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ABSTRACT Brain modeling is a research area within computer science devoted to the study of complex and
dynamic computing algorithms that imitate brain function regarding the information processing properties of
the structures that make up the nervous system. The computational andmathematical structures are composed
of interacting modules, whose coordination aims to enhance their problem-solving capabilities. The compu-
tational models of the visual cortex use non-trivial interactions between a large number of components. In this
paper, we propose a hierarchical structure that mimics the information flow and transformations that take
place in the human brain. This paper describes a virtual system composed of an artificial dorsal pathway–or
‘‘where’’ stream–and an artificial ventral pathway–or ‘‘what’’ stream–both are fused to recreate an artificial
visual cortex. In previous work, the model was refined through genetic programming to enhance its perfor-
mance over challenging object recognition tasks. The system finds good solutions during the initial stage
of the genetic and evolutionary search. In this paper, the goal is to show that a random search can discover
numerous heterogeneous functions that are applied to a hierarchical structure of our virtual brain. Thus,
the proposal presents two key ideas: 1) the concept of function composition in combination with a hierarchi-
cal structure leads to outstanding object recognition programs, and; 2) multiple random runs of the search
process can discover optimal functions. The experimental results provide evidence that high recognition rates
could be achieved in well-known object categorization problems; consequently, this paper corroborates the
importance of the hierarchical computational structure described in the neuroscience literature.

INDEX TERMS Automatic programming, brainmodeling, artificial visual cortex, brain-inspired computing,
heuristic computing, deep genetic programming.

I. INTRODUCTION
Object recognition is a fundamental task for humans and
all living beings endowed with the sense of sight since it
allows the interaction of the organism with the surrounding
environment and its understanding. In general, the human
visual system can recognize and classify an object accord-
ing to its category with ease. Both tasks consider that the
set of attributes or features extracted from the images are
general enough to classify the object as part of the class while

The associate editor coordinating the review of this manuscript and
approving it for publication was Bora Onat.

maintaining in memory the elements that serve to identify
that particular object within a given scene [1]. Although
an accurate description about the processes that solve the
object recognition problem remains incomplete; there is vast
knowledge about the functionality of the primary brain areas
involved in the performance of the visual information path-
way, which leads to object categorization.

Nowadays, object recognition is said to be involved in
two main tasks: the first refers to the goal of identifying an
object as a single entity; while the second pertains to the
categorization that consists of the arrangement of an object
within a group of similar characteristics regardless of its
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FIGURE 1. The visual system consists of ‘‘what’’ and ‘‘how/where’’ information processing streams, that are defined as subserving different
purposes that achieve highly specialized visual tasks.

size, location, rotation, viewpoint, lighting conditions, and
occlusions. Computationally, the two processes are almost
identical since the input to the learning model is an image,
while the output is a label describing the membership of the
object – depicted on the image – to a given class. Hence, cat-
egorization involves a range of possible variations larger than
identification because a recognition system must generalize
not only across different viewing conditions but also across
different exemplars of the class. Thus, object classification
is a computationally challenging problem since an artificial
vision system must be able to construct a descriptor based on
a set of invariant properties of the object that could be useful
to classify the image [1]–[3]. The fact that a computational
model could be refined with a simple random search of a few
critical functions embedded within a hierarchical structure is
worthy of attention. This paper provides extensive results that
corroborate the importance of such methods. This new mod-
eling can be framed as a goal-driven approach to computer
vision [4].

This research attempts to create complex brain models
inspired by neuroscience knowledge. Computer simulations
of brain-like systems based on the paradigm of genetic pro-
gramming can lead to powerful new techniques in artifi-
cial intelligence [5]. This work is based on the artificial
visual cortex (AVC) which shows excellent performance
in solving the absence/presence problem of object recog-
nition. The AVC is based on two models: a psychological
model called the feature integration theory [6], and a neu-
rophysiological model called the two cortical pathway [7].

This proposal has been extensively tested on different prob-
lems like object recognition [8], feature detection [9], visual
attention [10], and tracking [11], [12], and it was imple-
mented in the CUDA language [13]. In all these works
good solutions were discovered by the brain programming
strategy in the first iterations of the algorithm. Therefore,
a question about how often those programs are discov-
ered is relevant, since this aspect can be used in future
research to devise new strategies to approach more difficult
problems.

In the literature, the human visual system is studied as a
model that provides insight about how to solve the object
recognition problem. The natural system is understood as a
rich paradigm where the notion of hierarchical processing
across the visual cortex was first proposed by Hubel and
Wiesel [14]–[16]. The main idea suggests a feed-forward
scheme which performs a series of processes of increased
complexity along the receptive fields corresponding to the
observed stimuli in simple, complex, and hypercomplex cells
derived from studies in the visual cortex of cats [14]. Further
studies made by Ungerleider and Mishkin in 1983 proposed
the existence of two routes in the visual cortex. These two
pathways, called dorsal and ventral streams, have a common
origin in the layers of the lateral geniculate nucleus (LGN)
and the primary visual cortex [7]. The functionality of the
dorsal stream focus on the location of an object within the
scene, while the ventral stream is dedicated to the task of
object recognition; see Figure 1. An efficient visual func-
tionality is achieved by a great interchange of information
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FIGURE 2. Data-driven vs. function-driven. In a function-driven process, a set of visual operators are fused by synthesis to describe the
properties of the image.

between the two streams [17]. In this way, object recognition
involves processes such as selectivity, defined as the ability
to filter unwanted information, as well as those in charge of
describing the objects. The approach proposed in this work
is divided into three key steps. The first is related to the
integration of salient features using four dimensions: color,
shape, orientation, and intensity. The second consists of the
application of selected mathematical functions commonly
used within computer vision and image processing. Finally,
these functions are combined into a compound of many
operators by synthesis in such a way of identifying salient
properties of objects that are useful in the categorization of
objects. This approach differs from those of the state-of-
the-art where a data-driven principle is applied using a set
of patches – image regions – while creating a dictionary
of visual words like in a bag-of-words approach [18]–[22].
In our work, the first hypothesis is that the dictionary of visual
words can be replaced by a set of visual operators which
are built with a group of mathematical functions. The second
idea is based on the integration of properties in charge of the
visual attention process – or selectivity – that is related to
the creation of conspicuity maps and the center surround pro-
cess together with description and combination of maximum
responses executed by a max operation of the functions that
select features that categorize the object. Contrary to previous
biologically plausible models, where these operators rely
exclusively on neuroscientific knowledge and whose imple-
mentation is based on a data-based paradigm. In this work,
we propose to build these operators with a set of operations
within a computational structure, in this way, the analogy will

focus on the functionality of the visual operator and how is its
algorithmic implementation; see Figure 2.

A. RESEARCH CONTRIBUTIONS
This paper provides a thorough insight into the random
search and the motivation of applying it to the artificial
visual cortex (AVC) in the problem of object recognition.
Therefore, extending the first results published at the EvoStar
conference [23]. We remark four contributions.
• First, a computational model of the visual cortex is
proposed based on the fusion of previous visual attention
and object recognition proposals using a hierarchical
structure that is similar to previous models.

• Second, a functional approach is enforced through a set
of mathematical functions that are specialized in the pro-
cesses of visual information extraction and description.

• Third, in the proposed method the total number of visual
operators made of mathematical functions and embed-
ded within the hierarchical structure can be discovered
through a few random trials while achieving outstanding
results on two of the standard testbeds.

• Fourth, as a byproduct of the approach, the total number
of computational operations that are used to classify
an image is relatively small in comparison with similar
strategies that are based on the application of image
patches.

This paper is organized as follows. Section II is devoted to
the task of reviewing the state-of-the-art. Then, Section III
provides a general description of our approach. Later,
Section IV presents experimental results. Finally, Section V
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gives our conclusions while offering some suggestions for
possible future work.

II. RELATED WORK
In the twentieth century with the arrival of digital computers,
several works attempted to emulate the functionality of the
human visual cortex to perform tasks like object recognition,
visual attention and object detection. This section provides a
list of relevant works to outline the state-of-the-art of these
biologically-inspired computational approaches.

From a computational standpoint, the first work dealing
with object recognitionwas developed in 1980 by Fukushima,
who proposed a neural model called Neocognitron to solve
this task [18]. In their work, the computational structure
was inspired by the visual nervous system and the hier-
archical model that was first discovered by Hubel and
Wiesel [14]. This model was capable of recognizing letters
and numbers considering a shift in position. Later, Bie-
derman in 1987 suggested the recognition-by-components
(RBC) theory, where an object can be recognized by the
combination of elements called geons: blocks, cylinders, and
funnels or truncated cones that are similar to phonemes in
a human language [24]. These approaches were extended by
Perrett and Oram through a model based on ‘‘patterns’’ made
of simple conjunctions of 2-D elements, that increase their
complexity along a series of stages, by mimicking the cell
properties of the ventral cortical stream [25]. It is noteworthy
that this hierarchical model is invariant to rotation and size
transformations of an object. Then, Ullman and Soloviev
in 1999 proposed the conjunction of multiple overlapping
image fragments – or visual patterns – to achieve shift invari-
ance for complex shapes [26]. This work was later extended
to classification [27]. In the same year, Riesenhuber and Pog-
gio introduced a hierarchical feedforward architecture with
similar matching and pooling stages as the Neocognitron, but
with the incorporation of the max operation as a better model
of the complex cell in contrast to a linear summation [28].
Thismethod provided a robust response to position invariance
while arguing that its functionality is biologically plausible.
Later, the model was tested on the recognition of artificial
paper-clip images and was improved in [19], [20] to achieve
a robust object-recognition performance through a universal
dictionary of features. Along with this line of research, sev-
eral works proposed to optimize the number of patches or
elements, as well as to improve the description of the object
following the hierarchical model [29].

During the same period, many computational visual
attention systems arose based on similar hierarchical struc-
tures that were adapted from the psychological theory of
feature-integration proposed by Treisman and Gelade [6],
which suggests that attention must be processed at two
successive stages. The first called preattentive stage that is
computed in parallel along several feature dimensions of the
scene such as shape, color, orientation, spatial frequency,
brightness, and direction of movement. Then, a second stage
called focal attention provides the integration of the initially

separable features into unitary objects. Afterward, Koch and
Ullman proposed the construction of a saliency map using
a neuronal network process called winner-take-all, which
combines the information of the feature maps and provides
as output the most conspicuous locations of the scene [30].
Later, Milanese proposed a visual attention system based on
the models of [30] and [31], which uses filters as opera-
tions to compute two color opponencies: red-green and blue-
yellow; with 16 different orientations and local curvature
information [32]. These operations define the feature maps
that are later transformed by the application of a conspicuity
operator, which is motivated by the on-off cells in the cortex.
This operator is usually referred to as the center-surround
mechanism that is applied to define the so-called con-
spicuity map; a term that is frequently used to denote the
feature-dependent prominence. Finally, the conspicuity maps
are integrated into a saliency map by a relaxation process that
identifies a small number of convex regions. Along with this
line of research, Itti et al. proposed a model that is widely
used since it encapsulates the ideas of [30] and [32]. Themain
contribution is the implementation of theoretical concepts of
the visual attention process and its application to artificial and
real-world scenes [22]. This technique enables the detection
of feature dimensions at different scales followed by the
center-surround mechanism.

Today few works attempted to integrate the two
approaches. Fukushima in 1987 implemented a hierarchical
neural network that serves as a model for selective atten-
tion and objects recognition [33]. When several patterns
are presented simultaneously, the model performs discrim-
inatory attention to each one, segmenting it from the rest
while recognizing it separately. Afterward, Olshausen et al.
in 1993 defined a biologically plausible model that combines
attentional mechanism and object recognition processes to
form position and scale invariant representations of the visual
world [34]. Then, Walther et al. suggested a combined model
for spatial attention and object recognition [35]. In their work,
visual attention follows the computational model proposed by
Itti and Koch [22] and object recognition is achieved through
the HMAX model of Riesenhuber and Poggio [28]. This
model was applied to the problem of recognizing artificial
paperclips. Later, Walther and Koch in 2007 suggested, with
a computational model, that features learned by the HMAX
model used for the recognition of a particular object category
may also serve for top-down attention tasks [36]. Finally,
Heinke and Humphreys applied a model called SAIM for
the visual search involving simple lines and letters [37]. This
model, in a first stage, selects the object within the image and
subsequently performs an object identification step using a
template matching technique.

In our work, we propose a new hierarchical model fol-
lowing the preattentive stage of visual attention described
in [6], [30] to locate conspicuity regions within the image.
Then, a description process is performed using the max
operator in combination with a series of functions that emu-
late the functionality of the V4 area in the visual cortex.
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FIGURE 3. Conceptual model of the artificial visual cortex. The color image is decomposed into four dimensions (color, orientation, shape, and
intensity). Then, a hierarchical structure is charged with solving the object classification problem through a function-driven paradigm.

This approach differs from traditional models to object
recognition [1], [19], [20], [28], [36], [37] where a set of
patches – or visual words – are used to identify the object.
In our proposed approach the discovered functions provide
the functionality of multiple patches; hence, helping in the
creation of a straight-forward process as will be shown in the
experimental results.

III. THE AVC ALGORITHM
This section aims to describe our artificial visual cor-
tex approach tested on three object recognition tasks with
increasing difficulty. The idea follows the analogy of the
hierarchical processing of visual information performed by
the brain to classify an object. The section is organized as
follows. The purposeful approaches are briefly outlined in
order to understand the two principal pathways of the natural
visual system. Then, the AVC algorithm is detailed to give an
account of our proposal.

A. AVC AS A GOAL-DRIVEN PROCESS
The natural visual system is composed of two main path-
ways defined by the dorsal and ventral streams [7], [38]–[41].
These two pathways share the first stages of the visual
information processing located at layers V1 and V2. Later,
the streams diverge intending to subserve two different tasks
that are specially contrived to achieve the object and spatial
vision; see Figure 3. The classical dichotomy between object
and spatial perception focuses on the importance of the pur-
poseful representation that serves a single or general task.

Furthermore, the ‘‘what’’ and ‘‘where/how’’ theory of Mil-
ner and Goodale [38] gives also an emphasis on the hypothe-
sis that the visual system is defined according to the require-
ments of the task that each stream subserves. Thus, the idea is
to define multiple frames of reference giving special attention
to the goal of the observer. The object, as well as the spatial
information, are transformed by the visual system for differ-
ent purposes. Thus, the ventral system along the pathway:
V1, V2, V4, and IT areas, represents the visual world in
allocentric coordinates by promoting conscious perceptual
awareness; while, the dorsal stream along the visual route:
V1, V2, V3, V3a, V5, and Parietal Cortex areas use egocentric
coordinates to transform information about the object’s loca-
tion, orientation, and size [42]. Consequently, the problem
of object recognition suggests an integrative action of the
dorsal and ventral streams [38], [43]. In this manner, the goal
of this work is to emulate the functionality for acquisition and
transformation of features at several dimensions, as well as
the description of regions within an image by imitating the
stages performed by the dorsal and ventral streams.

These tasks are emulated with a set of mathematical func-
tions specialized in obtaining visual information from images
in four different dimensions. We execute a random search of
the set of functions called visual operators (VOs). The AVC
is divided into two main parts. In the first stage, the pro-
posed system executes the acquisition and transformation
of features. Then, in a second stage, the AVC performs the
description and classification of objects.
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B. ACQUISITION AND TRANSFORMATION OF FEATURES
The early stage of the system follows the psychologicalmodel
of visual attention proposed by Treisman and Gelade [6],
which was successfully implemented in [22]. The image
acquired with the camera represents the first step of our algo-
rithm. The system considers digital color images in the RGB
color model, which are also transformed into the CMYK and
HSV color models. The idea is to build the set Icolor = {Ir ,
Ig, Ib, Ic, Im, Iy, Ik , Ih, Is, Iv}, which corresponds to the red,
green, blue, cyan, magenta, yellow, black, hue, saturation,
and value components of their respective color models and
which are used to provide the initial representation of the
scene.

1) FEATURE DIMENSIONS
Each VO is defined as a mapping VOd : Icolor → VMd ;
where the set Icolor gives the input to the visual operator
and the output corresponds to a visual map (VMd ) for a
particular feature dimension. The transformations are per-
formed to recreate the feature extraction process of the brain;
resulting into a visual map (VM ) per dimension. The VOs
define specific image features along with several dimensions:
color, shape, orientation, and intensity, d ∈ {C, S,O, Int}.
Next, we explain these features.

• Color dimension. The goal of this process is to high-
light prominent regions associated with color properties
on the image. In the natural system, this operation is
carried out by the retina, where color opponencies are
estimated and further processed in the V1, V2, and
V4 brain areas [44]. Input color images are transformed
through the color visual operator VOC to find prominent
regions based on the color dimension. The mapping in
the computational model is represented as follows.

VOC : Icolor → VMC , (1)

where VMC is the visual color map representing the
prominence of pixels in color. In this work, color feature
extraction is performed through function composition
of multiple operators. Note that we are considering two
special functions to compute color opponency values
according to the proposal explained in [45]. Moreover,
a third function known as the image complement is
applied in such a way that each pixel value is subtracted
from the maximum and the difference is used as the final
result in the output image.

• Shape dimension. The method that extracts visual infor-
mation on the shape of the object uses morphological
information of the object. In nature, such functionality
is carried out in areas of the brain such as V2 and the
temporal cortex [46]–[50]. The goal of extracting shape
information is to highlight morphological information
that can be used for object recognition. The mapping in
the computational model is represented as follows.

VOS : Icolor → VMS , (2)

Note that the application of this mathematical tool
can be considered as the first implementation of such
concepts within the analogy of the artificial visual
cortex. We propose to create compound operators by
the composition of four basic morphological opera-
tions known as erosion, dilation, opening, and clos-
ing. Indeed, more complex operators can be created,
from these simple ones, like the hit-or-miss trans-
form, skeleton, perimeter, top-hat, bottom-hat, and
others [51].

• Orientation dimension. The composition of orientation
characteristics determined the edge and corner opera-
tors applied to an image. These operators emulate the
functionality of the simple and complex cells present in
the primary visual cortex. The orientation features are
highlighted to detect borders and junctions on the image
similar to the evolution of interest point detectors and
descriptors [52], [53]. The mapping performed by VOO
is defined as follows.

VOO : Icolor → VMO, (3)

where VMO corresponds to the visual map for the ori-
entation attribute. Numerous functions were applied
together with the Gaussian derivative function proposed
in [54] and Gaussian smoothing filters with σ = {1, 2}.

• Intensity dimension. Finally, the intensity measure
corresponds to the amount of light perceived by a pho-
tosensitive device. In humans, the intensity is mea-
sured by specialized ganglion cells in the retina [6], [17].
In order to compute the intensity, the following formula
is applied.

VMInt =
Ir + Ig + Ib

3
,

where Ir , Ig, and Ib are the color bands of the image,
while VMInt is the intensity of the visual map [32], [36].

2) CENTER SURROUND PROCESS
The center-surround method is based on the functionality of
the ganglion cells, located in the retina and lateral geniculate
nucleus, that measures the difference between the firing rates
at the center and surrounding areas of their receptive fields.
The goal of this process is to generate a conspicuity map
(CM ) per dimension according to themodel proposed in [45].
The algorithm consists of a two-step process where the infor-
mation is built to emulate its natural counterpart as follows.
First, the computation of theCMs is modeled as the difference
between fine and coarse scales, which are computed through
a pyramid of nine levels Pσd = {P

σ=0
d , Pσ=1d , Pσ=2d , Pσ=3d ,

. . . ,Pσ=8d }. Each pyramid is calculated from its correspond-
ing VMd using a Gaussian smoothing filter resulting in an
image that is half of the input map size, and the process is
repeated recursively eight times to complete the nine-level
pyramid. Second, the pyramid Pσd is used as input to a center
surround procedure to derive six new maps that result from
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the difference between some of the pyramid levels calculated
as follows.

Qjd = P
σ=b

j+9
2 c+1

d − P
σ=b

j+2
2 c+1

d ,

where j = {1, 2, . . . , 6}. Note that the levels of Pσd have
different size and are scaled down to the size of the top level
to calculate their difference. Next, each of these six maps is
normalized and combined into a uniquemap through the sum-
mation operation, which is then normalized and scaled up to
the VMd maps’ original size using a polynomial interpolation
to define the final CMd .

C. DESCRIPTION AND CLASSIFICATION STAGE
After the construction of the CMs, the next stage along the
AVC is to define a descriptor vector used as input to an SVM
model for classification purposes. This stage is analogous to
the functionality of theV4 layer, as well as the Inferotemporal
Cortex (IT) since it is said that these two regions perform the
classification stage.

1) COMPUTATION OF THE MENTAL MAPS
In the natural system, the V4 area of the visual cortex is dis-
tinguished by responding to complex stimuli of orientation,
spatial frequency, as well as to forms such as spirals and
complex patterns [55], [56]. With this, our analogy consists
of building a map that discriminates the unwanted informa-
tion from the conspicuous maps and only focuses on the
object of the image that is to be classified, enhancing the
characteristics of that object. This map is called amental map.
In this stage of the process a single set of visual operators is
used to produce a mental map (MMd ) per dimension. After
the computation of the conspicuity maps, a set of visual
operators VOMM is applied to describe the image content.
Note that the proposed visual operators are homogeneous
and independently applied to each feature dimension. This
operation is defined as follows:

MMd =

k∑
i=1

(VOMMi (CMd )), (4)

where d is the dimension index, and k represents the cardinal-
ity of the set VOMM . Each summation is applied to integrate
the output of all operations VOMMk to produce a MMd per
dimension. After that, the four Mental Maps are concatenated
into a single array, and the n highest values are selected
to define the vector −→ν that describes the image. The input
to these operators is the corresponding conspicuity map per
dimension.

In contrast to our proposal, well-known methodologies
[18]–[22] are based on a template matching paradigm to
learn a set of prototype image patches. Hence, our approach
substitutes the set of templates with the set of visual operators
to characterize one object class with excellent results as we
will show in the experiments. Note also that the proposed
brain modeling is very different from current proposals like

deep learning, where the models correspond to networks of
artificial cells grouped in multiple layers [18], [28], [91].

2) LABEL ASSIGNMENT
In the natural visual system, the response of the V4 area
is connected to the inferotemporal of the brain (IT) whose
response is selectively activated to the observed object, show-
ing invariance to transformations such as scale, position, and
orientation. That is, the IT area exhibits the ability to carry
out the task of recognizing objects from the visual stimulus
it receives [57]–[61]. In the present work, the computational
analogy is a classifier, implemented with a support vector
machine (SVM). Therefore, an SVM is trained to learn a
mapping f (x) that associates descriptors xi to labels yi. Our
problem is formulated in terms of a binary classification
task, whose main aim is to find a decision surface that best
separates the elements of the class. In this work, we use a
non-linear SVM working with the discriminate hyperplane
defined by:

f (x) =
l∑
i=1

αiyiK (xi, x)+ b, (5)

where the given training data is (xi, yi), i = 1, . . . , l,
yi ∈ {−1, 1}, xi ∈ Rp and K (xi, x) is the kernel function.
The sign of the output indicates the class membership of x.
Thus, finding the best hyperplane is performed through an
optimization process that uses the margin between the class
and non-class as the search criteria.

IV. EXPERIMENTS AND RESULTS
Experimentation was carried out to provide evidence to sup-
port the claim that efficient and reliable solutions, for not
trivial recognition problems are discovered through random
search. Note that despite using random search the hierar-
chical structure is not random, but it follows well-designed
models in principle way that give coherence to the pro-
posed algorithm. This section is organized as follows. Firstly,
the experimental results are given using the simplest database.
Secondly, a comparison is made with other methodologies.
Finally, conclusions and future work are drawn about the
work.

A. EXPERIMENTAL DESIGN
This section presents the experimental settings designed to
show the advantage of applying a random search instead
of an evolutionary search. It describes the databases used
during training and testing. Several experimental tests are
presented together with the best results achieved by our
approach. Note that we use the CalTech 5 and CalTech
101 image databases, despite serious concerns raised about
them [2], [62]. Nevertheless, that test is still widely used
in the object recognition community, and many state-of-
the-art algorithms report their classification results with
it [63]–[66]. Nonetheless, in order to show the effective-
ness of the proposed model, the experiments also include
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FIGURE 4. These diagrams depict a set of syntax trees that were used
within the AVCM1 solution reported later.

a more challenging dataset GRAZ, similar to the following
works: [19], [20], [67]–[80].

1) METHODOLOGY TO OBTAIN AN AVC SOLUTION
The methodology used to generate AVC programs followed
the algorithm of Section III, where an important step is
the construction of VOs. Note that such mathematical and
computational functions are susceptible to being discovered
through some optimization approach [5]. During the devel-
opment of the proposal, we remark that brain programming
unexpectedly found good solutions in the first iterations of
the algorithm. Hence, a study about the frequency and quality
of solutions applying a random search can provide valuable
information for future research using this kind of models.
The operators consist of syntax trees made of internal and
leaf nodes, which are defined by a set of primitive elements
called function and terminal sets defined before the initial
run. In our work, each tree has its own sets of functions and
terminals carefully chosen according to the desired function-
ality that we attempt to emulate within the AVC. All VOs
were generated through a random procedure with a maximum
depth of 5 levels, where half of the trees were balance trees
and the other half were arbitrary trees adding nodes until
the maximum depth is reached. As a result, the approach
generates random tree structures with some branches longer
than others. Figure 4 shows the solution AVCM1 from Table 5,
which is provided here as an example of the VOs using syntax
tree representation. The implementation was programmed in
MATLAB running on a Dell Precision T7500 workstation,
Intel Xeon eight-core, CPU E5506 at 2.13GHz, NVIDIA
Quadro FX3800 and Linux OpenSuse 11.1 operating system.

The methodology to study the absent/present classification
problem is divided into three steps. The first two steps define
the training stage while the last is devoted to the testing stage.

TABLE 1. Functions for the visual operators (VOs).

In this way, all image databases were randomly divided into
three subsets for each class, in such a way of applying each
subset to each step. This process is detailed next.

1) The process starts by randomly generating a set of VOs
to be used inside the AVC structure. Table 1 provides
a set of functions that are used to create the VOs.
Then, it proceeds to the training stage of the SVM
using images from the first subset, called training-A.
If the SVM achieves a given threshold in classification
accuracy, the process continues to step 2; otherwise,
the VOs together with the SVM are discarded, and the
process is restarted.

2) Next, the system uses the set of VOs found in step
1while training a new SVMwith the second image sub-
set, called training-B. Once again, if the SVM scores
above the given threshold in accuracy the process con-
tinues to step 3 and the AVC structure is the solution;
on the other hand, both VOs and SVM are discarded,
and the search continues at step 1.

3) In the last step, the best AVC structure is tested by clas-
sifying the third image subset. The testing is performed
with the estimated SVM from step 2 and the VOs from
step 1. The whole process is repeated until the best set
of solutions is discovered.

2) IMAGE DATABASES
The performance of the AVC was evaluated through a
binary test using five classes from the Caltech-5 database in
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FIGURE 5. Sample images from CalTech-5 database, and the category
background from CalTech-101 database.

FIGURE 6. Sample images from background category in
CalTech-5 database.

combination with the Google background of Caltech-101, see
[81], [82]. We select as the positive classes from CalTech-5:
airplanes, cars, faces, leaves, and motorcycles, along with
two different background image classes from CalTech-5 and
CalTech-101 to use them as the negative class for two exper-
iments described below. Figures 5 and 6 show some sample
images of the databases that are commonly used to evaluate
state-of-the-art systems. The reason to select these databases
is that the objects are on the foreground and centered in
the image making it an excellent test environment for our
approach. All experiments were carried out with images
of 140 pixels in height. In the case of images with different
size all were rescaled to the proper height preserving the
aspect ratio.

3) EXPERIMENTAL EVALUATION OF THE AVC FOR
CLASSIFICATION OF COLOR IMAGES
The goal in this experiment is to analyze the effect on the
recognition performance by using training sets of different
sizes. Thus, the AVC model was trained with randomly
selected subsets (positive images) of size: 1, 10, 20, 30, 40,
50, 60, and 70; while using a constant subset of 50 negative
images. In the case that the AVC solution never passes the
test, after 7500 random runs, the solution was discarded
from further tests. Then, the numbers of images selected for
training-B were set to 50 positive images and 50 negative
images. Table 2 provides the number of random runs that were
necessary to discover 100 solutions giving a total of 700 solu-
tions with 100% accuracy. All solutions were tested, and the
mean and standard deviation are reported in the following
section.

Testing the Performance of the Random Search
This experiment aimed to evaluate the AVC performance

from the standpoint of a random search. Figure 7 shows the
results of 3500 solutions of five classes, where the x-axis

TABLE 2. Total number of random runs needed to discover one hundred
solutions per class for all subset sizes.

FIGURE 7. These figures show the solutions’ performance for different
sizes of the training set. Each bar corresponds to a solution depicted in
the form of a bar chart making a total of seven hundred solutions per
figure.

indicates the number of training images per class, while the
y-axis shows the number of solutions, and finally, the z-axis
provides the accuracy achieved during the testing stage. The
size of subsets during testing were 50 positive images and
50 negative images. The best solutions were obtained with
airplanes, faces and leaves classes scoring 95%, 99%, and
97% respectively; while for cars and motorcycles, the best
solutions scored a classification accuracy of 77% and 75%
respectively. Note that these final scores are similar regardless
of the subset size that is applied during the training stage.
These solutions are provided with their corresponding for-
mulae in Table 5. The summary of this experiment is given
in Table 3.
Looking for the Optimal Size of the Training Set
In this section, we address the question of what proportion

of samples should be used in the training set. Also, how this
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TABLE 3. This table shows a summary of the results of the AVC testing
which was obtained with a random search.

proportion impacts the classification accuracy of the SVM
process. In the search for an optimal method, we need to
devise a strategy where the number of training images can
be adjusted to the optimal sample size. Hence, the strategy
to look for an optimal sample size involves two interrelated
aspects known as frequency and period. Frequency is equal
to the number of perfect solutions, in this case, 100 divided
by the total number of random trials, while the period corre-
sponds to the average interval between each perfect solution.
Indeed, the period is reciprocal of the frequency. The defini-
tion of optimal sample size can be computed throughout the
variation on the number of training images concerning the
occurrence of perfect solutions for each class, which as a con-
sequence produces a different rate on the frequency or period.
Figure 8 provides the mean period and standard deviation
as well as the frequency of solutions using several training
image sets for each class. Note that all charts were scaled
along the vertical axis for readability purposes. The frequency
of solutions during training was generally higher for faces
and leaves classes. These two classes present the lowest
uncertainty. Moreover, in the case of 60 training images,
the average period was the lowest of all classes, and we
can say that this is the optimal training size. The motorcycle
class represents the hardest problem since it scores the most
significant uncertainty.

FIGURE 8. These graphics provide the computational effort required to
find a solution for each class. The bar chart provides the mean period and
standard deviation in terms of cycles or random runs that were required
to find an AVC with 100% accuracy during training, while the dashed line
represents the frequency required to discover a perfect solution.

TABLE 4. Average number of mental maps over the one hundred
solutions per class for all subset sizes.

Description of AVC Solutions from a Structural Stand-
point

This section describes the functionality of the AVC regard-
ing the structure. It brings an analysis of the utility of func-
tions that comprise the VOs. The aim is to discover the most
useful functions that provide improved performance during
classification for each image category. An analysis is pro-
vided to describe the complexity and diversity of solutions.

VOLUME 7, 2019 54063



G. Olague et al.: AVC and Random Search for Object Categorization

FIGURE 9. The figures show the frequency-of-use of the functions used
by the VOs along each feature dimension. The charts from top to bottom
depict the results for color, shape, orientation, and mental map
operations respectively.

Frequency-of-use was computed with 3500 solutions,
using five classes, by counting the number of appearances of
each function in the VOs within the AVC, see Figure 9. It is
remarkable that, regardless of the image category, the pat-
terns that arise through the computation of the frequency-
of-use are very similar along the four VOs probably due to
the hierarchical process of the AVC. We observe that the
quadratic function was commonly applied along the color
dimension; see the first graph of Figure 9, while functions
like floor, ceiling, round, and hit-miss achieved the highest
frequency-of-use for the shape dimension; see the second
graph of Figure 9. In the same way, the absolute value, round,
Gaussian-blur or convolution against a Gaussian kernel with
σ = 1, and the quadratic functions were primarily used
along the orientation dimension; see the third row of Figure 9.
Finally, the compound ofVOs for the mental maps include the

FIGURE 10. The tree representation of the VOs can be analyzed from a
structural standpoint through their complexity and diversity. The
figures on the first and second columns provide the average and standard
deviation regarding the tree depth and the number of nodes respectively
for different sizes of the training set. Note that the third column depicts
the diversity measured as the percentage of the uniqueness of the visual
operators’ overall solutions.

quadratic and absolute value functions; see the last graph of
Figure 9. For clarity in the charts, the derivatives along the
x and y directions were omitted because of their frequency-
of-use is very high, since their natural response improves the
detection of pixel regions with high variability. We can say
that there is no particular set of functions, which classifies
a specific image category. Nevertheless, a reduced set of
functions was able to classify the five classes. In other words,
the response of the functions throughout the AVC structure is
different for each input class, which implies a more natural
characterization of the system.

In a second experiment, the size and variability of solutions
are analyzed through a statistical study of the complexity
and diversity of VOs. The complexity is measured using
depth and number of nodes, while diversity is defined as the
percentage of the uniqueness of operators overall solutions;
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see Figure 10. Note that the resulting complexity is bounded,
irrespective of category and number of training images. Simi-
larly, diversity is above 60%, regardless of category and num-
ber of training images. The VOs are different in almost every
solution, which is consistent with the random search that was
used to find them. It is noteworthy that this random process
provides solutions despite the large search space. Finally,
the length of a solution is calculated as the total number
of visual operators, which is determined by the number of
mental maps; see Table 4. Note also that the average number
of mental maps is constant in general regardless of category
and number of training images.

Size of the AVC Search Space
The result of analyzing the solutions from a structural

standpoint can be used to devise a solution subspace that is
smaller than the search space defined initially by all opera-
tions. Thus, the size of this feasible region can be calculated
as follows.

The search space is defined as the number of all possible
solutions that are achievable through the combination of all
possibleVOs. Its size can be obtained with the set of functions
and terminals described in Table 1. In this way, given a partic-
ular tree structure i, nT terminals, nFU unary functions, and
nFB binary functions; the number of possible visual operators
nVOi is calculated as follows:

nVOi = nT nln × nFnpn1U × nFnpn2B ,

where nln is the number of leaf nodes, npn1 is the number of
parent nodes with one child node, and npn2 is the number of
parent nodes with two child nodes. Hence, the search space Ss
is the result of multiplying all possible combinations of visual
operators for all dimensions and mental maps. This can be
written as follows:

Ss =
l∑
i=1

(nVOC )i ×
l∑
i=1

(nVOS )i ×
l∑
i=1

(nVOO)i

×
( l∑
i=1

(nVOMM )i
)k
,

where l is given by the depth of the visual operator and k
is the number of visual maps. Thus, the size of the search
space is around 4.72 × 1087 solutions. Note that the results
of the previous statistical analysis could be applied to create
a smaller search space. Hence, the search space could be
reduced to a new subspace of 1.5 × 1029 solutions. It is
remarkable how easy it was to find solutions that score almost
perfectly through a random search procedure.

Examples of AVC Solutions
This section presents three examples of discovered solu-

tions that illustrate the information flow through the AVC
structure. The first example was selected since its accuracy
in classification scores highest for all solutions during testing.
The second example corresponds to the solution of the motor-
cycle class that exhibits the lowest accuracy in classification
during the testing stage. Finally, a third example illustrates

FIGURE 11. These figures show the functionality of the solution AVCF 1.
Figure (a) depicts the image transformation along the AVC structure by
applying the VOs of AVCF 1. As a result, an image classified as false
positive can be seen in Figure (b) while Figure (c) illustrates the
descriptors that result after applying the solution AVCF 1 to the testing
image set.

thought-provoking behavior since it uses eight mental maps
while focusing on specific regions.

The AVCF1 solution, see Table 5, was discovered for the
face class. Figure 11 (a) shows the behavior after applying
an input image to the AVC. The color, shape and intensity
dimensions highlight the forehead region of the face. Note
that the orientation dimension is eliminated since the input
image is mapped to zero; i.e., black color. The only image
that was classified as false positive belongs to the Google
background class; see Figure 11 (b). This image could be clas-
sified as a face because the image contains a person. However,
in this image the response of the algorithm is located outside
of the face. The reason is that the pattern of the features for
the class ‘‘faces’’ is different since in this class the faces
are centered over the image while covering a higher area.
We observe that the values for the faces’ descriptors are well
defined in comparison to those of the Google background
class. This behavior is described in Figure 11 (c).

The second result corresponds to theAVCM1 that scored the
highest value for the problem of classifying the motorcycles
vs. the Google background class; see Table 5. Figure 12(a)
depicts the information flow process for the AVCM1 struc-
ture. In general, the visual operators that are applied to the
image highlight the motorcycle contour and shape. Never-
theless, when the motorcycle was cluttered with the back-
ground, the image was regularly confused with the Google
background class; an example of such a case is depicted
in Figure 12(b). This behavior produces a lower accuracy
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FIGURE 12. These figures provide details about the behavior of the AVCF 2
solution. Figure (a) shows the image processing through the AVC
structure; Figure (b) shows some examples that were classified correctly
and the hilly regions found after applying the AVCF 2 solution, and Figure
(c) depicts the descriptors obtained for the testing image set.

in classification during the testing stage. Hence, we can say
that for this example, of the motorcycle class, the range of
the descriptors’ values is not well defined; this effect can
be seen in Figure 12(c). Finally, as the last example the
AVCF2 solution was selected due to its ability for detecting
a specific region, see Table 5. In this case, the diagram of
the faces’ category illustrates the information flow through
the AVC structure as depicted in Figure 13(a). Note that the
shape dimension can be eliminated and the visual operators
along color and orientation highlight the lip region on the
face. This behavior has been observed on several testing
images; see Figure 13(b), whose final descriptors are shown
in Figure 13(c).

B. COMPARISON WITH OTHER METHODOLOGIES
This section provides a comparison with several approaches
using more challenging databases to illustrate the capacity
and limitation of the random search.

1) COMPARISON BETWEEN AVC AND HMAX MODELS
The HMAX model was used in the second series of tests
based on the experimental design proposed in [19], in order
to compare our results with the state-of-the-art. The solu-
tions from the first experiment were tested, in the object
present/absent experiment, with a new random set of images
considering 50 positive images for the object classes selected
earlier, as well as 50 negative images from the Caltech-5
background database. The goal is to investigate the effect
on the 700 final solutions per class using accuracy. In this

FIGURE 13. These figures provide details about the behavior of the AVCF 2
solution. Figure (a) shows the image processing through the AVC
structure; Figure (b) shows some examples that were classified correctly
and the hilly regions found after applying the AVCF 2 solution, and Figure
(c) depicts the descriptors obtained for the testing image set.

TABLE 5. This table shows the best solutions that were discovered after a
random process.

test, the background images are in grayscale; therefore, all
color bands were initialized with the same value. The results
summary is shown in Table 6. The experiment includes a
comparison with LeNet and a basic convolutional neural
network (from scratch CNN), whose results were computed
with 100 runs for each class and size of the training set.
The comparison between our model and the HMAXmodel is
provided in Table 7.We report the error rate at the equilibrium
point as the measure performance in these experiments. For
the sake of showing that the differences between the perfor-
mances of the proposed AVC and the HMAX-SVM models
are statistically significant, we used two non-parametric sta-
tistical tests: the Wilcoxon rank sum [83] and a two-sample
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TABLE 6. This table summarizes the classification results achieved on
testing using the background Caltech-5 database as the negative class.

TABLE 7. This table shows a comparison of the performance achieved by
the HMAX model, considering the boost and SVM classifiers, against the
AVC model. Note that in the case of the HMAX model a learning process
was applied in order to identify the best patches. However, only a random
sampling was used to discover the best solution with the AVC model.

Kolmogorov-Smirnov test [84]. These last experiments were
tested on the 30 best random solutions out of the 700 found
for each class.

2) COMPARISON WITH THE GRAZ BENCHMARK
GRAZ is part of the PASCAL object recognition database
collection, built by Opelt et al., and it consists of two chal-
lenging datasets [85]. First, the GRAZ-01 database contains
two classes and background set that are varied in locations,
scales and viewpoints. Next, the GRAZ-02 dataset was built
to increase the independence of the background context for
categorization. Also, the complexity of object appearances
in photographs was increased, and the car image class was
added as a new category. For testing the AVC model with
random runs, we followed the protocol provided in [85].
For the GRAZ-01 dataset, 100 positive and 100 negative
images were randomly selected as training samples, and other

FIGURE 14. Comparison of several approaches on GRAZ-02 database.

50 positive images and 50 negative images were selected as
testing samples. For GRAZ-02, 150 positive and 150 neg-
ative images were selected at random as training samples,
then another set of 75 positive and 75 negative images were
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TABLE 8. This table shows a comparison between several feature
extraction methods, the AVC average performance, and the best AVC
solutions on GRAZ-01.

TABLE 9. This table shows a comparison between several feature
extraction methods and the AVC average performance computed with the
EER on GRAZ-02.

TABLE 10. This table shows the best solution over each class on GRAZ-02.

randomly selected as testing samples. The experiments were
run against the 20 best solutions for the GRAZ-01 and
100 best solutions for the GRAZ-02; considering that the
discovered solutions along 3500 random runs were those
whose SVM scored a threshold above 75% in classifica-
tion accuracy during training. All experimental results are
reported in Tables 8, 9 and 10; where the average ROC
(receiver operating characteristics), the area under the curve
(AUC), and Equal-Error rate (EERmeans the detection rate at
equal-error-rate of the ROC curve) are used as performance
measurements. Note that we provide results of the best
AVC models for the two classes at Table 8 considering
GRAZ-01, while the best results for GRAZ-02 are reported
in Table 10. The comparison between the AVC model with
random runs was made against well-known methods, such as
Basic Moments, HMAX-GA, EBIM, SIFT, SM, andMoment
Invariants, see Table 9. Figure 14 depicts the results for
comparison with Tables 9 and 10 on the GRAZ-02 database.
Note that the AVC outperforms other approaches in the Per-
sons class and it achieves a good ranking for the Cars class
while achieving lower performance in comparison to other
approaches for the Bikes class.

3) COMPARISON WITH THE VOC CHALLENGE
The PASCAL Visual Object Classes (VOC) Challenge
2007 and its associated database has become accepted as a

FIGURE 15. This figure provides a performance comparison between the
best AVC solutions (AVC) against the maximum AP (max), median AP
(median), minimum AP (min) and AP (chance) obtained by a random
ranking of the images reported in [87] for the VOC2007 database.

benchmark for object detection [87]. The challenge provides
the vision and machine learning communities with a standard
dataset of images, annotations, and evaluation procedures
that are used to fairly compare different image classifica-
tion systems [86]. The VOC2007 database contains natural
images with significant variability in terms of object size, ori-
entation, pose, illumination, positions, and occlusions. Today,
the VOC dataset is considered as one of the most chal-
lenging databases for object classification [88]–[90]. In this
paper, the classification challenge is used to evaluate the
performance of the AVC using the random search. The
selected challenge is the classification whose goal is to
determine the presence/absence of an object from a partic-
ular class within an image. This database contains images
from 20 difference object classes: person, train, car, aero-
plane, horse, boat, motorbike, bicycle, bus, cat, bird, din-
ingtable, chair, tvmonitor, sofa, dog, sheep, cow, potted-
plant, and bottle. The VOC2007 database is divided into
two subsets: the training/validation set, known as trainval,
composed of 5011 images; and the testing set, which consists
of 4952 images. The trainval set is further divided into two
subsets, which are used in our two-stage process for the
discovery of the best AVC solutions.

The experiment consists of 500 random tries used to select
the best AVC solution for each class. The performance of
the solutions is computed with the average precision (AP)
measure proposed in the VOC2007 challenge. In this work,
we compare the best AVC solutions performances with the
best, median, and minimum results reported in [87] over the
twenty classes; as well as, the chance performance, whose
AP value was obtained with a classifier outputting a random
confidence value without examining the input image; see
Figure 15. Note how the performances of all AVC solutions
are better than the chance method, even though all solutions
were found through a random procedure. While the test
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shows the limit of our search process, we note that the AVC
random solutions for the bottle, motorbike, pottedplant, and
sofa classes outperform the low boundary solutions reported
in [87].

V. CONCLUSIONS AND FUTURE WORK
This paper presented a novel computational model of the
visual cortex following the hierarchical structure of previ-
ous visual attention and object recognition proposals. The
overall approach considers that the processes of extraction
and description can be enforced by function composition
through a set of mathematical operations that are used within
the stages as mentioned earlier. According to the results,
all functions embedded within the hierarchical structure of
the AVC can be quickly discovered through random search
while achieving excellent results on the Caltech and GRAZ
databases. The results provide evidence about the regular-
ity in patterns related to the optimal size of the training
set. The results show that the proposal matches the per-
formance of algorithms in the state-of-the-art according to
the results obtained in Caltech and GRAZ testbeds. As a
conclusion, we can say that the AVC methodology offers a
new perspective to study the development of artificial brains
since the structural complexity can be improved because
the approach is susceptible of being framed as an optimiza-
tion problem. In this way, we can synthesize new structures
according to the task at hand. In particular, for future research,
we would like to test the approach with more complex
datasets such as the VOC challenge, ImageNet, and Visual
Genome [87], [91], [92]. The methodology is computation-
ally costly, and we propose to change to parallel computing
implementations of the AVCmodel through the application of
GPGPU technology [13]. Finally, we would like to continue
to explore the application of this new paradigm to problems
of humanoid robotics [12].
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