
Received March 22, 2019, accepted April 10, 2019, date of publication April 22, 2019, date of current version May 2, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2912215

Online Shape Modification of Molecular Weight
Distribution Based on the Principle of Active
Disturbance Rejection Controller
JING WANG , CHENGYUAN TAN, AND HAIYAN WU
College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China

Corresponding author: Jing Wang (jwang@mail.buct.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61573050, in part by the Fundamental
Research Funds for the Central Universities under Grant XK1802-4, and in part by the Open-Project Grant funded by the State Key
Laboratory of Synthetical Automation for Process Industry at the Northeastern University under Grant PAL-N201702.

ABSTRACT Molecular weight distribution (MWD), an important microcosmic quality index of high
polymer, is online unmeasurable, which makes its closed-loop control extremely difficult. To solve this
problem, an online shape modification strategy for polymer MWD is proposed based on the active distur-
bance rejection controller (ADRC). The temporal-spatial property of MWD is estimated in real time by a
three-layers forward network based on orthogonal polynomials basis function, and the shape modification
of distribution function is transformed into the tracking control of moment statistics in the state-space
description. Taking full advantage of the onlinemeasured lower-ordermoments, dual ADRCs are constructed
with twomanipulated variables (the flow rate ofmonomer and initiator) to achieve the high precision tracking
of lower-order moments and distribution functions, simultaneously. Furthermore, the stability condition of
the closed loop system is proved which can guide the parameter tuning of ADRCs. The proposed control
strategy is implemented on the polymerization reaction in the laboratory scale continuous stirred tank reactor
(CSTR). The feasibility and robustness are verified in the simulation.

INDEX TERMS Molecular weight distribution, active disturbance rejection controller, low-order moment,
shape modification.

I. INTRODUCTION
Polymers have played an increasingly important role in the
chemical industry in recent decades. Different polymers have
different properties, such as strength and thermal expansion.
Its special microcosmic characteristics, such as molecular
weight distribution(MWD) and particle size distribution,
have significant influence on the end-use properties of poly-
mer products. Therefore, it’s very important to study the
modeling and control of MWD and other similar charac-
teristics [1], [2]. It’s different from the ordinary chemical
systems that the controlled variable in MWD control system
is a distribution curve or probability density function(PDF)
rather than a set point or a value, which means the control of
MWD system is more complicated. At the same time, the lack
of relevant online measuring techniques of MWD makes the
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closed-loop control more difficult to achieve. Due to the
complexity of the above problems, modeling and closed-loop
control of MWD has become a great challenge.

At present, the main modeling method of MWD is
completed by soft sensing, including mechanism model-
ing and data-driven modeling. Mechanism method is usu-
ally based on the reaction population balance to get a
mathematical model composed of a set of high dimen-
sional partial differential equations [3]–[6]. Researchers
usually get suitable operation based on optimization meth-
ods [7], [8], but the large amount of calculation makes it diffi-
cult to be applied in practice. Data-driven modeling methods
include neural network model [9], [10] and stochastic dis-
tribution system(SDC) whose system output is a probability
density function [11], [12]. The traditional data model always
is expressed as a simple state space description, and many
effective control algorithms are put forward based on these
data models to control the shape of PDF [13]–[17], [25].
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Above controllers in [13]–[17] are designed only based on
the data model without considering the process information,
so they are implemented in open-loop form. The information
of process should be feed back to controller. But the limitation
of measurement techniques ofMWD is existent. The Gel Per-
meation Chromatography(GPC) take a few dozen minutes or
several hours to measureMWD [18], which meansMWD can
hardly be measured on-line. Therefore, other average indexes
or variables should be controlled in the general polymer-
ization process. Furthermore, since the existing data-driven
model are constructed directly in a black box, it results that
the model variables and control variables do not have clear
physical meaning. For example, the state variables are just the
weight vector of B-spline basis functions in [13]–[16]. Article
proposes a neural network consisting of a series of orthogonal
polynomial [19]. The most important is that the relation
between the weights vector of the orthogonal polynomials
function neural network and the MWD moments vector is
proved. So the moments vector can be regarded as the state
vector in the state space model. Better yet, the low order
moments of MWD can be measured in real time [20], [21],
so we can use the measured low order moments as the con-
trolled variables to realize the online closed-loop control of
the MWD shape.

ADRC was proposed based on PID principle by Han [22]
and has many advantages in dealing with complex and non-
linear system. It contains 3 main parts: tracking differentiator
(TD), state error feedback (SEF) and extended state observer
(ESO). TD can change a step input into a smooth one for
system, which can reduce the influence cause by big initial
output error. It also can provide differential of input signal.
ESO, the main part of ADRC, can accurately estimate the
system uncertainty and external disturbance as total distur-
bance. SEF is the control law of ADRC, it use proportion and
differentiation of the output error and disturbance compen-
sation to get manipulating variable. ADRC can solve system
disturbances very well, effectively control complex systems
and has good adaptability and robustness, so it is widely use
to control many kind of systems. Liu and Li use ADRC to
control a planar motor speed system [23], and get a better
dynamic performances when control with a sudden load and
disturbances. ADRC was applied to control a multi-agent
system with complex interconnection. The result shown that
such disturbance can be actively estimated and canceled from
each individual subsystem [24]. Powered parafoil system
with strongly nonlinear and complicated cross-coupling can
be effect control by ADRC in [26].

This paper will use the complex model in [19] to con-
trol the MWD shape. Considering the complexity and
strong nonlinearity of the polymerization process and
the inaccuracy of modeling, the design of controller
still is a hard work. Many researches show that ADRC
has strong ability to deal with complex systems and
kinds of disturbances. Therefore, we want to use ADRC
as controller in the MWD tracking control. Consider-
ing the practical situation, the model with uncertainty is

FIGURE 1. Structure of neural network.

used to test the robust performance of the controller in
simulation.

The structure of this article is organized as follows.
In section 2, the MWD model is constructed based
on the orthogonal polynomials function neural network.
Section 3 gives the online control scheme within the ADRC
principle, and analyzes the stability of the control loop.
Section 4 simulates the control schemes with the polystyrene
reaction in the laboratory scale CSTR to analyze the feasibil-
ity and the robustness of the proposed method.

II. NEURAL NETWORK MODEL
The orthogonal polynomials basis function based three-layers
forward network is used to describe the space expansion prop-
erty of MWD and the recurrent network is used to represent
the time property in [19]. Fig. 1 gives the network structure.
The state space description of model is as follows,

V (k + 1) = AVnv (k)+ BUnu (k)+ CF (U (k)) , (1)

γ (k, x) = P · V (k) =
m∑
i=1

vi(k)pi(x), (2)

where A,B,C are weight matrices, m and s are the num-
ber of weight and input vector, respectively, V (k) =
[v1 (k) , v2 (k) , . . . , vm (k)]T is the state, U (k) = [u1 (k) ,
u2 (k) , . . . , us (k)]T is the input vector, P (x) = [p1 (x) ,
p2 (x) , . . . , pm (x) ]T is orthogonal polynomials basis func-
tion, γ (k, x) is the output representing the concentration value
of polymermacromolecule at sample time k with chain length
x. Vnv (k) ,Unu (k) and F (U (k)) are block matrix, which can
be expressed as follow,

Vnv (k) =
[
V T (k) ,V T (k − 1) , . . . ,V T (k − nv+ 1)

]T
,

(3)

Unu (k) =
[
UT (k − 1) ,UT (k − 2) , . . . ,UT (k − nu)

]T
,

(4)

F(U(k)) = [f (u1 (k)) , f (u2 (k)) , . . . , f (u2 (k))]T , (5)

where nu and nv are the input and output feedback order,
respectively. f is the basis function of recurrent neural net-
work, which can be orthogonal polynomial function or other
function.
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From [19], the linearmapping relationship between the low
orderMWDmoment vector and the recurrent network weight
vector V (k) is denoted as,

V (k) = G ·M (k) , (6)

where M (k) = [m1,m2, . . . ,mm]T is the MWD order
moment vector, m1 is 0th order moment, m2 is 1st order
moment and so on. When the orthogonal polynomials basis
function is determined, the transformational matrix G will be
constant. Substituting (6) into (1) and (2), we get a newMWD
model expressed as follow,

M (k + 1) = ÃMnv (k)+ B̃Unu (k)+ C̃F (U (k)) , (7)

γ (k, x) = P · G ·M (k) , (8)

where Ã, B̃, C̃ are weight matrices and Mnv (k) =

[MT (k) ,MT (k − 1) , . . . ,MT (k − nv+ 1)]T .
The delay items of M (k) and U (k) in (7) have bad influ-

ence on controller design and stability analysis. Therefore,
we want to change it to a new augmented system without
delay.

Let Ã =
[
ã1, ã2, . . . , ãnv

]
and B̃ =

[
b̃1, b̃2, . . . , b̃nu

]
,

where ãi and b̃i are matrix with proper dimension. Then (7)
can be rewritten as,

M (k + 1) = ã1M (k)+ . . .+ ãnvM (k − nv+ 1)

+ b̃1U (k − 1)+ . . .+ b̃nuU (k − nu)

+ C̃F (U (k)) (9)

Define a new state variable as x (k) = [MT (k − nv+ 1) ,
MT (k − nv+ 2) , . . . ,MT (k)]T and a new input variable as
U1 (k) = [UT (k − nu) ,UT (k−nu+1), . . . ,UT (k − 1)]T ,
then we obtain a discrete system description without delay as
follow,

x (k + 1) = A1x (k)+ B1U1 (k)+ F̄ (k) , (10)

where

A1 =


0 I 0 · · · 0
0 0 I · · · 0
...

...
...

. . .
...

0 0 0 · · · I
ãnv ãnv−1 · · · ã2 ã1

 ,

B1 =


0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0
b̃nu b̃nu−1 · · · b̃2 b̃1


and

F̄ (k) =


0
...

0
C̃F (U (k))

 .

FIGURE 2. Structure of MWD control system.

III. ONLINE TRACKING CONTROLLER DESIGN
A. SCHEME OF CONTROLLED SYSTEM
MWD can’t be used as a feedback variable in on-line con-
trol system due to its large measurement delay. Low order
moments have distinct physical meaning and are more easily
measurable, and have a close relationship with MWD. There-
fore, we use the low ordermoments ofMWDas the controlled
variables in the on-line control strategy.

When the orthogonal polynomials basis function is deter-
mined, output layer weight vectorV can be directly calculated
from the following equation [19],

vgi =

max l∑
x=1

γg(x)pi(x)

(pi(x), pi(x))
, i = 1, 2, . . . ,m, (11)

where l is the length of the polymer, vgi is element of tar-
geted weight vector Vg =

[
vg1, vg2, . . . vgm

]T , γg (x) is the
expected polymer concentration at chain length x. With the
Eq.(6), we can get the targeted moment vector Mg. We can
see that from the NN model, the influence of U (k) to output
MWD is equal to the influence of U (k) to the moment
vector M (k). It means that the trace of target MWD can be
changed bymanipulatingU (k) tomakeM (k) track the target
moment vector Mg.The control of MWD is transformed into
the control ofM (k).

The MWD control system is shown in Fig. 2. The output
moment vector of network model, M (k) is send into con-
troller as feedback variable. The information of NN model
is used to adjust the controller, but the mismatch between
the actual process and the network model will influence the
control accuracy. A deviation eM (k) = M (k) − M̃ (k)
between the output moment vector (real measurements) and
the network estimations can be used to correct the network
model. M̃ (k) is the output moment vector of polymerization
process. γ (k) and γ̃ (k) is the outputMWDof networkmodel
and actual process, respectively. γg is the reference MWD
which is the desired polymer quality. Calculator computes
the expected moment vector Mg from γg according to the
(6) and (11). We design several individual ADRCs whose
number is equal to the number of model weight vector. That
means every ADRC respectively control a MWD moment.
The output of ith ADRC at time k is qi (k), which is the
element of Q (k) = [q1 (k) , q2 (k) , . . . , qm (k)]T . Operating
variable U (k) is computed from the following,

U (k) = DQ(k), (12)
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FIGURE 3. Simplified structure of MWD control system.

where D ∈ Rs×m is weighting matrix, which can be shown as
follow,

D =


d11 d12 · · · d1m
d21 d22 · · · d2m
...

...
. . .

...

ds1 ds2 · · · dsm

 , (13)

where
∑m

i=1 dji (j = 1, 2, . . . , s). The value of dji reflects the
importance of mi (k) to input j, so we can adjust the weight
of mi (k) for control the shape of MWD by selecting the
appropriate matrix D. We noticed that m equal to the number
of moments in model, but the number of inputs s is always
far smaller than m. Therefore, the system is under-actuated,
which means the accurately control of every mi (k) is
difficult.

There are many controllers to be desired in the system
mentioned above. Besides, the on-line correction of network
model is too difficult to achieved. So we simplify the control
structure and get a more simply achievable system.

It has been proved that the moments’ free degrees of the
distribution function are same as the number of its param-
eters. In other words, if we know how many parameters
of a distribution function, we can determine the number of
the controlled moments during the MWD control. Schulz
distribution that has two parameters is used to describe
MWD in the traditional chemical industrial process, so we
can track the MWD shape by controlling 2 moments.
Because the leading moments (lower order moments) of
MWD can be measured on-line, so we choose m1 and m2,
the 0th and 1st order moments that can be measured on-
line, as controlled variables in the simplified control sys-
tem. So two ADRC controllers, ADRC1 and ADRC2, are
designed to control m1 and m2, respectively. The number of
ADRC reduces greatly that means the system in Fig. 3 is
very simpler and more easily implemented than that of
Fig. 2. Therefore, the weight matrix D should be changed
to D̃ ∈ Rs×2.

B. CONTROLLER DESIGN
As we know, the deviation between the system model and
the actual plant always exist, which will influence the con-
trol effect. Moreover, we need to consider the affect of the
uncontrolled moments on the controlled moments in this sim-
plified control scheme. So the extended state observer (ESO)
is used to estimate all the above disturbances expressed as

FIGURE 4. Structure of ADRC.

following,

εi0 (k) = zi1 (k)− mi (k)
zi1 (k + 1) = zi1 (k)+ h

(
zi2 (k)− β

i
1ϕ
(
εi0 (k) , α

i
1, δ

i
1

))
zi2 (k + 1) = zi2 (k)+ h(z

i
3 (k)− β

i
2ϕ
(
εi0 (k) , α

i
2, δ

i
2

)
+biqi (k))
zi3 (k + 1) = zi3 (k)− hβ

i
3ϕ
(
εi0 (k) , α

i
3, δ

i
3

)
ϕ (x, α, δ) =

{
x
/
δ(1−α), |x| ≤ δ

sign (x) |x|α, |x| > δ.
(14)

where zi1, z
i
2 and zi3 are the estimates of ith moment,

the moment’s derivative and total disturbance.
Tracking differentiator (TD) designs a gentle transition

process (doesn’t like step) for the control system, which is
represented as the following equations,{
r i1(k + 1) = r i1(k)+ hr

i
2(k)

r i2(k + 1) = r i2(k)+ hfst(r
i
1(k)− µgi(k), r

i
2(k), δ

i
0, h

i
0)

d = δi0h
i
0, d0 = dhi0

mi = r i1(k)− mgi(k)+ h
i
0r
i
2(k), a0 = (d2 + 8δi

∣∣∣mi∣∣∣) 12
a =

{
r i2(k)+ (a0 − d)sgn(mi)/2,

∣∣mi∣∣ > d0
r i2(k)+ m

i/hi0,
∣∣mi∣∣ ≤ d0

fst = −

{
δi0a/d, |a| ≤ d
δi0sgn(a), |a| > d

. (15)

The non-linear state error feedback (SEF) control law is
design as follow, {

ei1 (k) = r i1 (k)− z
i
1 (k)

ei2 (k) = r i2 (k)− z
i
2 (k)

u0i (k) = k i1e
i
1 (k)+ k

i
2e
i
2 (k)

qi (k) = u0i (k)− zi3 (k)
/
bi. (16)

Scheme of ADRC is shown in Fig. 4, and it comprises of
the above parts (TD, SEF and ESO). All ADRCs in theMWD
control system have the same structure.

C. STABILITY ANALYSIS
In order to simplify the stability analysis, let the inputs of all
ADRCmgi(i = 1, 2, . . . ,m) are zero, so all the outputs of TD
are also zero.
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According to above assumption and (16), we can get

qi (k) = −k i1z
i
1 (k)− k

i
2z
i
2 (k)−

zi3 (k)

bi
. (17)

Substitute qi (k) into (14), and let

zi (k) = [zi1 (k) , z
i
2 (k) , z

i
3 (k)]

T ,

then we obtain

zi (k + 1) = Bi4z
i (k)+ hϕ

(
εi0 (k)

)
Bi5, (18)

where

Bi4 =

 1 h 0
−hbik i1 1− hbik i2 0

0 0 1

 , Bi5 =

−β
i
1

−β i2

−β i3


So the state space model of all ESOs can be written as

follow,

z (k + 1)

=


B14

B24
. . .

Bm4

 z (k)+ h

B15

B25
. . .

Bm5

w (k)
(19)

= B4z (k)+ hB5w (k) . (20)

where

z (k) =


z1 (k)
z2 (k)
...

zm (k)

 , w (k) =


ϕ
(
ε10 (k)

)
ϕ
(
ε20 (k)

)
...

ϕ
(
εm0 (k)

)


For replacing the U1 (k) in (10), define Z (k) =

[zT (k − nu) , zT (k − nu+ 1) , . . . , zT (k − 1)]T , and we
obtain,

Z (k + 1) =


B4

B4
. . .

B4




z (k − nu)
z (k − nu+ 1)

...

z (k − 1)



+ h


B5

B5
. . .

B5




w (k − nu)
w (k − nu+ 1)

...

w (k − 1)


= B6Z (k)+ hB7W (k) . (21)

Take single input as an example. Substituting qi (k)
into (12), we obtain

U (k) =
m∑
i=1

diqi (k)

=

m∑
i=1

di
(
−k i1z

i
1 (k)− k

i
2z
i
2 (k)− z

i
3 (k)

/
bi
)

= B2z (k) . (22)

where B2 = [−d1k11 ,−d1k
1
2 ,−d1b1, . . . ,−dmk

m
1 ,−dmk

m
2 ,

−dmbm].
Therefore, U1 (k) can be rewritten as follow,

U1 (k) =


U (k − nu)

U (k − nu+ 1)
...

U (k − 1)



=


B2

B2
. . .

B2




z (k − nu)
z (k − nu+ 1)

...

z (k − 1)


= B3Z (k) . (23)

Substitute (23) into (10), then

x (k + 1) = A1x (k)+ B1B3Z (k)+ F̄ (k) . (24)

Define X (k) =
[
xT (k) ,ZT (k)

]T . Combining (17) and
(23), the whole closed loop system can be express as follow

X (k + 1) = A2X (k)+ B8W (k)+ G (k) , (25)

where

A2 =
[
A1 B1B3
0 B6

]
, B8 =

[
0
hB7

]

and

G (k) =
[
F̄ (k)
0

]
.

For proving the stability, a relationship between estima-
tion error and W (k) is presented in following formula.
Define yi (k + 1) = zi1 (k) − mi (k) and Y (k + 1) =
[y1 (k + 1) , y2 (k + 1) , . . . , ym (k + 1)]T , and we have,

Y (k + 1) = C1M (k)+ C2z (k) , (26)

where

C1 =


−1
−1

. . .

−1


and

C2 =


1 0 0

1 0 0
. . .

1 0 0

 .
With further deduction on (26), we obtain

Y (k + 1) = C1[
0 . . . 0︸ ︷︷ ︸
nv−1

I
]x (k)

+C2[
0 . . . 0︸ ︷︷ ︸
nu−1

I
]Z (k + 1)
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= C1[
0 . . . 0︸ ︷︷ ︸
nv−1

I
]x (k)

+C2[
0 . . . 0︸ ︷︷ ︸
nu−1

I
] [B6Z (k)+ hB7Z (k)]

= C3X (k)+ C4W (k) , (27)

where

C3 =

[
C1[

0 . . . 0︸ ︷︷ ︸
nv−1

I
] , C2[

0 . . . 0︸ ︷︷ ︸
nu−1

I
]B6

]
and

C4 = hC2[
0 . . . 0︸ ︷︷ ︸
nu−1

I
]B7.

Since xϕ(x) > 0(x 6= 0), so

Y T (k + 1)w (k) > 0. (28)

Replace the w (k) in (28) byW (k + 1), and we obtain,

Y T (k + 1)w (k) = Y T (k + 1)C5W (k + 1) > 0, (29)

where

C5 = [
0 . . . 0︸ ︷︷ ︸
nu−1

I
].

The following theorem shows the stability of the
closed-loop system.
Theorem 1: If a positive definite symmetric matrix P can

satisfy the following condition is exist,
−P CT

3 C5 P AT2 P
CT
5 C3 CT

4 C5 + CT
5 C4 0 BT8 P

P 0 −P 0
PA2 PB8 0 −P

 < 0, (30)

the closed-loop system (25) is stable and state error is
bounded.

Proof: A Lyapunov function is chosen as,

E (k) = [X (k)− G (k − 1)]TP [X (k)− G (k − 1)]

+ 2
k∑

n=1

Y T (n)C5W (n). (31)

1 = E (k + 1)− E (k)

= XT (k)AT2 PA2X (k)+ X
T (k)AT2 PB8W (k)

+W T (k)BT8 PA2X (k)+W
T (k)BT8 PB8W (k)

−XT (k)PX (k)+ XT (k)PG (k − 1)

+GT (k − 1)PX (k)− GT (k − 1)PG (k − 1)

+ [C3X (k)+ C4W (k)]TC5W (k)

+W T (k)CT
5 [C3X (k)+ C4W (k)]

= XT (k)
(
AT2 PA2 − P

)
X (k)+W T (k) (BT8 PB8

+CT
4 C5 + CT

5 C4)W (k)− GT (k − 1)PG (k − 1)

+XT (k) (AT2 PB8 + C
T
3 C5)W (k)

+W T (k)
(
BT8 PA2 + C

T
5 C3

)
X (k)

+XT (k)PG (k − 1)+ GT (k − 1)PX (k) (32)

FIGURE 5. Structure of the laboratory scale CSTR.

Let S (k) =
[
XT (k),W T (k),GT (k − 1)

]T , so 1 can be
rewritten as,

1 = ST8S (k) . (33)

where

8 =

 AT2 PA2 − P AT2 PB8 + C
T
3 C5 P

BT8 PA2 + C
T
5 C3 BT8 PB8 + C

T
4 C5 + CT

5 C4 0
P 0 −P


1 < 0

can be transformed into 8 < 0. According to the Schur
complement theorem, we obtain

81 =


−P CT

3 C5 P AT2
CT
5 C3 CT

4 C5 + CT
5 C4 0 BT8

P 0 −P 0
A2 B8 0 −P−1

 < 0. (34)

Pre-multiply and post-multiply diag (I , I , I ,P) to the left
and right side of 81,

82 =


−P CT

3 C5 P AT2 P
CT
5 C3 CT

4 C5 + CT
5 C4 0 BT8 P

P 0 −P 0
PA2 PB8 0 −P

 < 0. (35)

Proof is completed.

IV. SIMULATION RESULT
In this section, laboratory scale continuously stirred tank
reactor (CSTR), which is shown in Fig. 5 is used as controlled
plant in simulation. The process is the free-radical solution
polymerization of styrene in a jacked continuous stirred tank
reactor, while azobisisobutyronitrile (ABIN) is used as initia-
tor. Two kinds of fluid, monomer and initiator, are added into
the reactor through a control device. The heat of reaction is
provided by the heated oil in jacket. The temperature of the
oil is controlled by a temperature regulator to keep constant.
The outlet flow is measured by a balance meter.

The polymerization mechanisms include four steps: ini-
tiation, chain propagation, chain transfer to monomer,
and termination. The major ordinary differential equations
(ODEs)are provided in the following to describe the polymer-
ization process. The concentration of initiator I , monomerM ,
live polymer radical R and dead polymer Pj with chain length
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TABLE 1. Parameters used in mechanism model.

j are described as
dI
dt
=

F
V
(I0 − I )− Kd I

dM
dt
=

F
V
(M0
−M )− 2f Kd −

(
Kp + Ktrm

)
RM

dR
dt
= −

F
V
R+ 2f Kd I − KtR2

dPj
dt
=

F
V
(KtrmMR1α−(j−1) + 0.5(j− 1)KtR21α

−(j−2)
− Pj)

(36)

where R1 and α express as

R1 =
2f Kd I + KtrmRM

KpMα

α = 1+
Ktrm
Kp
+

KtR
KpM

+
F

KpMV

where V is the volume of CSTR, F represent input flow
rate, I0 and M0 are initial concentrations of initiator and
monomer in the input flow, respectively, f is the initiation
efficiency. Kd is the initiator decomposition rate constant, Kp
is the propagation rate constant, Ktrm is the chain transfer
rate constant, Kt is the termination rate constant. These rate
constants K conform to the Arrhenius equation,

Ki = Ar ie−
Ei
RT , (37)

where subscript i represents different polymerization process,
i ∈ {d, p, trm, t}. Ar is pre-exponential factor, E is activation
energy, R is molar gas constant and T is reaction temperature.
Table 1 shows parameters used in mechanism model.

The MWD of reaction product polystyrene is output. The
maximum polymer chain length is maxl = 2000, and the
dimensionality of the moment vector M (k) is m = 8. The
inputs are flow rates of monomer and initiator, both of their
range are [9.52,14.28]. So the input dimensionality is s = 2,
beside D̃ ∈ R2×2. The weighting matrix D̃ is chosen as

D̃ =
[
0.7 0.3
0.2 0.8

]
.

FIGURE 6. Track to the desired MWD at final time under different control
methods.

FIGURE 7. Manipulated variables under different control methods.

The sum of square error between output MWD of process
and the desired MWD is shown as follow,

e(k) =
max l∑
x=1

(γ (k, x)− γg(x))2, k = 1, 2, . . . ,N , (38)

where N = 300 is the final sample time, sampling inter-
val is 1 min. The sum of whole controlled process error
expressed as,

E =
N∑
k=1

e (k). (39)

We use the proposed method to realize the MWD control
of polystyrene in CSTR and compare with the method in [19],
which carried out control strategy though optimizing a track-
ing performance function. Table 2 shows the parameters of
the ADRC. The ADRC is adaptable and robust, so same
parameters are set for both ADRCs for convenience. The
following results are the track of desired MWD. Fig. 6 is
tracking result to the desired MWD under different method at
final sample time. Fig. 7 is variation of the flow rate under the
different methods. Fig. 8 is dynamic 3-D variation of MWD
under ADRC control.

Error index e (k) under two different control strategy are
shown in Fig. 9. The e (k) of this work is 6.49×10−17 at final
sample time, which is much smaller than error of [19](4.36×
10−16). The E of this work(1.23 × 10−13) is also smaller
than [19](3.03 × 10−13). It can be seen that the effect of
ADRC control is much better in situation of dynamic and
steady.
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TABLE 2. Parameters of ADRC.

TABLE 3. Results of robust test.

FIGURE 8. Variation of MWD under ADRC control.

FIGURE 9. Comparison of e(k) between ADRC and the method in [19].

The changing of every element of moment vector under
the different methods is shown in Fig. 10. Proposed method
control the MWD moments more accurate and has a bet-
ter dynamic process. But we can see that some moments,
especially 2nd order moment, still can’t accurately track the
desired value. The under-actuated and complex make the
accurately control of every moment too difficult to achieve.

To test the robustness of the controlled system, some
parameters of the mechanism model are changed (only
change a value at once), which causes the mismatch between

FIGURE 10. Variation of each order moment.

the model and the process. In other words, it tests the ability
of the controller deal with model uncertainty. The parameters
drift and control results are shown in Table 3. e• and E•, cal-
culated by (38) and (39), are tracking error with parameters’
drift at final sample time and whole process. The subscript
• means the method of control, ADRC or method in [19]. ē
is sum of square error between normal and drifted process
output MWD at steady state with same input (values get
from previously ADRC controlled input at k = N ), can be
expressed as

ē =
max l∑
x=1

(γd (x)− γg(x))2, (40)

where γd is the output MWD of drifted process.
Different parameters have different influence on polymer-

ization. Ed is a more sensitive parameter than others for
polymerization process, so we just make a little change to
it. Table 3 is shown that ADRC can control the system
with better effect when parameters drifted. Degree of error
reduction between ē and eADRC is different with change of
different parameters. Maybe the influence of change of Ep
has stronger relationship with the controlled moments than
other parameters, so the ability of resist Ep drifted is better.
Because the drift of Ed influence whole process, the ADRC
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control is no effect in this situation. We can see that ADRC
has strong robustness.

V. CONCLUSIONS
The effort of this work is proposing a control strategy of
MWD, which makes MWD can be controlled on-line and
track desired shape with ADRC. It solves the difficulty of
on-line control of MWD. A theorem was proposed to discuss
the stability of the controlled system, which can be used to
determine the parameters of the controller. From the simula-
tion, we can see that the output MWD of the polymerization
process can be controlled as close as the desired curve. When
mechanism parameters have changed, the system output still
can track the desired MWD with a better quality. It means
the system has robustness, which makes a good benefit for
practice. How to improve the effect of controller on resisting
disturbance is future work.
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