRIFT ADAPTATION BASED ON DYNAMIC
ADABOOST.NC

After a concept drift occurs, it implies that the strong clas-
sifier trained at Stage 1 performs worse. Remind that the
Dynamic AdaBoost.NC trains a strong classifier consisting of
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Weak classifier T | | Weak classifier 2 | | Weak classifier T |

FIGURE 5. lllustration of generating a new strong classifier at Stage 3.

T weak subclassifiers fi, f2, . . . , fr in which each subclassi-
fier f; is assigned to a weight «;, which represents the accuracy
of the subclassifier. Therefore, this work establishes a new
strong classifier by combining the strong classifier trained at
Stage 1 (i.e., before the drift) and the strong classifier trained
by the data points stored from the warning level to the drift
level (i.e., after the drift). As shown in Fig. 5, this new strong
classifier consists of one weak subclassifier from the strong
classifier at Stage 1 and (T — 1) weak subclassifiers from
the strong classifier trained after the drift. The new strong
classifier is used to test the later data points.

The differences of the proposed DAMSID method from

previous works are detailed as follows:

« Different from the conventional Dynamic AdaBoost.NC
methods, Stage 1 of the proposed DAMSID extends the
Dynamic AdaBoost.NC with data weights and integra-
tion with SMOTE to cope with data imbalance.

« Most works on concept drift adaption were to retrain the
forecast model from scratch. Stage 3 of the proposed
DAMSID has a new dataset adjustment for training the
forest model to adapt to concept drifts.

B. DAMSID ENSEMBLE LEARNING ALGORITHM

The DAMSID ensemble learning algorithm is shown in
Algorithm 1, which is detailed as follows. Let mode be a
flag variable to record whether a warning level or a drift level
has occurred. The possible values of flag mode are 1 (before
warning level), 2 (after warning level), and 3 (after drift level).
Let afterDriftData denote the set of data points collected after
warning level. First, flag mode is initialized as 1, and the
set afterDriftData is initialized to be empty (Line 1). Then,
we take an amount of data to train an initial ensemble model,
and let & be referred to the model (Line 2).

Then, the while loop in Lines 3 — 18 iteratively considers
each data point in the data stream D. Let d denote the next data
point from D (Line 4). If flag mode is 1 (i.e., before warning
level), then we input data point d to the model % to obtain the
predict result denoted by prediction (Line 6). Then, we use the
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Algorithm 1 DAMSID

Inputs:
Initial ensemble learning model: initial_ensemble
Offline ensemble learning: ensemble
LFR drift detection method: DetectDrift
Combine old and new ensembles in adaption:
ensemble_combine
Data stream: D

: mode < 1 and afterDriftData < ()

1

2. h < initial_ensemble //Stage 1

3. while D is not empty do

4: d < next data point from D

5: if mode = 1 then

6: ‘ prediction < h(d)

7: end if

8: mode < DetectDrift(d, prediction) // Stage 2

9: if mode is not equal to 1 then

10: ‘ afterDriftData = afterDriftData U {d}

11: end if

12: if mode = 3 then

13: new_ensemble < ensemble(afterDriftData) //
Stage 1

14: h < ensemble_combine(h, new_ensemble) //
Stage 3

15: mode < 1 and afterDriftData <

16: end if

17: output d, prediction

18: end while

LFR drift detection method (Stage 2) taking d and prediction
as the input to update flag mode (Line 8).

Then, if mode is not equal to 1 (meaning that the data point
d is a point after warning level), then d is included to the set
afterDriftData (Line 10). Furthermore, if mode is equal to 3
(i.e., after drift level), then we use the data set afterDriftData
to train an ensemble model by Stage 1, and this new ensemble
model is denoted by new_ensemble (Line 13). Then, we use
Stage 3 to combine the original ensemble model / and the new
ensemble model new_ensemble, and this combined model is
set as h (Line 14). Then, reset mode and afterDriftData to
1 and empty set, respectively (Line 15).

IV. IMPLEMENTATION AND EXPERIMENTAL RESULTS
This section introduces implementation of the proposed
DAMSID, and evaluates performance of the DAMSID. This
work further implements the ensemble learning algorithm of
the DAMSID with three layers of classifiers: super-strong,
strong, and weak classifiers, in which each higher-layer
classifier is an ensemble of lower-layer classifiers, i.e., the
forecast result of the higher-layer classifier is obtained by a
weighted voting sum of the results of lower-layer classifiers.
In the experiments, the lowest-layer classifiers apply three
types of classifiers: linear discriminant analysis (LDA), naive
Bayes (NB), and support vector machine (SVM).
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FIGURE 6. Results using the DAMSID with SMOTE on four datasets.
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FIGURE 7. Results using the DAMSID without SMOTE on four datasets.

A. EXPERIMENTAL DATA

The experimental dataset is generated based on the method of
generating the SEA dataset [34]. The dataset has 60,000 data
points, each of which has three attributes and one real class
label. The data is a time series. Three concept drifts occur at
the data points of 15,000, 30,000, and 45,000, respectively.
This work is referred to [24] to generate the dataset with var-
ious levels of imbalance ratios (i.e., the ratios of the minority
class over majority class): 30%, 20%, 10%, and 5%, and the
corresponding datasets are denoted by IR7, IR8, IR9, and
IR9.5, respectively.

Among the 60,000 data points of a dataset, the proposed
DAMSID uses the first 1,000 data points to train the initial
strong classifier, and then uses this strong classifier to test
the remaining 59,000 data points, during which the classifier
is adapted if a concept drift is detected.

B. ANALYZING THE DAMSID WITH AND WITHOUT SMOTE
The results using the proposed DAMSID with and without
SMOTE are shown in Figs. 6 and 7, respectively, in which
the vertical axis represents the overall accuracy (i.e., the rate
of the total correct outcomes over the total number of data
points considered so far); the horizontal axis represents the
number of data points considered; data points from —1, 000
to O are the initial training dataset; concept drifts occur at
points 14,000, 29,000, and 44,000. From Figs. 6 and 7,
the accuracy of the results with SMOTE increases for the
IR7 and IR9 datasets, but decreases a bit for the IR8 and IR9
datasets.

The confusion matrices of the results using the DAMSID
with and without SMOTE on the first 14,000 testing data
points (i.e., those before the first concept drift) of four
datasets are shown in Table 1.
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TABLE 1. Comparison of the confusion matrices of the results using the
DAMSID with and without SMOTE on four datasets with different
imbalance ratios.

Without SMOTE With SMOTE
Predict True label Predict True label

result 1 -1 result 1 -1
IR7 1 360 0 1 409 0
-1 336 13304 -1 287 13304
IR8 1 2289 0 1 2625 67
—1 526 11185 —1 190 11118
1IR9 1 876 0 1 1245 32
-1 516 12607 -1 148 12575
IR9.5 1 360 0 1 409 0
-1 336 13304 -1 287 13304

TABLE 2. Statistics of detecting concept drifts running 70 times of the
DAMSID on the IR7 and IR9.5 datasets.

Dataset Correct detections Fault detections Total detections
IR7 180 350 530
1R9.5 179 166 345

In addition to the overall accuracy, this work is more
concerned about the accuracy of testing the data points in
the minority class (i.e., those with label ‘1’ in Table 1). From
Table 1, all the results with SMOTE have a better accuracy in
the minority class, and remarkably reduce the number of false
negatives. On the other hand, the results with SMOTE have
false positives. The reason is that the SMOTE creates artificial
data points of the minority class, so that it increases the ability
of forecasting the minority class, but decreases the ability of
forecasting the majority class. Therefore, it is concluded that
the SMOTE can effectively assist the DAMSID in increasing
the accuracy of forecasting the minority class.

C. ANALYZING THE LFR IN THE DAMSID
This subsection analyzes the effect of the LFR in the
DAMSID. Because the LFR has been shown to perform
well in addressing imbalance data, this subsection analyzes
the LFR in the datasets with two extreme degrees of data
imbalance: IR7 and IR9.5. Hence, we run 70 times of the
DAMSID on the IR7 and IR9.5 datasets, and record the
number of detecting concept drifts for each 1,000 data points
in the 70 times of ruining the DAMSID, as shown in Figs.
8 and 9, in which the height of each bar represents the number
of detections for each 1,000 data points. The statistics of
correct and fault detections are given in Table 2. Because
the DAMSID collects 1,000 data points for later training
before entering the drift level, the correct detections should
occur during the 1,000 data points after drifts, i.e., 14,000—
16,000, 29,000-31,000, and 44,000-46,000. Hence, the two
bars responded to these ranges are shaded in Figs. 8 and 9.
From Figs. 8 and 9, the length of shaded bars is rela-
tively longer, i.e., concept drifts have a high probability to
be detected. From Table 2, the number of fault detections
on the IR7 dataset is double that on the IR9.5 dataset. It is
speculated that the LFR performs better in the datasets with
a higher imbalance degree.
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FIGURE 10. Results of overall and concept accuracies using the DAMSID
on the IR7 dataset.
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FIGURE 11. Results of overall and concept accuracies using the DAMSID
on the IR8 dataset.

D. ANALYZING THE RESULTS USING THE DAMSID

In addition to the overall accuracy, another important measure
is the concept accuracy, which is the rate of the total correct
outcomes over the total number of data points considered so
far after a concept drift. The results of overall and concept
accuracies using the DAMSID on the four datasets are shown
in Figs. 10-13, in which the overall accuracies of the results
for the IR7, IR8, IR9, and IR9.5 datasets show outperfor-
mance (96.01%, 96.3%, 95.6%, and 97.02%, respectively).
All the results show that all concept drifts can be detected
within 1,000 data points after drifts.
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TABLE 3. The confusion matrices of the results using the DAMSID on four
concepts of the IR7 dataset.

Real label
Concept 1 Concept 2 Concept 3 Concept 4
1 -1 1 -1 1 -1 1 -1
. 1| 4174 | 294 | 4494 | 516 | 4313 80 4492 | 1058
Predict
—1| 24 | 9508 6 9984 187 10420 8 9442

TABLE 4. The confusion matrices of the results using the DAMSID on four
concepts of the IR8 dataset.

Real label
Concept 1 Concept 2 Concept 3 Concept 4
1 -1 1 -1 1 -1 1 -1
. 1| 2768 | 183 | 2092 | 940 | 2872 145 | 2878 | 603
Predict
-1| 4 11002 8 1060 | 128 | 11855 | 122 | 11397

TABLE 5. The confusion matrices of the results using the DAMSID on four
concepts of the IR9 dataset.

Real label
Concept 1 Concept 2 Concept 3 Concept 4
1 —1 1 —1 1 —1 1 —1
. 1] 1381 608 1493 669 1291 25 1500 | 1114
Predict
-1] 12 11999 7 12831 | 209 | 13475 0 12386

TABLE 6. The confusion matrices of the results using the DAMSID on four
concepts of the IR9.5 dataset.

Real label
Concept 1 Concept 2 Concept 3 Concept 4
1 —1 1 —1 1 —1 1 -1
. 1| 655 77 655 847 642 23 731 640
Predict
—1| 4 13227 9 13407 | 108 | 14227 19 13610

To realize the outcomes of minority and majority classes
for each concept, we analyze the confusion matrices of the
results using the DAMSID on four concepts of the four
datasets shown in Tables 3-6, in which the TPRs for the
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IR7, IR8, IR9, and IR9.5 datasets are 98%, 97%, 99.1%, and
94%, respectively. Hence, the DAMSID is shown to perform
well in forecasting minority-class data in imbalance data
problems. In addition, the TPR decreases as the imbalance
rate increases. The reason is speculated that the amount of
minority-class data (i.e., label ‘1) decreases.

V. CONCLUSION

With development of the IIoT, deployment of a large-scale
number of sensors in manufacturing industries can con-
tinuously collect machine conditions (which are big data).
CBM analyzes the machine conditions to predict the time
point when the machine starts to perform abnormally and to
replace or maintain it in advance. Because most classifiers
can be trained in an offline way, this work has proposed
a DAMSID ensemble learning algorithm based on offline
classifiers to address the CBM with concept drifts and imbal-
ance data. The DAMSID improves the concept detection
method by the Dynamic AdaBoost.NC with SMOTE method,
improves the concept drift detection method by LFR, and
includes a novel drift adaption method. Experimental results
show that the proposed DAMSID can successfully detect all
concept drifts; the accuracy rate of the forecast results using
the DAMSID can achieve over 90%; the overall accuracy
rate for the extreme imbalance data (IR9.5 dataset) can arrive
at 97.02%; the accuracy rate for the minority-class data can
achieve over 94%.

From experimental trials, the performance of experimen-
tal outcomes significantly depends on the data sampling.
Therefore, a line of future work is to propose a novel data
sampling in the DAMSID. It is also of interest to improve
the computing efficiency of the algorithm. In addition, it is
interesting to design a robust ensemble learning method to
adapt to various degrees of data imbalance. And, in practice,
unlabeled or semilabeled data is common, and hence it is of
crucial to investigate the classification for these data types.
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